
ISeCure
The ISC Int'l Journal of
Information Security

July 2015, Volume 7, Number 2 (pp. 151–166)

http://www.isecure-journal.org

ACollusionMitigation Scheme for Reputation Systems

Mina Niknafs 1,∗, Sadegh Dorri Nogoorani 1, and Rasool Jalili 1
1Data and Network Security Lab. (DNSL), Department of Computer Engineering, Sharif University of Technology, Azadi Ave.,
Tehran, I.R. Iran

A R T I C L E I N F O.

Article history:
Received: 5 September 2014

Revised: 13 June 2015

Accepted: 1 December 2015

Published Online: 7 December 2015

Keywords:

Attack resistance, Collusion,
Reputation, Trust.

A B S T R A C T

Reputation management systems are in wide-spread use to regulate

collaborations in cooperative systems. Collusion is one of the most destructive

malicious behaviors in which colluders seek to affect a reputation management

system in an unfair manner. Many reputation systems are vulnerable to

collusion, and some model-specific mitigation methods are proposed to combat

collusion. Detection of colluders is shown to be an NP-complete problem. In

this paper, we propose the Colluders Similarity Measure (CSM) which is used

by a heuristic clustering algorithm (the Colluders Detection Algorithm (CDA))

to detect colluders in O(n2m + n4) in which m and n are the total number

of nodes and colluders, respectively. Furthermore, we propose an architecture

to implement the algorithm in a distributed manner which can be used

together with compatible reputation management systems. Implementation

results and comparison with other mitigation methods show that our scheme

prevents colluders from unfairly increasing their reputation and decreasing the

reputation of the other nodes.

© 2015 ISC. All rights reserved.

1 Introduction

R eputation management in distributed systems is
a new security solution for situations where there

is not enough information about the members of the
system. In particular, the nodes are autonomous en-
tities interacting with each other according to their
reputation information. An important challenge in
these systems is the choice of trustworthy interaction
partners. The reputation values are usually computed
based on the opinions of the other nodes as well as
the history of local satisfaction values.

Attackers aim to abuse the trust and reputation
system and subvert it in order to be promoted falsely,

∗ Corresponding author.

Email addresses: m.niknafs@vru.ac.ir (M. Niknafs),

dorri@ce.sharif.edu (S. Dorri Nogoorani),
jalili@sharif.edu (R. Jalili)

ISSN: 2008-2045 © 2015 ISC. All rights reserved.

or manipulate reputations of the other nodes. At the
same time they do not want to provide a good service,
and may report dishonest feedbacks (unfair rating) or
recommendations. Malicious nodes may operate indi-
vidually or collectively. Collusion is a crucial challenge
and one of the most destructive malicious behaviors
in most reputation systems. In a collusion, a group
of malicious nodes which know each other, create a
collective. In general, they give high ratings to the
nodes in their group and low ratings to the other ones.
Trust and reputation evaluation methods are designed
to detect and boycott individual mis-behaving nodes.
However, colluders cooperatively misrepresent them-
selves to converse the effects of their bad behavior
and manipulate the system to gain high reputation
values. In order to mitigate collusion, they should not
be allowed to promote themselves easily and unfairly,
and the reputation system should have a mechanism
to identify and isolate them [1].

ISeCure

152 A Collusion Mitigation Scheme for Reputation Systems — M. Niknafs et al.

Some mechanisms have been proposed to combat
collusion, so far. For instance, the ratings received
from third party nodes are weighted [2], and/or higher
weights are assigned to the ratings from pretrusted
nodes [1]. Moreover, parameters like agent similarity,
feedback credibility, and different types of trust are
integrated into evaluations to mitigate collusion [3].
However, these mechanisms have not been so effective.
One of the deficiencies is that functional and referral
trust are usually not distinguished from each other.
Furthermore, the mitigations focus on individuals and
do not explicitly target collections.

Detection of colluders can be modeled as finding a
clique in a graph [4] which is an NP-complete problem.
Therefore, finding colluders in a large reputation net-
work is very time-consuming and impractical. Some
case-specific approaches are also proposed, which will
be investigated in Section 3.1. In this paper, we pro-
pose a practical anti-collusion scheme. We mark nodes
with activities suspicious to collusion in a distributed
manner. Then, all such nodes are further investigated
in a central authority, and the collectives are detected
by a heuristic clustering algorithm. The algorithm is
based on a similarity measure specially tuned to give
high values to colluders, and its runtime complexity is
O(n2m+ n4) in which m and n are the total number
of nodes and colluders, respectively.

1.1 Background

We briefly review the concepts and definitions in the
field of reputation and trust research according to [5].

Definition 1 (Reputation). Reputation is what is
generally said or believed about a person’s or thing’s
character or standing.

Definition 2 (Trust). Trust is the subjective prob-
ability by which an individual, A, expects that an-
other individual, B, performs a given action on which
its welfare depends.

The term subjective probability indicates that trust
is a measure of belief in the [0, 1] scale. There is a re-
ciprocal relation between reputation and trust. Each
node in a reputation system can base its trust evalu-
ation on the opinions provided by third-party nodes.
For instance, reputation information can be used to
initialize the trust evaluation for the first time [6]. Ac-
cording to [5], reputation can be deemed as a united
measure of trustworthiness based on the ratings or re-
ferrals from members in a group. In other words, many
reputation systems calculate the reputation value of
a node by aggregating the trust values received from
different nodes (see [1] and [2], for example.) It is
also important to distinguish between functional and
referral trust [7]:

Definition 3 (Functional trust). Functional trust
of A towards B is the A’s opinion in B’s ability to
provide certain services in a trust scope.

Definition 4 (Referral trust). Referral trust of A
towards B is A’s opinion in B’s ability to provide good
recommendations in a trust scope because node B is
knowledgeable in that trust scope.

While the two concepts are related, but should be
differentiated from each other. This is because it is
probable that a node provides a good service and at
the same time, gives dishonest recommendation about
the other nodes. Hence, a reputation system should
distinguish functional from referral trust, in order to
counteract collusion.

1.2 The Structure of the Paper

In the remainder of the paper, we describe the most
common security threats that are applicable to rep-
utation and trust systems in Section 2. Then, we re-
view the related works in Section 3. In Section 4, we
explain our scheme, and analyze its complexity from
different aspects. Then, its implementation is stud-
ied in Section 5. Our simulation results are presented
in Section 6 and the paper is concluded with Section 7.

2 Security Threat Scenarios

Attackers aim to misuse the system in general, have
diverse goals, and use different mechanisms. The prim-
itive goals of attacks are as follows [8]:

• Self-promoting: Attackers increase their own
reputation through illegal actions like manipula-
tion of trust values.

• Slandering: To lower the reputation of other
nodes, attackers manipulate their reputation by
reporting false data .

• Subverting the reputation system: Attackers
disrupt the availability of the system and manip-
ulate the system, in general.

At the most basic level, an attacker targets one of
the above-mentioned attacks in a malicious scenario.
However, in more advanced scenarios, more than one
goal are followed. In essence, an attacker may pro-
vide a bad service, give dishonest feedbacks (unfair
rating), or recommendations about the others. The
three mechanisms can also be mixed and matched to
implement the following attack scenarios [9]:

• Individual malicious nodes: Individual mali-
cious nodes always provide bad service. The main
goal in this scenario is to subvert the reputation
system.

