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1 Introduction

Database outsourcing is an idea to eliminate the burden of database
management from organizations. Since data is a critical asset of organizations,
preserving its privacy from outside adversary and untrusted server should be
warranted. In this paper, we present a distributed scheme based on storing
shares of data on different servers and separating indexes from data on a
distinct server. Shamir’s secret sharing scheme is used for distributing data to
data share servers. A BT-tree index on the order preserved encrypted values
for each searchable attribute is stored in the index server. To process a query,
the client receives responses including record numbers from the index server
and asks these records from data share servers. The final result is computed
by the client using data shares. While the proposed approach is secure against
different database attacks, it supports exact match, range, aggregation, and
pattern matching queries efficiently. Simulation results show the prominence
of our approach in comparison with the bucketing scheme as it imposes lower
computation and communication costs on the client.

© 2012 ISC. All rights reserved.

ment costs in addition to more quality services such
as database availability.

Improvements in the network technology and the pos-
sibility of connecting all computers around the world
have changed many conventional methods of provid-
ing services for users. An instance of such a change
is outsourcing organizational databases to remote
database service providers instead of conventional in-
house database management. This results in organi-
zations to concentrate just on their own core busi-
ness. The Database as A Service (DAS) model [1] is
a noteworthy solution due to reducing data manage-
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The concept of Database As a Service, has been
studied by many researchers since its introduction [1-
7]. The DAS model introduces new security challenges.
In addition to providing data confidentiality against
outside attackers, it is needed to protect data con-
fidentiality against untrusted servers. In this paper,
as many other researches, we assume honesty of the
server in correctly replying the users’ queries, i.e. the
complete set of results will be returned without unau-
thorized manipulations in response to a query. How-
ever, the server is curious and tries to enhance its
knowledge about the stored data.

The preliminary and straightforward solution to
protect data against the untrusted server is data en-
cryption. If so, there is a challenging question: If the
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server is not allowed to decrypt the data, how it can re-
spond to the users’ queries? A naive solution is to send
the whole encrypted database to the user-side in re-
sponse to their queries. It imposes the whole database
decryption on the client-side in addition to the client-
side query processing. To overcome the problem, dif-
ferent schemes were proposed for query processing
directly over the encrypted data. Some approaches
are based on storing some metadata in addition to the
encrypted data on the server-side. Other approaches
use special kinds of encryption schemes and some of
them use fragmentation techniques instead of encryp-
tion techniques to conceal the confidential relations
between attribute values. We briefly review these ap-
proaches in Section 2.

In the data outsourcing scenario, an adversary as
well as the untrusted server may know either the dis-
tribution of the plaintext database or the whole plain-
text database as background information. The latter
case may occur if the organization switches from an
in-house plaintext database to an outsourced one [8].
If the adversaries obtain some extra information rely-
ing on their background information, it is referred to
as either frequency attack or known database attack.
Obviously, if an outsourcing scheme is vulnerable to
the frequency attack, it is also vulnerable to known
database attacks.

A database outsourcing solution should consider
practicality issues such as supporting different kinds of
query on different data types while respecting security
concerns, which threaten confidentiality and integrity
of the outsourced data. Whereas some approaches
consider practicality aspects of database outsourcing,
other approaches concentrate solely on security. In
database outsourcing as well as many other contexts,
usually there is a tradeoff between security and ef-
ficiency. To the best of our knowledge, none of the
proposed approaches satisfy all aspects of practicality
issues, along with considering the security aspects.

In this paper, we introduce a new approach for
secure database outsourcing based on distributing
data on several servers and separating indexes from
data. Our proposed approach supports different kinds
of query including exact match, range, aggregation,
and pattern matching queries. Our scheme is secure
against known database and database frequency at-
tacks, produces no false hits, is efficiently updatable,
and imposes admissible client-side computation and
communication overheads. It uses the Shamir secret
sharing scheme [9] to securely distribute data among
some honest-but-curious servers. Indexes for different
searchable attributes are stored on a different index
server.

The rest of this paper is organized as follows. Sec-
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tion 2 reviews the related works. Section 3 explains
the concept of secret sharing and briefly introduces
the Shamir secret sharing scheme. Section 4 explains
our proposed approach in detail. Section 5 analyzes
security of our approach along with comparison and
simulation results. Concluding the paper, we mention
some future work in Section 6.

2 Related Works

Majority of the related works in the context of secure
data outsourcing focus on data confidentiality against
the untrusted server, assuring query result correctness,
users’ access privacy, or enforcement of access control
policies in a multi user environment. As our approach
concentrates on data confidentiality, we briefly review
confidentiality concerned approaches.

Index-based methods, are the most popular meth-
ods for the confidentiality problem in data outsourc-
ing. In these methods, some metadata is stored on the
untrusted server as index along with the encrypted
outsourced data. The indexes are used for query pro-
cessing over the encrypted data. There are different
index-based schemes based on the index construction
methods. The construction method should consider
security as well as the efficiency of query processing.
In other words, while the curious server should effi-
ciently execute submitted queries on the outsourced
data, it must not be able to increase its knowledge
about the plain data using the assigned indexes.

Haciglimiis et al. [1] introduced the bucketing index-
based method. They partition an attribute domain
into some buckets and assign a random tag to each
bucket as an index. Exact match and range queries
are processed in this scheme with considerable false
hits on the server-side. Hore et al. [4] propounded a
bucketing algorithm to minimize the number of false
positives over the set of all range queries. SAM [10], as
another bucketing algorithm, concentrates on security
with the idea of maximizing bucket entropy. Some
other approaches propose techniques for modeling
the tradeoff between query performance and data
secrecy [4, 6, 11].

Damiani et al. [8] compare three indexing methods:
encrypted field as index, indexing with hash functions,
and BT -tree index made on plaintext values. While the
encrypted attribute value as index makes no false hits,
it is not secure against the frequency attack. Though
using hash functions for index construction is more
secure, it partly deteriorates the efficiency and makes
range query processing inefficient. On the other hand,
the B*-tree, made over plain-text data, encrypted by
the data owner, and saved on the untrusted server,
supports range queries. Although the B*-tree index
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structure is secure, it imposes high computation and
communication overhead on the client-side.

In addition to the index-based methods, other ap-
proaches to support data confidentiality in database
outsourcing scenarios have been proposed. Privacy
homomorphism and order preserving encryption func-
tions are among the proposed methods used for direct
execution of aggregation and range queries over en-
crypted data, respectively. Privacy Homomorphism
(PH) [12-16] is an encryption function which maps a
set of operations on plain-text values to another set of
operations on cipher-text values. It has been consid-
ered by Hacigiimiis et al. [17] to support aggregation
queries. Mykletun et al. [5] demonstrated that the en-
cryption scheme in [17] can be broken by a cipher-text-
only attack and proposed another solution to support
aggregation queries. Ahituv et al. [12] illustrated that
a PH with addition as one of its cipher-text opera-
tions is insecure against chosen-plain-text attack [18].
The anti-tamper database [3] utilizes order preserv-
ing encryption functions for processing range queries.
Agrawal et al. [19] proposed an Order Preserving En-
cryption Scheme (OPES) in which the distribution of
encrypted values is independent from the distribution
of plain-text values and follows a user desired distri-
bution. OPES focuses on supporting range queries for
numeric data. It works in three stages: model, flatten,
and transform. As these encryption schemes preserve
the order of plain values in the encrypted ones, they
are vulnerable to the frequency attack. Mansouri pro-
posed ROPES [20] by adding a new randomization
stage to OPES in order to make it more secure against
this kind of attack. Splitting, scaling, and noise [7] are
the three stages in another order preserving encryp-
tion model in which each plaintext value is mapped
to some different encrypted values. This method is
secure against the frequency attack.