• Malicious collectives: Collusion is a union be-
tween two or more nodes to limit open competi-

ISeCure

July 2015, Volume 7, Number 2 (pp. 151–166) 153

Figure 1. A collusion scenario in a trust network. The circles
represent the nodes of the system, and those in the dotted

region are colluders. The links indicate interactions among the
nodes. The positive and negative labels indicate positive and
negative feedbacks, respectively.

tion by deceiving to gain unfair benefits that col-
luders would not be able to gain as individuals [10].
They have the following behaviors [1, 2, 9, 11–13]
(see Figure 1):
◦ Frequently provide bad services when they are

selected as service providers, so receive low
ratings form other nodes,
◦ Assign high trust values to their group-mates,

and
◦ Frequently give dishonest feedbacks and rec-

ommendations about the others, indeed, they
give other nodes low reputation values.

Sometimes, the colluders try to look good and
hide their bad behavior, by providing high-quality
services (with some probability). This behavior is
called camouflaging. A malicious collective may
be used to implement any of the self-promoting,
slandering, or subverting attacks.

• Sybil: An adversary can introduce a substantial
set of corrupt participants and control all of them.
They can be used to compromise the reputation
system. For example, each time one of them is
selected as a service provider, it provides bad
service. After that, it disappears from the system
and reappears with a new identity. In the worst
case, all of these participants concurrently try
for a common goal. Hence, this case can also be
considered to be a collusion.

• White washing: An attacker abuses the system
using some system vulnerability to repair its rep-
utation. In this scenario, the attacker tries to
subvert the reputation system.

Since malicious collectives use all the three mecha-
nisms, collusion is one of the most destructive scenar-
ios in reputation systems. Although collusion mitiga-
tion mechanisms are proposed in the literature, they
are either NP-complete or specific to a system and
cannot be used in other systems.

3 RelatedWorks

A statistical reliability metric is proposed in [14] to
mitigate collusion. The metric is based on the dis-
tribution of transactions among the set of partners
of a node. The reputation value of a node is called
reliable if all its related transactions are distributed
uniformly among many distinct partners. In a similar
manner, a reputation value is not reliable if a consid-
erable fraction of the transactions are performed with
a small number of partners. Statistical analysis were
proposed to assess the reliability of the reputation
value of a node, and detect collusions accordingly. Das
and Islam [3] propose a dynamic trust computation
model for secure communication in multi-agent sys-
tems. They integrate parameters like agent similarity,
feedback credibility, and different types of trust (di-
rect, indirect, recent, and historical) into computation
to mitigate collusion.

In [13, 15], collusion is detected by focusing on sus-
picious relationships among nodes according to the
reputation values of nodes as well as the frequency
of their interactions. In addition to frequency of re-
lationships, social distance is checked for collusion
detection in [15]. As an example, providing frequent
high ratings by low-reputed nodes with short social
distance is detected as a suspicious relationship. In
[16] the k-means clustering is used to partition the
population into a set of clusters. Consequently, each
clusters is investigated for being a collusive cluster.
The idea for identifying the collusion is that colluders
not only try to be more self-serving (self promoting)
but also damage outsiders more than a normal clus-
ter. Other approaches, such as game theory, have also
been proposed to detect collusion [17, 18].

In what follows, we review some notable reputation
models which aimed to detect and mitigate collusion.
Since our scheme is based on a clustering technique,
we will have a brief review of clustering and the related
concepts, as well.

3.1 Reputation Models

Not all the reputation models have taken collusion
into consideration. Although resistance of trust and
reputation models have been analyzed against some
malicious scenarios [9], our focus is on collusion. In
this section, we study the ways that some of the most
assertive models deal with collusion and analyze their
solutions. EigenTrust and PeerTrust are two of the
most well known collusion-resistant models which are
used in our evaluations. Hence, we will analyze them
in more details.

ISeCure

154 A Collusion Mitigation Scheme for Reputation Systems — M. Niknafs et al.

3.1.1 EigenTrust

In EigenTrust [1] a unique global trust value is calcu-
lated for each node which is equivalent to reputation
notion that we defined in this paper. In this model, a
few nodes are considered as pretrusted nodes and have
an important role in the convergence of the Eigen-
Trust algorithm. The reputation value of a node i is
evaluated based on the local trust values that other
nodes assign to it. In calculating the reputation value
of i, local trust values of the others are weighted by
their global reputation. In particular, the reputation
of each node is calculated as follows:

t
(k+1)
i = (1− α)(c1it

(k)
1 + . . .+ cnit

k
n) + αpi (1)

where cji denotes the local trust value of j towards i,

t
(k)
j is reputation value of j at the kth time interval, pi

is the priori trust value towards the pretrusted nodes,
and α ∈ [0, 1] is a parameter.

In the matrix notation, the local trust values form
a matrix C:

C =

c11 c12 · · ·

c21 c12 · · ·
...

...

c1j · · · c1n
c2j · · · c2n
...

...

ci1 ci2 · · ·
...

...

cn1 cn2 · · ·

cij · · · cin
...

...

cnj · · · cnn

, −→ci =

ci1

ci2
...

cii
...

cin

(2)

The local trust values are based on the satisfaction
of nodes about the services they received from other
nodes. In particular, the local trust of i towards j is
calculated as follows:

cij =
max(sij , 0)∑
j max(sij , 0)

, (3)

sij = Sat(i, j)−Unsat(i, j) (4)

where sij is the difference between the number of
satisfactory and unsatisfactory interactions between
the nodes. In other words, cij is the normalized value
of sij .

In a distributed environment a node i can ask its
acquaintances about their opinions about other nodes:

cik =
∑
j

cij cjk (5)

By repeatedly traversing longer paths, after a large
enough number of iterations, all nodes in the system
will have the same trust vector.

EigenTrust uses these two mechanisms to mitigate
collusion:

• A higher weight is assigned to the ratings from
the pretrusted nodes.

• The system assigns weights to the ratings accord-
ing to the raters’ global reputation value.

The main deficiency of this model in collusion mit-
igation is that it does not distinguish referral trust
from functional trust. Dependency on specific formu-
lation is another disadvantage of the model.

3.1.2 PeerTrust

In PeerTrust, a node’s trustworthiness is evaluated
by other nodes in the community based on their past
experiences. Hence, a node’s trustworthiness is equiv-
alent to the reputation notion that we defined in this
paper. PeerTrust [2] utilizes multiple factors in its
reputation evaluation and is more resilient than Eigen-
Trust against collusion. The reputation of a node u is
formulated as follows:

T (u) = α

∑I(u)
i=1 s(u, i)Cr(p(u, i))TF (u, i)∑I(u)

i=1 Cr(p(u, i))TF (u, i)
+ βCF (u)

(6)
where I(u) denotes the total number of transactions
performed by node u with all the other nodes, p(u, i)
denotes the transaction partner in the ith transaction,
S(u, i) denotes the normalized amount of satisfaction
the node receives from p(u, i) in the ith transaction,
Cr(v) denotes the credibility of the feedback submit-
ted by a node v, TF (u, i) denotes the adaptive transac-
tion context factor in the ith transaction, and CF (u)
denotes the adaptive community context factor for
node u. As an example, the size of a transaction can
be considered as its context factor. The credibility of
v from the view point of another node w, is computed
as:

Cr (p (u, i)) =
Sim(p (u, i) , w)∑I(u)
i=1 Sim(p (u, i) , w)

(7)

and

Sim (v, w) = 1−√√√√√∑x∈IS(v)∩IS(w)

(∑I(v,x)

i=1
S(x,i)

I(v,x) −
∑I(w,x)

i=1
S(x,i)

I(w,x)

)2

|IS (v)∩IS (w)|
(8)

where I(u, v) denotes the total number of transactions
performed by the node u with another node v, and
IS (v) denotes the set of nodes that have interacted
with the node v. The nodes which submit feedbacks
after their transactions can be awarded by CF (u).
One way of implementing CF (u) can be as follows:

CF (u) =
F (u)

I(u)
(9)

where F (u) denotes the total number of feedbacks
node u gives to the others.