Another approach to preserve confidentiality of out-
sourced data is based on fragmentation. The rationale
behind fragmentation is that sometimes data confi-
dentiality refers to the associations between attribute
values not to the attribute values themselves. For ex-
ample, in a typical health database, neither of the
patient’s NAME nor the patient’s DISEASE is confi-
dential, but the association between values of NAME
with their correspondent values of DISEASE is abso-
lutely confidential. Fragmenting a relation into several
parts is aimed at concealing these associations based
on predefined security constraints. Vertical fragmen-
tation of a relation was proposed first by Aggarwal
et al. [21]. In their solution, a relation is partitioned
into two fragments based on predefined security con-
straints over attribute values. Then, two fragments
are outsourced to two non-communicating servers. In
Aggarwal et al.’s solution, queries are executed more

efficiently on plain-text values of different partitions
rather than on encrypted values. In cases of having
sensitive attributes, encryption is used to keep their
values secret. Obviously, the fragmentation must be
lossless such that the data owner can reconstruct the
original relation from its constituent fragments. To
complete departure from encryption operations, Ciri-
ani et al. [22] proposed to store one fragment on the
owner side. They defined an optimized fragmentation
so that it minimizes the storage and computational
costs for the owner. In Aggarwal et al.’s solution, a
relation must be divided into two partitions and the
servers storing these partitions are not allowed to have
any communication, which is a strong limitation in op-
erational environments. Considering these problems,
Ciriani et al. redefined the optimized fragmentation
such that it minimizes the number of fragments and
maximizes the number of unencrypted attributes [23].
In [24] they proposed a solution to minimize the query
execution cost as another fragmentation criteria.

Agrawal et al. [2] used the concept of threshold secret
sharing to securely distribute data among untrusted
servers. Their method provides an efficient solution
for the exact match, range, and aggregation queries.
However, it is susceptible to the frequency attack.
Brinkman et al. [25] used secret sharing to securely
store and query the tree structured data, such as XML.

Using the Shamir threshold secret sharing scheme
and separating indexes from data, we propose a secure
and efficient method to distribute data between un-
trusted servers. Our method is secure against known
database and database frequency attacks while it effi-
ciently supports different kinds of query including ex-
act match, range, pattern matching, and aggregation
queries on numeric and string data types.

3 Preliminaries

Secret sharing was proposed separately by Blakley [26]
and Shamir [9]. The secret v is shared out to a set
of participants P = {Py,..., P,} so that only autho-
rized sets of participants can compute v. A secret
sharing scheme is called a threshold (k,n), if k out of
n participants can compute the secret v by pooling
their shares.

Shamir secret sharing scheme is a secure thresh-
old (k,n) scheme. Security is achieved if an attacker
cannot access k different shares of a secret. To com-
pute share values of a secret v in the Shamir thresh-
old scheme (k,n), a vector X = {x1,...,x,} for n
participants and a polynomial f(z) of order k — 1
are selected such that the constant value of f(z) is
equal to v. For example, consider the secret v = 11
is to be shared among n = 5 participants with k =
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3. We define vector X = {1 = 3,20 = 1,23 =
5,24 = 2,25 = 4} and f(z) = 322 + z + 11. Each
participant’s share is computed by putting z; (1 <
i < 5)in f(z), e.g. share(11,1) = f(z1) = 41,
share(11,2) = 15, share(11,3) = 91, share(11,4) =
25, and share(11,5) = 63.

The secret v can be retrieved by the Lagrange in-
terpolation as

k k 0—
v=fO) =3 (f@) 11 —-

»_ - . i xiu
Jj=1 p=1,u#j

Each of the k participants can use the above equa-
tion to compute v. The Shamir secret sharing is addi-
tive homomorphic [27], i.e. sum of the secrets can be
computed by utilization of the Lagrange interpolation
on summation results of each participant shares. This
property leads to support aggregation queries with
SUM and AVG aggregation functions in our approach.

4 The Proposed Approach

Our proposed approach for secure database outsourc-
ing is based on both distributed databases and secret
sharing concepts. Organizational data is distributed
to several servers which we call Data Share Servers
(DSSs), using Shamir secret sharing. Indexes for this
data are stored on a separate server called Indez Server
(IS). All the above servers are supposed to be honest-
but-curious [28].

Unlike the previous approaches in which the server
containing the data was responsible for searching in
appropriate indexes and returning the response, in our
approach a considerable amount of query processing is
done by the IS. In the following subsections, we explain
the principal components, the way they interact to
process a query, and how the character data is handled
to support pattern matching queries over string data

types.

4.1 Data Share Servers (DSSs)

In a threshold (k,n) secret sharing, n Data Share
Servers (DSSs) store shares of an attribute value (se-
cret) v computed by f(z) of order k — 1 and vector
X with cardinality n. The vector X is selected by
the data owner and kept hidden from the untrusted
servers. Therefore, DSSs cannot retrieve the secret
even if they can collect k or more of their shares. The
distribution function f(x) is chosen randomly by the
data owner such that the constant value of f(x) is
equal to the secret. Share value of each DSS is calcu-
lated by f(z;) where z; is the corresponding member
of the vector X. Consider the Employee relation with
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ID Name Age Salary
1 Elvis 45 10
2 John 84 40
3 Chris 78 60
4 Frank 46 20
5 Bob 45 60
6 Alice 80 20
7  Henry 45 80
8 Tan 57 60
9 Gary 57 10

10 Donna 46 40

Figure 1. The Employee Relation

10 tuples in Figure 1, and assume each attribute value
is distributed among three DSSs with n = k = 2 and
X = {3,2}. Figure 2 depicts the mapping of the out-
sourced Employee relation in Figure 1 onto two DSSs.
We leave discussion about the string attributes (Name
in this example) for Section 4.5.

In this approach, the randomized coefficients of f(x)
result in different share values for the same attribute
values. For example, although the Salary values of the
second and the tenth tuples are equal in the Employee
relation, they map onto different share values in DSSs.
This property disarranges the attribute values so that
the order of plaint-text attributes is not preserved in
their shares in DSSs. However, the order of records in
all DSSs must be the same, i.e. shares of a secret value
on different DSSs are located in the same place in
terms of record number. A connection-oriented com-
munication like TCP is assumed between DSSs and
the client to preserve the order of response packets.
This is not a painful assumption in conventional soft-
ware implementations.

The number of DSSs and the threshold can be cho-
sen by the client. The minimum number of DSSs is
2. While increasing the number of DSSs yields more
accessibility, it incurs more computation and commu-
nication cost on the client-side.

4.2 Index Server (IS)

The Index Server (IS) is responsible for maintenance of
BT-tree indexes made over the encrypted attribute val-
ues. The BT -tree indexes are made for the attributes
that appear in query conditions. To construct a BT-
tree index for an attribute, the attribute values are
encrypted by an order preserving encryption function.
Then, a BT-tree is made over the encrypted values.
Each leaf pointer in the tree refers to a bucket contain-
ing record numbers having the same value of the leaf
key. The buckets are encrypted by a common encryp-
tion function such as a symmetric encryption method.
Finally, the index tree and the encrypted buckets are
sent to the IS.

The above process is just for initializing the BT -tree
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To DSS;
ID Name Age Salary
1 Elvis 45 10
2 John 84 40
3 Chris 78 60
4 Frank 46 20
5 Bob 45 60
6 Alice 80 20
7 Henry 45 80
8 Tan 57 60
9 Gary 57 10
10 Donna 46 40 To DSS»

ID Attq Atts  Attg
1 E(1,1,Elvis) 57 31
2 E(1,2,John) 93 64
3 E(1,3,Chris) 105 72
4  E(1,4,Frank) 73 26
5  E(1,5,Bob) 63 87
6 E(1,6,Alice) 95 44
7  E(1,7,Henry) 60 83
8 E(1,8,Ian) 75 84
9 E(1,9,Gary) 84 37
10 E(1,10,Donna) 55 55

ID Attq Attty  Attg
1 E(2,1,Elvis) 53 24
2 BE(22John) 90 56
3 E(2,3,Chris) 96 68
4  E(2,4,Frank) 64 24
5  E(2,5,Bob) 57 78
6  E(2,6,Alice) 90 36
7 E(2,7,Henry) 55 82
8 E(2,8,Ian) 69 76
9 E(2,9,Gary) 75 28
10 E(2,10,Donna) 52 50

Figure 2. Outsourcing the Employee Relation to Two Data Share Servers in the Proposed Scheme

indexes. Thereafter, the IS itself is in charge of any
insertion, deletion, or update. In the next subsection,
we will examine record insertion, deletion, and update
and the IS role in these processes.

Considering the sample Employee relation in Fig-
ure 1, Figure 3 shows the BT-tree made over encrypted
values of the Age attribute. Eop in Figure 3 denotes
the order preserving encryption and E indicates a
common encryption method. Leaves in the tree have
pointers to the buckets containing appropriate record
numbers. The rightmost pointer of each leaf refers
to the next leaf, except the last leaf whose rightmost
pointer is null.