ISeCure

July 2015, Volume 7, Number 2 (pp. 151–166) 155

PeerTrust uses the following mechanisms to mitigate
collusion:

• The accurate management of the credibility of
a node as a recommender helps PeerTrust to
effectively overcome many of the security threats.

• This model uses the Personal Similarity Measure
(PSM) for evaluation of referral trust. Distinction
between functional trust and referral trust is the
main advantage of this model in over EigenTrust.

In Section 6, PeerTrust will be shown to be more
resistant to collusion than EigenTrust, in our simula-
tions. Even so, it is not completely immune to collu-
sion.

3.1.3 TrustGuard

In TrustGuard [11], the trust model is designed to be
capable of handling four important issues in a node’s
behavior namely detecting sudden fluctuations, distin-
guishing between declines and rises, tolerating uninten-
tional failures, and reflecting consistent behavior. The
trust model in TrustGuard resembles a Proportional-
Integral-Derivative (PID) controller which is used in
control systems. In particular, the trust value at time
t is calculated by the following formula:

TV (t) = αR(t)+β
1

t

∫ t

0

R(t)dx+γ
d

dx
R(t)|x=t (10)

The first term in (Equation 10) uses the latest rating of
the behavior of the node (at time t; proportional gain);
the second term incorporates its past performance
(integral gain); and the third term is responsible for
the sudden changes in the performance (derivative
gain). TrustGuard uses the following mechanisms to
mitigate collusion:

• Eliminating fake transactions by making use of
transaction proofs.

• Camouflage resistance by the derivative term
in (Equation 10).

In order to resolve the need to keep a long history,
fading memories can be utilized. They summarize the
last 2m−1 trust values of a node by maintaining justm
trust values. Fading memories again have logarithmic
growth as time passes. A better solution is put forward
in [19]. Another important problem with TrustGuard
is that it does not distinguish referral from functional
trust.

3.1.4 Fuzzy Reputation-Based Trust Model

This model uses a trust hierarchy to evaluate reputa-
tions, which is made up of four categories of nodes:
self, neighbors, friends, and strangers [20]. Reputation
of node Y (or trust in our terminology) is evaluated
by another node X as follows:

repY /X before int = ArepY /X i +B

∑
i αirepY /X i∑

i αi
+

C

∑
j βjrepY /X j∑

j βj
+D

∑
l δlrepY /X l∑

l δl
(11)

where A, B, C, D are parameters (A+B+C+D = 1)
and the reputation values are restricted to be in [0, k],
where k is the predefined maximum reputation value.
We do not go into the details of (Equation 11) and refer
the interested reader to [20]. repY /X before int denotes
the reputation of Y at X before their interaction,
and repY /X is the latest calculated reputation of Y
by X. It is adjusted to account for the time passed
since the last time node X was interested in finding
the reputation of Y . The multiplicands of B, C, and
D are the weighted sums of the reputation of Y as
reported to X by the neighbors, friends, and strangers,
respectively.

Referral trusts towards the neighbors are somehow
considered in the model by calculating αi as follows:

αi = a× Sim + b×Act + c× Pop (12)

in which a + b + c = 1, and Sim, Act , and Pop are
activity, similarity, and popularity factors. Similar-
ity of two nodes indicates how these nodes resemble
each other in their reputation values and evaluation
procedures. This is evaluated as follows:

Sim = 1−

√∑
n (ui − vi)2

25n
(13)

where ui is the reputation value of node i in the repu-
tation vector of the initiator node, vi is the reputation
value of node i in the reputation vector of the target
node, and n is the total number of nodes appearing
in the reputation vectors of both the initiator and
the target nodes. Note that the factor 25 is used for
normalization.

The activity of node X is evaluated by using:

Act =

∑
int fromX∑

int fromnodes

(14)

where
∑

int fromX denotes the sum of all interactions
done by node X in the past time interval, which are
reported by other nodes, and

∑
int fromnodes is the

sum of all interactions done by all nodes in this interval.

The popularity value of node X is as follows:

Pop =

∑
int withX∑

int withnodes
(15)

where
∑

int withX denotes the sum of all interac-
tions done with node X in the past time interval, and∑

int withnodes the sum of all interactions done by
all nodes in this interval.

ISeCure

156 A Collusion Mitigation Scheme for Reputation Systems — M. Niknafs et al.

The deficiency of the above-mentioned formulas
is that colluders can easily affect the activity and
popularity values of each other by interacting with a
high frequency.

3.1.5 Discussion

Most of the models and collusion mitigation methods
suffer from one or more of the following problems:

• Functional and referral trust are not distinguished
from each other. It is necessary to distinguish
these two concepts in order to detect dishonest
recommenders. For instance, [1] and [11] suffer
from this problem.

• Try to detect collusion in individual nodes. There-
fore, all nodes need to know the whole trust net-
work, which is impractical.
• Some other mitigation approaches are proposed in

the literature. However, they are again specific to
a model and cannot be used by the other models
like [1] and [11].

3.2 Detection of Colluders via Clustering

Finding colluders can be modeled as discovering un-
conventional subgraphs of a trust network. Colluders
create a group and interact with each other most of
the time in order to gain maximum local trust values
and boost themselves unfairly. In the trust networks,
density is an indicator of significance. Actually dense
regions indicate high degrees of interactions. The task
of discovering specific subgraphs is studied in three dif-
ferent categories of algorithms in the literature: clus-
tering, dense subgraph detection (see [4, 21]), and com-
munity detection algorithms (see [22–25]). The three
concepts are similar to each other in many aspects.
Clustering is broader than community detection, and
clustering algorithms like hierarchical clustering can
be used to detect communities in a social network,
as well [26]. Dense subgraph detection is similar to
clustering, too. Colluders actually create a dense sub-
graph in the trust network, and dense components
can be discovered by clustering algorithms [21].

Clustering is the task of accumulating similar nodes
in the same groups. The grouping can be based on
a distance or similarity measure. The Mikowski, Eu-
clidean, City-block, Mahalanobis distances and co-
sine similarity are notable measures in clustering algo-
rithms [27]. The algorithms are divided into two cate-
gories: supervised and unsupervised. In contrast to the
supervised algorithms, the number of clusters is not
determined before running an unsupervised algorithm.
From another point of view, clustering algorithms are
divided into two categories: (hard) partitioning and
hierarchical. In hierarchical algorithms, a weight is

calculated for each pair of nodes in the network. The
weight represents the degree of similarity, distance, or
how closely connected the nodes are. Then, the edges
between the pairs are established in the same order
as the weights, starting by the pair with the greatest
weight [23, 26]. These edges have no direct connection
with the edges of the original network [26].

3.2.1 Discussion

According to the analysis of different classes of detec-
tion methods, we focus on clustering algorithms to
detect collusion. We do not aim to detect the precise
structure of colluder communities, and it is enough to
flag suspicious nodes to be colluders. In addition, we
do not want to extract all the existing clusters or put
all nodes in a cluster. Hierarchical algorithms build a
tree of clusters (dendogram) but the full hierarchy is
not useful to us. In fact, the existing clustering algo-
rithms are inefficient for collusion detection.

4 Our Proposed Scheme

In this section, we introduce our collusion mitigation
scheme. Colluders use all mechanisms to achieve their
goals. They include providing bad services, and giv-
ing dishonest feedbacks and recommendations. Hence,
collusion is the most complicated attack against a
reputation system, and its mitigation is a big step to-
wards detecting and relieving other attack scenarios.
First, we introduce our attacker model and assump-
tions. Then, we describe the details of our scheme.

4.1 Attacker Model

We assume to be faced with powerful attackers [8]
with the following characteristics:

• Location: All attackers are insiders. They are
authenticated and have legitimate access to the
system (contrary to the outsiders).