4.3 Query Processing

A general scenario of query processing in a typical
DAS model is as follows. The user’s query is submitted
via a client and translated into the server’s familiar
format. The server processes the encrypted data and
sends the results back to the client. Subsequently, the
client decrypts the results and probably does some
post processing on them to show the final results to
the user.

In our approach, when a user issues a query by
a client, the query predicate values are encrypted
in an order preserving manner and sent to the IS.
Subsequently, the IS searches in the relevant index and

returns the proper encrypted bucket(s) to the client.
The client decrypts the buckets and extracts record
numbers satisfying the query conditions. Then, the
client sends a query to each DSS in order to retrieve the
corresponding records. On receiving at least k¥ DSSs
responses, the final result is obtained through applying
the Lagrange interpolation. Figure 4 demonstrates the
procedure of query processing in the proposed scheme.

In the above scenario, processing a query does not
require computing data shares on DSSs. So, it does
not need to find coefficients of polynomials making
data shares.

4.3.1 Exact Match Query

We explain the process of an exact match query in
our approach by an example. Consider a typical query
SELECT Salary FROM Employee WHERE Age=45. In or-
der to process the query, the value 45 is encrypted
by Eop and sent to the IS. The IS searches Eop(45)
in the BT-tree index and returns the corresponding
bucket E(1, 5, 7) to the client (Figure 3). Subsequently,
the client decrypts the bucket and extracts the record
numbers 1, 5, and 7. Now, the client requests DSSs
to retrieve the third attribute value (Atts) of records
1, 5, and 7. In response to this request, DSS; and
DSS; return their share values. In our example, the
client receives the values 31, 87, and 83 from DSS;
and 24, 78, and 82 from DSSs. Putting the values 31
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Eop(78),Eop(80)

|Eop(45)]

|Eop(46)]

[Eop(57)]

[Eor(78)]

[Eop(80), Eop(84)]

E(1,5,7)

E (4,10)

E(8,9)

E(3)

E(6)

E(2)

Figure 3. The BT-tree Index over the Age Attribute

and 24 in the Lagrange interpolation results in the
value 10 which is the Salary value of the first record.
The other result is computed similarly.

4.3.2 Range Query

While in other schemes the order of data should be
preserved on the data server to support range queries,
data shares in our approach do not need to have the
same order as the original data. This is due to the fact
that range queries are processed using B*-tree indexes
on the IS. Accordingly, it does not require preserving
neither frequency nor the order of the original data
on DSSs.

Processing range queries in our approach is as fol-
lows. At first, the IS finds the leaf containing the
biggest value smaller or equal to the lower bound of
the requested range in the BT-tree index. Then, it tra-
verses from this leaf to the next leaf as long as the leaf’s
key is smaller than the upper bound of the range; and
sends the proper buckets to the client. The remaining
process is similar to the exact match queries.

4.4 Aggregation Query

Our approach supports aggregation queries efficiently.
Simple MIN, MAX and COUNT queries do not need
communication with DSSs. For example, the query
SELECT COUNT (*) FROM Employee WHERE Age = 57 is
processed just by searching in the B¥-tree index. How-
ever, more complicated queries like SELECT Salary
FROM Employee WHERE Age = MAX (Age) need to re-
trieve responses from DSSs.

Since Shamir secret sharing is additive homomor-
phic, SUM or AVG queries can be executed on data
shares without any decryption. For example, to pro-
cess the query SELECT SUM(Salary) FROM Employee
WHERE Age=45, the client requests DSSs to send back
sum of Atts share values of the appropriate records.
In other words, the client sends each DSS a query
like SELECT SUM(Att3) of records 1, 5 and 7. DSS;

ISeﬂur@

sends the value 201 to the client as the summation of
31, 87, and 83. Similarly, DSS5 sends the value 184
to the client as well. The client puts these values in
the Lagrange interpolation formula and calculates the
final value 150.

4.4.1 Record Insertion, Removal, and
Update

To insert a new record into a relation, in addition to
insertion of the new record in each DSS, some mod-
ifications are necessary in the indexes. For any in-
dexed attribute of the inserted record, the IS finds
the leaf into which the new value must be inserted. If
the value does not exist in the tree, it is inserted into
the tree, a new bucket is created, and the correspond-
ing record number is inserted into the bucket. If the
value is repetitive, it exists in the tree and the corre-
sponding inserted record number is appended to the
related bucket. Insertion of the new record number
into a bucket needs interference of the client. In such
a case, the IS sends the encrypted bucket to the client.
The client decrypts the bucket, updates it properly,
encrypts the bucket again, and finally sends it back
to the IS. Finally, the received bucket is replaced by
the old one.

A straightforward method for record removal is to
remove the record from the DSSs and modify appro-
priate indexes so that the specified record number
is removed from the bucket. In the case of an empty
bucket (after this removal), the leaf corresponding to
the removed attribute value must be removed from
the index tree. As physical record removal leads to
change in subsequent record numbers and incurs the
indexes to be changed entirely, we apply logical dele-
tion and use a Boolean field for each record to indicate
whether it is deleted or not. So, the physical record
removal with undesirable consequences is ignored.

To update a value of a searchable attribute in a
record, it is required to modify the appropriate index.
For each index, the record number should be omitted
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2- Encrypted query
predicates
Order Preserving
Encryption
1- Query predicates
5- Record numbers
4- Plaintext buckets
o Symmetric
3~ Encrypted buckets > Decryption 7- Plaintext records
Lagrange <
Interpolation 6- Record shares

Figure 4. Query Processing Scenario in the Proposed Approach

from the previous containing bucket and inserted to
the new proper one.

4.5 Supporting String Data

In our approach, the character data type is handled
relatively similar to the numeric one. For a string at-
tribute, an index is made over the encrypted values.
A string value is encrypted using an order preserving
encryption function on the ASCII codes of its charac-
ters. The encrypted value of the string data is stored
on DSSs.

Figure 5 shows the BT-tree index on the Name
attribute of the Employee relation of Table 1. The B+-
tree index on the order preserved encrypted values
of this attribute is shown in Figure 6. As we can see
in Figure 6, for each string value the ASCII code of
its characters are encrypted by an order preserving
encryption function and a separator (e.g. ‘") is inserted
between each two encrypted characters.

The order of string values is preserved in the B*-
tree index. Although the alphabetical statistics may
reveal some encrypted values, the adversary cannot
infer any more information because there is not any
explicit correlation between the index values and the
other attribute values of a record. However, in order to
make alphabetic statistical analysis harder, a different
key can be used for each index.

String values are encrypted in a different way from
numeric values and stored on DSSs as depicted in Fig-

ure 2. To map repetitive data values onto different
values, we encrypt record number together with the
data itself. To have different values on different DSSs,
we can add the server number and encrypt them al-
together. However, if availability is not of the main
concern, it is sufficient to store the encrypted string
attribute on one of the data share servers.

To do exact match or range queries on string at-
tributes, the string value of the query predicate is
decomposed to its constituent characters. The ASCII
code of each character is encrypted by the order pre-
serving encryption function. Then, the set of encrypted
characters is sent to the IS as a single value. Subse-
quently, the IS searches for this value and returns
the proper bucket(s). Finally, the client requests one
of the DSSs to retrieve the encrypted string value of
the specified records. The final result is obtained by
decrypting the returned response from the DSS.

Execution of pattern matching queries is possible
in this scheme as well. For example, consider the
query SELECT Name FROM Employee WHERE Name=%an/.
This query can be processed by mapping an to
E(97),E(110) as its encrypted form and sending it to
the IS. The IS searches in the keys of the leaves for
this encrypted pattern and returns the appropriate
bucket(s) if any. Afterwards, the client follows a pro-
cess similar to exact match or range queries on the
string attribute.

ISel}ur@
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Figure 5. BT-tree Index over the Name Attribute of the Employee Relation
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Figure 6. Bt-tree Index over Order Preserved Encrypted Values of the Name Attribute of the Employee Relation

5 Analysis and Simulation

In this section we analyze the security of our approach
and compare its computation and communication
costs in comparison with bucketing index-based ap-
proach with respect to the simulation results.