• Activity: All attackers are active. They actively
participate in the system and may inject false
information, modify trust information, or attempt
to interrupt the availability of the system.

• Population: Attackers are part of a coalition.

4.2 Collusion Mitigation

In order to mitigate collusion, we propose a similarity
measure, and a similarity-based algorithm. In the fol-
lowing, first we discuss our measure. Then, we propose
our collusion mitigation algorithm, and analyze it.

4.2.1 Colluders Similarity Measure (CSM)

Similarity measures can be used to cluster the nodes in
a graph. Based on the behavior of colluders in a trust

ISeCure

July 2015, Volume 7, Number 2 (pp. 151–166) 157

network, we define the Colluders Similarity Measure
(CSM). CSM is inspired by the Personality Similarity
Measure (PSM) [2]. However, it is totally different
from PSM, and does not rely on global information.
Moreover, we use CSM along with an algorithm for
collusion detection which leads to a better performance
than PeerTrust. Two nodes will be similar according
to CSM if their satisfaction values are in agreement
with each other. In particular, the CSM between two
nodes v and w is formulated as follows:
CSM (v, w) = 1−√∑

x∈IS(v)∩IS(w)

(
S+(v,x)−S−(v,x)

I(v,x)
− S+(w,x)−S−(w,x)

I(w,x)

)2
|IS(v) ∩ IS(w)|

(16)

where I(v, x) denotes the total number of transactions
performed by v with another node x, and IS(v) de-
notes the set of nodes that v has received services from.
CSM is undefined for nodes without any shared in-
teraction partners. In addition, S+(v, x) and S−(v, x)
respectively denote the positive and negative satisfac-
tion feedbacks that x has received from v. Colluders
give dishonest positive feedbacks to their friends and
dishonest negative feedbacks to the others. In order to
be effective, they interact with each other with high
frequencies. Therefore, if v and w are colluders, then
a large portion of IS (v) ∩ IS (w) will be colluders too.
Subsequently, v and w will have a high similarity ac-
cording to CSM. In the following section, we use CSM
in our clustering algorithm to discover colluders.

4.2.2 Colluders Discovery Algorithm (CDA)

Colluders create dense regions, which is a result of high
number of interactions. Clustering algorithms can be
used to detect unconventional subgraphs, but the prob-
lem is that investigating all parts of the trust network
for discovering colluders is a very time-consuming task.
To solve this problem, we use frequency checking as a
heuristic to restrict the size of the graph which is inves-
tigated to find colluders. Our proposed Colluders Dis-
covery Algorithm (CDA) is presented in Algorithm 1.

Before running CDA, the whole trust network must
be prune, and the algorithm only processes a small set
of suspicious nodes. In other words, CDA should be
run on the list of suspicious nodes, and by a central
component the system, which we name it the Central
Control Component (CCC). We consider that nodes
are monitored by other nodes which we call Trust
Managers. When a node receives positive feedbacks
from another node with a frequency more than a
threshold (th1), their trust managers mark them to be
suspicious, and report their identities to CCC. CCC
periodically executes CDA on the suspicious nodes
to find colluders. These components are described in
more detail in Section 5.

Algorithm 1 The CDA pseudocode.

CDA(suspected)

1 k ← 0

2 for all i in suspected
3 do cluster [i]← 0

4 for all j in suspected

5 do if i 6= j
6 then s← CSM(i, j)

7 if s 6= −1
8 then sim[i][j]← s
9 sim[j][i]← s

10 k ← k + 1
11 sim-sorted [k]← 〈i, j, s〉
12 else break

13 Sort-Sim(sim-sorted)
14 for c← 1 to k

15 do 〈i, j,max〉 ← sim-sorted [k − c+ 1]

16 l← ∅
17 for all x in suspected

18 do if x 6= i and x 6= j and cluster [x] = 0 and

sim[x][i] > th2 and sim[x][j] > th2

19 then cluster [x]← c

20 Add(l, x)

21 for all x in l
22 do if cluster [x] 6= 0

23 then for all y in l
24 do if cluster [y] 6= 0 and x 6= y

and S−(x, y) > ε0
25 then cluster [y]← 0
26 l← ∅
27 for all x in suspected

28 do if cluster [x] 6= 0
29 then Add(l, x)

30 return l

The pseudocode of CDA is presented in Algorithm 1.
At first, CDA calculates the similarity between all the
nodes which are reported to have suspicious activity
(lines 1-12). Then, selects the link with the highest
CSM between nodes (i, j) provided that this link has
not been chosen so far (lines 13-15). In the case that
there is such link, it selects suspicious nodes having
the following conditions, and mark them to be in the
same cluster (lines 16-20):

- The node is not in the colluders list in this run
of CDA, yet.

- CSM (selected node, i) > th2.
- CSM (selected node, j) > th2.

CDA clusters nodes with similarity more than a thresh-
old (th2). After that, CDA checks the interactions
between the nodes in the created cluster and delete
the end node of a link if it has negative feedbacks
more than a threshold ε0 (lines 21-25). This is done
according to the assumption that the probability of a
negative outgoing link from the colluders’ cluster to
the other nodes is higher. The before-mentioned steps
are repeated until all suspicious links are processed.
Finally, the nodes which are detected to be in some
cluster are returned as the colluders list (lines 26-30).

ISeCure

158 A Collusion Mitigation Scheme for Reputation Systems — M. Niknafs et al.

As mentioned in Section 1, separation of functional
and referral trust has an important role in mitigation
of collusion. Adjustment of other nodes’ opinions in
evaluating the reputation of a node can be done by
using their referral trust values. The colluder groups
are assumed to be non-overlapping in CDA. This
assumption does not prevent CDA from detecting a
colluder because the returned list only specifies the
colluder nodes, and not their communities.

4.3 Discussion

Some nodes might be falsely reported to be suspicious.
Here we list some factors that affect the false positive
in our scheme (ε1):

• In some reputation models like EigenTrust,
pretrusted nodes may cause false positives. This
is because they have high reputation values, and
are chosen with a high probability as service
providers.

• Nodes with high reputation values can be other
sources of false positive for the same reason.

Although the above-mentioned nodes may result in
false positives, CDA does not detect them to be col-
luders because they have low CSM with the real col-
luders. Colluders interact with each other with high
frequency and have high CSM among their friends.
Therefore, CDA can detect them as colluders.

5 The Architecture

The architecture we present in this section implements
CDA in an efficient manner in a distributed reputation
system. This architecture can be considered to be a
proof of concept to show the generality of our scheme
in regard to different trust models and systems. The
other goals of the architecture are as follows:

• Embedding referral trust: Consideration of
referral trust is integrated into reputation systems
via a black list of colluders identified by CDA. If a
node is marked as a colluder, its recommendations
will be ignored in the calculation of reputations.
• Distribution: We implement CDA in a dis-

tributed manner which incorporates a base trust
model improved by the referral trust we talked
about earlier. Most of the reputation and trust al-
gorithms should be used in a distributed system.
In addition, distributed systems are generally
more robust against malicious behaviors.

• Randomization and redundancy: Trust man-
agers (which will be introduced later) are chosen
randomly so that the manipulation of trust infor-
mation becomes harder for an attacker. In addi-
tion, several trust managers are used to compute
the trust value of each node and if their opinions

differ, the result will be based on their majority.

5.1 Components

Reputation systems are typically based on common
information in order to reflect the community’s im-
pression in general. Therefore, we assume that the
reputation value of each node is evaluated by aggre-
gating local trust values of other nodes towards it. All
the models which we reviewed in Section 3 use this
mechanism. Our architecture adds some components
to a reputation system to mitigate collusion. The sys-
tem is composed of the following components:

• Nodes: They are at the lowest level and interact
with each other.
• Trust managers: One or a specific number of trust

managers are chosen among the nodes to be the
trust manager(s) of a node. Not only each node
monitors several nodes, but also is simultaneously
monitored by others. Indeed, all nodes monitor
each other in the system.