5.1 Security Analysis

In the proposed scheme, data confidentiality against
outside attackers and untrusted servers is preserved.
Threshold (k,n) Shamir secret sharing scheme pro-
vides confidentiality of our approach against the un-
trusted servers even if they access k — 1 shares of data
or more. This is because the vector X is kept hid-
den by the owner. Moreover, randomized coefficients
of the polynomial f(x), as defined in Section 3, pro-
vide protection against statistical attacks in database
context based on previous knowledge of an attacker
about the outsourced data. This is because the data
shares on the DSSs have different frequencies from
plain data and also the order of data shares on the
DSSs is different from its corresponding plain data.
For example, consider the data shares of DSS; in Fig-

18:0urd)

ure 2. The Salary value of 60 is mapped onto three
different values 72, 87, and 84. Two of these values are
bigger than the share value of 80 in the seventh record,
that is, 83. The knowledge of adversaries about the
frequency of the value 60 or its order in the plain-text
database does not help them to map some data shares
onto their corresponding plain values.

To determine the resistance of an outsourcing
scheme against frequency-based attacks, Damiani et
al. [8] define the exposure coefficient e. The inference
exposure model in their work is based on the one-to-
one correspondence between the RCV-graphs of the
plain-text and encrypted databases. To compute the
exposure coefficient for an outsourced relation, an
equivalence relation with equivalence classes for each
attribute is defined. Values with the same number of
occurrences are put in the same equivalence classes.
In our example, equivalence classes of the outsourced
Employee relation on DSS; are:

Atty.1 = {E(1,1,Elvis), E(1,2,John), E(1,3,Chris),
E(1,4,Frank), E(1,5,Bob), E(1,6,Alice), E(1,7,Henry),
E(1,8,Ian), E(1,9,Gary), E(1,10,Donna) }

Atty.1 = {57, 93, 105, 73, 63, 95, 60, 75, 84, 55}
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Atts.1 = {31, 64, 72, 26, 87, 44, 83, 84, 37, 55}

Att1.1 means the values of Att; with occurrence 1.
Exposure rate of each value is the inverse of the car-
dinality of the equivalence class to which the value
belongs. For example, an adversary can map the value
57 of Atts to the value 45 of the Age attribute with
probability % Yet it requires the adversary to know
the correspondence between Atts and Age. For a spe-
cific association, the product of the inverses of the
cardinalities shows the disclosure probability. Asso-
ciating the pair (57, 31) of a tuple in the outsourced
relation to (45, 10) of a tuple in the original relation
is done with probability ﬁ. The exposure coefficient
€ is the probability of disclosing the whole relation,
which is defined by the average exposure rate of its
tuples. For a relation with m tuples and [ attributes,
the exposure coefficient € is:

1 m 1
GZEZHQJ’ (1)
i=1j=1

where ¢; ; is the exposure rate of each value defined
as the inverse of the cardinality of the equivalence
class to which the value belongs. In our scheme, since
repetitive values of the original relation are mapped
to random and different share values, the exposure
coefficient becomes ¢ = # This relation says that
the insertion of a new record decreases the exposure
coefficient.

Although the order of attribute values is preserved
in the IS, an adversary as well as the untrusted IS
cannot infer any relation between the encrypted values
on the IS and the data shares on the DSSs due to
the encrypted form of the buckets. However, the IS
might infer the frequency of attribute values from the
volume of the buckets. To solve this problem we can
use some implementation-level mechanisms such as
padding to equalize the bucket volumes.

In our approach, the DSSs are not aware of the query
contents and act just as storage mediums returning
requested records by record identifiers. However, they
may collude with the IS to discover queries; i.e. for a
query, the IS knows the encrypted value of the index
and the DSSs know the response buckets. They may
collude with each other to know some correlation
between encrypted index values and data shares. To
prevent the collusion, we simply scatter the order of
requests to the IS and the DSSs.

5.2 Cost Analysis

In the cryptography-based approaches, the client-
side decryption is the most time consuming part of
query processing. So, we consider the number of en-

cryption/decryption operations as a measure to com-
pare client-side computation cost of the proposed ap-
proaches.