• Central Control Component (CCC): This pre-
selected node (component) is the core of the ar-
chitecture. It becomes active with a specific fre-
quency and performs some regulatory jobs in the
reputation system, including running CDA.

Our main goal is mitigating collusion in a dis-
tributed manner and by the cooperation of these com-
ponents. In the following subsections, we describe their
functionality.

5.1.1 Local Trust Models

Our scheme is applicable to reputation systems which
evaluate reputation in a manner compatible with
the Figure 2 (step 3 is introduced in our scheme).
Trust- and reputation-relevant information is collected
in step 1. Then, trust is evaluated locally by each node
(step 2). The colluders are filtered out from the subse-
quent steps via the black list of colluders produced by
running CDA in step 3. These local trust values are
aggregated in step 4 and reputation is evaluated in
step 5. Finally, the reputation information is used to
choose a reputable partner in step 6.

Our scheme is not restricted to a specific local
trust model, and we empower reputation evaluation
by collusion mitigation. Our scheme refers to a base
trust model to calculate local trust values (local trust
model). The local trusts can be evaluated by various
techniques such as simple summation or average of
ratings, Bayesian models, fuzzy models, discrete trust
models, belief models, and flow models [28]. Resis-
tance to simple malicious behaviors is left to the base
trust model. Hence, the more resistant the trust model
is, the more effective is the overall system.

ISeCure

July 2015, Volume 7, Number 2 (pp. 151–166) 159

Collect
information

1

Evaluate
local

trust values

2

Filter out
colluders

(black list)

3

Aggregate
local

trust values

4

Calculate
reputation

values

5

Select a partner
& interact

6

+

-

+

Figure 2. Steps in reputation evaluation.

5.1.2 Trust Managers

Trust managers in our architecture are similar to score
managers in [1]. The main functionality of a trust
manager is to calculate the reputations of its sub-
nodes, based on the feedbacks provided by other nodes.
In addition, trust managers check the frequency of
positive and negative feedbacks which their sub-nodes
receive from others. If a trust manager perceives that
the frequency of a specific feedback towards a sub-node
is more than a threshold (standard), it will report the
identities of the related nodes to CCC. Trust managers
not only directly receive incoming feedbacks from
other nodes to its sub-nodes, but also record feedbacks
of their sub-nodes to others (local trust values.

A distributed hash table (DHT) can be used to as-
sign trust managers to nodes. In this case, all nodes are
members of an overlay network. The overlay network
will facilitate the management, discovery, and query
processing in the system. Moreover, multiple trust
managers can be assigned to a node. Different hash
functions should be used to assign multiple trust man-
agers to nodes. An example with three hash functions
(h1, h2, h3) is depicted in Figure 3. Trust managers
can use majority voting to avoid malicious results. For
instance, if a trust manager of A wants to evaluate its
reputation, and A has served another node B, then
the trust manager should ask the trust managers of B
about its satisfaction from A (local trust value). Then,
the trust manager compares these local trust values
and act based on the majority, in case of inconsisten-
cies. The idea of assigning multiple trust managers
will improve attack resistance (randomization), pri-
vacy (anonymity), and fault tolerance (redundancy)
of our scheme. For increasing system reliability and
eliminating effect of the malicious trust managers
(who manipulate trust values), the only way is con-
sidering multiple trust managers to detect malicious
trust managers. Since they manipulate trust values,
their ideas and votes are inconsistent with other trust
managers. Increasing the number of trust managers
leads to have more resilient reputation management
system against malicious trust managers. However,
we leave it for future research, and only consider one
trust manager for each node.

CCC

2
3

4

5

6
78

10

1

9

h1(ID1)=2

h2(ID1)=8 h3(ID1)=5

h2(ID6)=10

h1(ID6)=4

h3(ID6)=2

Figure 3. An example of our proposed architecture for eleven
nodes.

5.1.3 Central Control Component (CCC)

The central control component (CCC) is the core of
our architecture. If a trust manager perceives a suspi-
cious activity (high frequency of positive or negative
feedbacks), reports them to CCC. Periodically, CCC
is activated and runs CDA on the reported nodes. A
report from the trust manager of A about feedbacks
by B has the following details:

• Identity of both nodes
• Positive and negative frequency feedbacks that

A receives from B
• The satisfaction vector of A about the other nodes

that interacts with them. The vector is required
to calculate the CSM between A and B.

If CCC needs to know more satisfaction vectors (e.g.
the satisfaction vector of B) to calculate similarities,
then it will get the vectors from their respective trust
managers.

Figure 3 depicts an example of the proposed ar-
chitecture for eleven nodes. In this figure, the trust
managers of nodes 1 and 6 are shown. We consider
only one CCC in the system. This node is a special
pre-selected node which is in direct communication
with the trust managers. Thanks to the frequency
heuristic, CCC is not responsible to mitigate all mali-
cious behaviors, and only acts on suspicious nodes in
a controlled frequency. Hence, CCC does not restrict
scalability of the system.

ISeCure

160 A Collusion Mitigation Scheme for Reputation Systems — M. Niknafs et al.

Algorithm 2 The CSM pseudocode.

CSM(v, w)

1 d← 0

2 n← 0
3 for all x in IS(v)

4 do if Contains(IS(w), x)

5 then d← d+
(
S+(v,x)−S−(v,x)

I(v,x)
−

6
S+(w,x)−S−(w,x)

I(w,x)

)2
7 n← n+ 1

8 if n > 0

9 then return 1−
√

d
n

10 else return −1

6 Evaluation

First, we analyze the asymptotic complexity of our
scheme. Then, compare its effectiveness with two other
schemes.

6.1 Asymptotic Complexity Analysis

CDA can be classified to be a non-overlapping hierar-
chical (and unsupervised) clustering algorithm based
on a similarity measure (see Algorithm 1). Hierarchi-
cal algorithms build a tree of clusters (dendogram).
However, we build a one-level tree. Hence, CDA is a
one-level agglomerative algorithm.

Our proposed scheme imposes computational and
communicational overheads to the reputation system.
The main computational overhead is on the CCC side
to run CDA on suspicious nodes. The number of edges
in a complete graph ism(m−1) in whichm is the total
number of nodes. If the ratio of colluders to the number
of nodes be α < 1, the number of suspected nodes
is n = αm. Note that α does not take a high value.
Otherwise, the majority of the nodes will be malicious,
and the system will lose its useful functionality.

CSM can be efficiently calculated in O(m) if the set
of interaction partners (IS (·)) is stored in a hash table
(see Algorithm 2.) Therefore, calculation of similarity
between all suspected nodes (lines 1-12) will take
O(n2m) time. The Sort-Sim procedure in line 13
will take O(n2 log n2) = O(n2 log n). The clustering
loop (lines 16-20) and heuristic removal of nodes from
the cluster (lines 21-25) will take O(n) and O(n2),
respectively. The maximum number of edges in the
sim-sorted list is n(n−1). Therefore, the running time
of the clustering part (lines 13-25) is O(n3 + n4) =
O(n4) Making up the colluders list (lines 26-30) will
also take O(n).

Therefore, the worst-case runtime complexity of
CDA is O(n2m+ n2 log n+ n4) = O(n2m+ n4). As
colluders form a small subset of nodes in practice, our
scheme is practical. The amount of memory required
to store the feedbacks (S+, S−) and the interaction

partners (IS) is O(m2). In addition, the memory foot-
print of the CDA algorithm is O(n2).

The main communication overhead of the system is
related to the messages exchanged between the trust
managers and the CCC. In order for a trust manager
to report a suspicious node to CCC, it should send
the satisfaction vector of that node, too. At the worst
case, the node has interacted with all nodes in the
system, so the length of its satisfaction vector is m.
As mentioned, there are n colluders in the system.
Hence, the communication complexity of each report
is O(nm) CCC must know all satisfaction vectors of
suspected nodes in order to run CDA. Most of them
are reported by trust managers, but if CCC does not
have a specific satisfaction vector, it should ask form
the responsible manager.

6.2 Simulation Scenario

In this section, we evaluate our scheme and compare
it with EigenTrust [1] and PeerTrust [2] in a simula-
tion setting. The models are chosen for the following
reasons:

• They are among the well-known trust and repu-
tation models, and have strong theoretical bases.
Researchers still try to improve them (see [29]
and [15] as examples.)

• Both are compatible to be used as base local
trust models in our scheme. In other words, they
calculate the reputation of a node based on the
local trust values of the other nodes towards it.

• Both models are designed with collusion-
resistance in mind.

In this section, we evaluate the resistance of these
models, with and without our scheme to prove its
effectiveness.

6.3 Adoption of the Base Models

In order to adopt EigenTrust and PeerTrust by our
scheme, slight modifications are necessary. EigenTrust
does not originally distinguish referral from functional
trust, and reputation value of each node is used as its
referral trust, too. Therefore, we modify (Equation 1)
to embed referral trust and filter out colluders from
aggregation:

t
(k+1)
i = (1−α)(γ1c1it

(k)
1 +. . .+γncnit

k
n)+αpi, (17)

where γj will be 0 if CCC recognizes node j as a
colluder (j is in the black list), and 1 otherwise. Indeed,
if CDA detects j to be a colluder, then its trust value
towards node i will be ignored.

PeerTrust uses PSM to estimate referral trust. In
our simulation results, we will show that PeerTrust
performs better than EigenTrust in similar simulation

ISeCure

July 2015, Volume 7, Number 2 (pp. 151–166) 161

settings. Nevertheless, it is not totally immune to
collusion. In order to filter out colluders, we modify the
aggregation function in PeerTrust from (Equation 6)
to the following:

T (u) = α

∑I(u)
i=1 γis(u, i)(Cr(p(u, i))TF (u, i))∑I(u)

i=1 (Cr(p(u, i))TF (u, i))
+βCF (u)

(18)
where γj will be 0 if CCC recognizes j as a colluder,
and 1 otherwise.

6.4 Types of Nodes

The behaviors of nodes in the system are very impor-
tant in evaluations, and different behaviors can be
assumed for them. In our evaluations, three types of
nodes are simulated:

• Normal: Nodes with this behavior always give
honest feedbacks to the others. They may provide
a bad service with a small probability ε < 0.1
because of failures. Hence, they provide good
service with probability PGood service = 1− ε.

• Pretrusted: These nodes are only simulated
where EigenTrust is in use. They provide good
services and give honest feedbacks with probabil-
ity 1.

• Colluder (with camouflage): These nodes
give dishonest positive feedbacks to their friends
and dishonest negative feedbacks to the others.
Hence, their probability of giving honest feed-
backs is 0. They may have oscillation in their
behavior and the probability of providing a good
service in their case is 0 ≤ PGood service ≤ 1, in
general.

6.5 Configuration and Settings

Threshold values in our scheme have a very important
role in its performance and effectiveness. They can be
set statically or dynamically. We set Th1 dynamically
in our simulations, and adjust it according to the mean
value of interaction frequencies in the system. Specif-
ically, if we assume the mean interaction frequency
to be β, then Th1 will be set to be β + µ, where µ is
a fixed tolerance parameter. In fact, µ declares that
how much the frequency of a relation can be higher
than the mean value while not being suspicious. We
set µ = 0.3 in our simulations. The other parameter
of the system is the period of CCC activation. We set
this value to 50—i.e. after each 50 query cycles, CCC
updates the colluders list.

Each run of our simulations contains 600 query cy-
cles; each simulation is repeated 25 times; and the
average results are reported. In each query cycle, each
node creates a query with probability 0.8. In order to
select a service provider, our nodes use a probabilistic

algorithm similar to the one in [1]. Particularly, each
node chooses a service provider with probability 90%
according to (Equation 19), and with probability 10%,
it selects a service provider with reputation 0 (new-
comer).

Pi =
ti∑m
j=0 tj

(19)

where Pi is the probability that node i is chosen as a
service provider, ti is the reputation value of i, and m
is the number of service providers.

We consider only one trust manager for each node
as we evaluate resistance to collusion, not to other
types of attack. The simulations are run with n =
50, 125, 200 nodes, and percentage of colluders is c =
10%, 25%, 40%.

6.6 Results

Figure 4 to 6 depict our simulation results for Eigen-
Trust. We have plotted the average reputation of each
type of node versus the percentage of colluders c in
these figures. There are all the three kinds of nodes in
these figures: pretrusted, colluder, and normal nodes.
The number of nodes n is 50, 125, and 200, respec-
tively; and PGood service = 0.2 for colluders. In these
figures, we can compare the average reputation of
each kind of node in two cases. The case in which
the original EigenTrust model is used, and the one
when the model is empowered by our scheme (Eigen-
Trust+A). In the latter case, the average reputations
of pretrusted and normal nodes have increased, and
those of the colluders have decreased.

The bars representing each of the latter cases are
overlapped (not accumulated) to save space and make
comparisons easier. For example, in Figure 4, when
the percentage of colluders is 10%, pretrusted nodes
have earned an average reputation of about 0.5 with
the original EigenTrust, and about 0.8 with Eigen-
Trust+A. All the figures with overlapping bars must
be interpreted in this way.

Figure 7 illustrates the individual reputations in
either case for 125 nodes where 25% of which are
colluders. It is evident in these figures that EigenTrust
cannot mitigate colluders on its own, and colluders
have very high reputation values compared to the
other nodes in Figure 7 (a). However, by applying
our scheme, the colluders have very low reputation
values, and pretrusted nodes have reputations close to
1. Individual reputation values with different settings
have the same pattern, and we omit their respective
figures for the sake of brevity. Figure 8 depicts the
simulation time of each query cycle for all values of n,
where the percentage of colluders is 25%. According to
this figure, the simulation time is increased by applying
our scheme. By increasing n, the difference between

ISeCure

162 A Collusion Mitigation Scheme for Reputation Systems — M. Niknafs et al.

10 25 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of colluders

A
ve

ra
ge

 r
ep

ut
at

io
n

va
lu

e

Pre_Trsuted (EigenTrust + A)
Pre_Trsuted (EigenTrust)
Colluder (EigenTrust)
Colluder (EigenTrust + A)
Normal (EigenTrust + A)
Normal (EigenTrust)

Figure 4. Average reputation value of different types of nodes

vs. the percentage of colluders c in the EigenTrust case (n = 50).

10 25 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Colluders

A
ve

ra
ge

 R
ep

ut
at

io
n

V
al

ue

Pre_Trusted (EigenTrust + A)
Pre_Trusted (EigenTrust)
Colluder (EigenTrust)
Colluder (EigenTrust + A)
Normal (EigenTrust + A)
Normal (EigenTrust)

Figure 5. Average reputation value of different types of
nodes vs. the percentage of colluders c in the EigenTrust case

(n = 125).

10 25 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of colluders

A
ve

ra
ge

 r
ep

ut
at

io
n

va
lu

e

Pre_Trusted (EigenTrsut + A)
Pre_Trusted (EigenTrsut)
Colluder (EigenTrsut)
Colluder (EigenTrsut + A)
Normal (EigenTrsut + A)
Normal (EigenTrsut)

Figure 6. Average reputation value of different types of
nodes vs. the percentage of colluders c in the EigenTrust case

(n = 200).

simulation time in EigenTrust and EigenTrust+A is
intensified.

Figure 9 to 11 depict our results in the PeerTrust
case. All conditions in these simulations are similar
to the EigenTrust ones except that we do not have
pretrusted nodes in PeerTrust. In these figures, we can
compare the average reputation of each kind of node
in two cases. The case in which the original PeerTrust
model is used, and the one when the model is empow-
ered by our scheme (PeerTrust+A). Similar to the
EigenTrust results, by applying our scheme, the aver-
age reputations of normal nodes have increased, and

those of the colluders have decreased (to a very low
value). The individual reputation values are depicted
in Figure 12. Colluders have earned very high reputa-
tions when the original PeerTrust was in use. However,
by applying our scheme, their reputation is decreased
to a very low value, and normal users could reach high
reputations. Figure 13 depicts the simulation time of
each query cycle. Analogous to EigenTrust results,
PeerTrust+A is more time-consuming than PeerTrust
and their difference increases by n.

6.7 Discussion

According to the results presented earlier, the
pretrusted nodes gain higher reputation when our
scheme is applied to EgienTrust. According to (Equa-
tion 19), the probability of choosing a node as a
service provider is proportional to its reputation.
When colluders gain high reputation values, in the
one hand, the probability of choosing them as service
providers enhances. On the other hand, the probabil-
ity of choosing pretrusted nodes declines. With our
scheme, the average reputation values of colluders
decrease. This is because their dishonest ideas and
recommendations about the other colluders, as well as
the other nodes are ignored. By using CDA, we detect
colluders and put them in a black list. Therefore, they
can neither promote themselves nor degrade others.

In our scheme, the average reputation values of nor-
mal nodes enhance. This is because when the reputa-
tion values of the colluders decrease, the probability
of choosing normal nodes increases. Both the original
EigenTrust and PeerTrust use weighted equations for
reputation evaluation. For example, consider (Equa-
tion 6) for reputation evaluation in PeerTrust. In this
case, when colluders assign low local trust values to the
nodes that are out of their coalition, only the numera-
tor diminishes, and the reputations of normal nodes
decline, consequently. However, when we use (Equa-
tion 18) and apply the filtering according to CDA,
the colluders are filtered, and both the numerator and
denominator decline simultaneously. Therefore, the
reputations of normal nodes do not decrease in the
same manner as in the former case.

7 Conclusions and FutureWorks

We presented a method to minimize the impact of col-
luders on the performance of reputation systems. The
system detects colluders by its Colluders Detection
Algorithm (CDA), in which the Colluders Similarity
Measure (CSM) is used to cluster colluders. We em-
power reputation systems by referral trust by filtering
out unfair feedbacks and recommendations by collud-
ers from trust aggregation. We proposed a distributed
architecture to implement CDA by adopting a base

ISeCure

July 2015, Volume 7, Number 2 (pp. 151–166) 163

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Node ID

R
ep

ut
at

io
n

(a)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Node ID

R
ep

ut
at

io
n

(b)

ColluderPre−trusted Normal

Colluder NormalPre−trusted

Figure 7. Individual reputation value of each node in (a) EigenTrust, and (b) EigenTrust+A (n = 125 and c = 25%).

50 100 150 200
0

10

20

30

40

50

60

Number of nodes

S
im

ul
at

io
n

tim
e

fo
r

ea
ch

 q
ue

ry
 c

yc
le

 (s
ec

)

EigenTrust
EigenTrust + A

Figure 8. Simulation time for each query cycle vs. the number

of nodes in the EigenTrust case (c = 25%).

10 25 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of colluderss

A
ve

ra
ge

 r
ep

ut
at

io
n

va
lu

e

Colluder (PeerTrust)
Colluder (PeerTrust + A)
Normal (PeerTrust + A)
Normal (PeerTrust)

Figure 9. Average reputation value of different types of nodes

vs. the percentage of colluders c in the PeerTrust case (n = 50).

local trust model. We showed the efficiency of our ap-
proach in simulation, and compared it to the original
EigenTrust and PeerTrust models.

Two immediate future works our proposed scheme:
graded filtering, and a more distributed architecture.
In simulations, we filtered out colluders completely by
assigning a zero weight to the information provider by
them. One cannot claim to detect colluders accurately.

10 25 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of colluders

A
ve

ra
ge

 r
ep

ut
at

io
n

va
lu

e

Colluder (PeerTrust)
Colluder (PeerTrust + A)
Normal (PeerTrust + A)
Normal (PeerTrust)

Figure 10. Average reputation value of different types of

nodes vs. the percentage of colluders c in the PeerTrust case
(n = 125).

10 25 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of colluders

A
ve

ra
ge

 r
ep

ut
at

io
n

va
lu

e

Colluder (PeerTrust)
Colluder (PeerTrust + A)
Normal (PeerTrust + A)
Normal (PeerTrust)

Figure 11. Average reputation value of different types of

nodes vs. the percentage of colluders c in the PeerTrust case
(n = 200).

Hence, in the future, we should assign a degree of
belief to each node to be a colluder, and weight its
information accordingly. The second future work is
related to the Central Control Component (CCC) and
Trust Managers in our proposal. Both can be points of
failure in our architecture. An idea is to have more than
one Trust Manager per node, and multiple CCCs each
of which interacts with a subset of trust managers.

ISeCure

164 A Collusion Mitigation Scheme for Reputation Systems — M. Niknafs et al.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Node ID

R
ep

ut
at

io
n

(a)

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Node ID

R
ep

ut
at

io
n

(b)

Colluder

Colluder Normal

Normal

Figure 12. Individual reputation value of each node in (a) PeerTrust, and (b) PeerTrust+A (n = 125 and c = 25%).

50 100 150 200
0

10

20

30

40

50

60

70

80

Number of nodes

S
im

ul
at

io
n

tim
e

fo
r

ea
ch

 q
ue

ry
 c

yc
le

PeerTrust
PeerTrust + A

Figure 13. Simulation time for each query cycle vs. the number

of nodes in the PeerTrust case (c = 25%).

Acknowledgement

This research has been supported by a grant from the
Research Institute for ICT (ITRC), Tehran, I.R. Iran
under contract number T/500/12183.

References

[1] Sepandar D. Kamvar, Mario T. Schlosser, and
Hector Garcia-Molina. The Eigentrust algorithm
for reputation management in P2P networks. In
Proceedings of the 12th international conference
on World Wide Web, pages 640–651, Budapest,
Hungary, 2003. ACMPress Press.

[2] Li Xiong and Ling Liu. Peertrust: Supporting
reputation-based trust for peer-to-peer electronic
communities. IEEE Transactions on Knowledge
and Data Engineering, 16(7):843–857, 2004.

[3] Anupam Das and Mohammad Mahfuzul Is-
lam. Securedtrust: a dynamic trust computa-
tion model for secured communication in multia-
gent systems. Dependable and Secure Computing,

IEEE Transactions on, 9(2):261–274, 2012.
[4] Thomas H. Cormen, Charles E. Leiserson,

Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms, volume 2. MIT Press, Cambridge,
MA, USA, 2001.

[5] Audun Jøsang, Roslan Ismail, and Colin Boyd.
A survey of trust and reputation systems for
online service provision. Decision support systems,
43(2):618–644, 2007.

[6] Xinlei Wang, Kannan Govindan, and Prasant
Mohapatra. Collusion-resilient quality of infor-
mation evaluation based on information prove-
nance. In Proceedings of the 8th Annual IEEE
Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks
(SECON), pages 395–403, Salt Lake City, UT,
USA, 2011. IEEE.

[7] Audun Jøsang, Ross Hayward, and Simon Pope.
Trust network analysis with subjective logic. In
Proceedings of the 29th Australasian Computer
Science Conference-Volume 48, pages 85–94. Aus-
tralian Computer Society, Inc., 2006.

[8] Kevin Hoffman, David Zage, and Cristina Nita-
Rotaru. A survey of attack and defense techniques
for reputation systems. ACM Computing Surveys
(CSUR), 42(1):1, 2009.

[9] Félix Gómez Mármol and Gregorio
Mart́ınez Pérez. Security threats scenarios in
trust and reputation models for distributed
systems. Computers & Security, 28(7):545–556,
2009.

[10] Xiaoning Jiang and Lingxiao Ye. Reputation-
based trust model and anti-attack mechanism
in p2p networks. In Proceedings of the Second
International Conference on Networks Security

ISeCure

July 2015, Volume 7, Number 2 (pp. 151–166) 165

Wireless Communications and Trusted Computing
(NSWCTC), volume 1, pages 498–501, Wuhan,
Hubei, China, 2010. IEEE.

[11] Mudhakar Srivatsa, Li Xiong, and Ling Liu.
TrustGuard: countering vulnerabilities in reputa-
tion management for decentralized overlay net-
works. In Proceedings of the 14th International
Conference on World Wide Web, pages 422–431,
Chiba, Japan, 2005. ACMPress Press.

[12] Runfang Zhou and Kai Hwang. Powertrust: A
robust and scalable reputation system for trusted
peer-to-peer computing. IEEE Transactions on
Parallel and Distributed Systems, 18(4):460–473,
2007.

[13] Ze Li, Haiying Shen, and K. Sapra. Collusion
detection in reputation systems for peer-to-peer
networks. In Parallel Processing (ICPP), 2012
41st International Conference on, pages 98–107,
Sept 2012.

[14] Gayatri Swamynathan, KevinC. Almeroth, and
BenY. Zhao. The design of a reliable reputation
system. Electronic Commerce Research, 10(3-
4):239–270, 2010.

[15] Ze Li, Haiying Shen, and K. Sapra. Leveraging
social networks to combat collusion in reputation
systems for peer-to-peer networks. In Parallel
Distributed Processing Symposium (IPDPS), 2011
IEEE International, pages 532–543, May 2011.

[16] Reid Kerr and Robin Cohen. Detecting and iden-
tifying coalitions. In Proceedings of the 11th In-
ternational Conference on Autonomous Agents
and Multiagent Systems - Volume 3, AAMAS ’12,
pages 1363–1364, Richland, SC, 2012. Interna-
tional Foundation for Autonomous Agents and
Multiagent Systems.

[17] Gianluca Ciccarelli and Renato Lo Cigno. Collu-
sion in peer-to-peer systems. Computer Networks,
55(15):3517 – 3532, 2011.

[18] Bao Yu, Cao Tianjie, and Zeng Guosun. Resist-
ing collusion by game in culture web. In Enabling
Technologies: Infrastructure for Collaborative En-
terprises (WETICE), 2011 20th IEEE Interna-
tional Workshops on, pages 262–267, June 2011.

[19] Roberto Aringhieri, Ernesto Damiani, Sabrina
De Capitani di Vimercati, Stefano Paraboschi,
and Pierangelo Samarati. Fuzzy techniques for
trust and reputation management in anonymous
peer-to-peer systems. Journal of the American
Society for Information Science and Technology,
57(4):528–537, 2006.

[20] Ayman Tajeddine, Ayman Kayssi, Ali Chehab,
and Hassan Artail. Fuzzy reputation-based trust
model. Applied Soft Computing, 11(1):345–355,
2011.

[21] Victor E. Lee, Ning Ruan, Ruoming Jin, and
Charu Aggarwal. A survey of algorithms for dense

subgraph discovery. In Managing and Mining
Graph Data, pages 303–336. Springer, USA, 2010.

[22] Yunpeng Zhao, Elizaveta Levina, and Ji Zhu.
Community extraction for social networks. Pro-
ceedings of the National Academy of Sciences,
108(18):7321–7326, 2011.

[23] Michelle Girvan and Mark EJ Newman. Commu-
nity structure in social and biological networks.
Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[24] Gaoxia Wang, Yi Shen, and Ming Ouyang. A
vector partitioning approach to detecting commu-
nity structure in complex networks. Computers
& Mathematics with Applications, 55(12):2746–
2752, 2008.

[25] Xutao Wang, Guanrong Chen, and Hongtao Lu.
A very fast algorithm for detecting community
structures in complex networks. Physica A: Statis-
tical Mechanics and its Applications, 384(2):667–
674, 2007.

[26] Mark E. J. Newman. Detecting community struc-
ture in networks. The European Physical Jour-
nal B-Condensed Matter and Complex Systems,
38(2):321–330, 2004.

[27] Rui Xu and Donald C. Wunsch II. Survey of
clustering algorithms. IEEE Transactions on
Neural Networks, 16(3):645–678, 2005.

[28] Audun Jøsang, Roslan Ismail, and Colin Boyd.
A survey of trust and reputation systems for on-
line service provision. Decision Support Systems,
43(2):618–644, 2007.

[29] Wang Miao, Xu Zhijun, Zhang Yujun, and Zhang
Hongmei. Modeling and analysis of peertrust-
like trust mechanisms in p2p networks. In
Global Communications Conference (GLOBE-
COM), 2012 IEEE, pages 2689–2694. IEEE, 2012.

Mina Niknafs received her B.S. de-
gree in Information Technology En-
gineering from Isfahan University of
Technology in 2009 and her M.S. de-
gree in Information Technology from
Sharif University of Technology in
2012. Her research interests include

security and trust management, attack tolerance of
reputation systems, data and network security.

ISeCure

166 A Collusion Mitigation Scheme for Reputation Systems — M. Niknafs et al.

Sadegh Dorri Nogoorani received
his B.S. degree in Software Engineer-
ing from University of Tehran in 2007
and his M.S. degree in Information
Technology from Sharif University of
Technology in 2009. He has been a
Ph.D. student in Computer Engineer-

ing in Sharif University of Technology since 2009. His
research interests include uncertainty theories, com-
putational notions of trust, data and network security
and privacy, risk management, and grid computing.

Rasool Jalili received his B.S. de-
gree in Computer Science from Fer-
dowsi University of Mashhad in 1985,
and M.S. degree in Computer En-
gineering from Sharif University of
Technology in 1989. He received his
Ph.D. in Computer Science from Uni-

versity of Sydney, Australia, in 1995. He then joined
the Department of Computer Engineering, Sharif Uni-
versity of Technology in 1995. He has published more
than 140 papers in international journals and confer-
ence proceedings. He is now an associate professor,
doing research in the areas of computer dependability
and security, access control, distributed systems, and
database systems in his Data and Network Security
Laboratory (DNSL).

ISeCure

	1 Introduction
	1.1 Background
	1.2 The Structure of the Paper

	2 Security Threat Scenarios
	3 Related Works
	3.1 Reputation Models
	3.2 Detection of Colluders via Clustering

	4 Our Proposed Scheme
	4.1 Attacker Model
	4.2 Collusion Mitigation
	4.3 Discussion

	5 The Architecture
	5.1 Components

	6 Evaluation
	6.1 Asymptotic Complexity Analysis
	6.2 Simulation Scenario
	6.3 Adoption of the Base Models
	6.4 Types of Nodes
	6.5 Configuration and Settings
	6.6 Results
	6.7 Discussion

	7 Conclusions and Future Works