To execute a query in a bucketing index-based
scheme [1], encrypted records that match the query
conditional clauses are returned to the client. Client
decrypts the records and post-processes the result,
if necessary. In the proposed scheme, instead of en-
crypted records, the encrypted buckets containing the
record numbers are sent back to the client. Client
decrypts them and finds the record numbers which
must be fetched from DSSs. While in the bucketing
scheme [1], the received records are decrypted on the
client-side, in our approach decryption is performed on
the buckets containing record numbers. Consider the
query SELECT Salary FROM Employee WHERE Age=45
in our example. Assuming no server-side false hits, the
bucketing scheme returns three encrypted records 1, 5
and 7. But the proposed scheme returns one encrypted
bucket which contains F(1,5,7).

Consider an attribute att € {v1,va, ..., v} and fre-
quency freq € {f1, fa,..., fx} which shows the fre-
quency of each attribute value. To process a query
with v, < att < v, condition, the bucketing scheme
requires Zf: ., Ji decryption operations on the client-
side as the number of returned encrypted records. On
the other hand, our scheme requires >.7_ 1 decryp-
tion operations as its number of returned buckets. In
our example, the Age attribute contains the values
Age = {45,46,57, 78,80, 84} with frequencies freq =
{3,2,2,1,1,1}. For the query SELECT Salary FROM
Employee WHERE 45 < Age < 57, an optimized bucket-
ing scheme returns E?:1 fi = 7 encrypted records and
our scheme returns 23:1 1 = 3 encrypted buckets.

The frequency of the values in the database affects
the computational cost of our scheme so that more
frequent values will result in fewer buckets. This is
because of sitting more record numbers in each bucket.
The smaller the number of received buckets, the fewer
is the decryption overhead on the client-side. In the
worst case where the frequencies of all values are one,
the computational cost of our scheme is the same as
the optimized bucketing scheme.

5.3 Experimental Results

We implemented our approach and also the bucket-
ing index-based method [1] to empirically compare
both the computation and communication overheads.
Our experiment has been performed on a computer
system having Intel Core2 2.5GHz, 3.0GB RAM, and
running Windows XP 2008 as its operating system.
Development environment consists of C#.Net 2008
and SQL Server 2005. The Sales.SalesOrderHeader
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Figure 7. Execution Time of the Sample Exact Match Query
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Figure 8. Execution Time of the Sample Range Query

relation of the AdventureWorks! database having
31465 records was used. We carried out the insertion
of CustomerID and BillToAddressID attributes of the
Sales.SalesOrderHeader relation. We also conducted
query processing on these attributes. OPES [19] as
an order preserving encryption function, DES as a
symmetric encryption algorithm to encrypt the buck-
ets, the Lagrange interpolation function, and differ-
ent functions of a BT-tree data structure were imple-
mented in our empirical study. We used two differ-
ent widths 100 and 200 for bucketing CustomerID
attribute values as bucketing scheme 1 and bucketing
scheme 2, respectively.

To compare our approach with different bucketing
schemes in terms of computation and communica-
tion overheads, we executed a sample exact match
query, range query, and an aggregation query on our
data set. Figure 7 shows the execution time of the
exact match query SELECT BillToAddressID FROM
Sales.SaleOrderHeader WHERE CustomerID = 430.

L Available at:
2009/1/10).
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Figure 9. Execution Time of the Sample Aggregation Query
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Figure 10. Volume of Transferred Data between the Client
and Servers While processing the Sample Exact Match Query

As depicted in this figure, the execution time in our
approach is quite less versus the other two bucketing
schemes with different bucketing widths per different
numbers of records. Figure 7 also certifies that the
bucketing scheme 2, having greater bucketing width,
executes in a longer time compared to the bucketing
scheme 1 due to more false hits generated in the buck-
eting scheme 2.

Figure 8 shows the results of processing a sam-
ple range query SELECT BillToAddressID FROM
Sales.SaleOrderHeader WHERE 500 < CustomerID
< 600. The figure confirms that our approach has less
computation overhead compared to the two bucketing
schemes for a typical range query. As an important
point, we consider bucketing scheme 1 as the opti-
mized bucketing scheme for this query because it
generates no false hits. Therefore, we can conclude
that the execution time of this query for our approach
is less than of bucketing schemes with any bucketing
widths.

Consider the sample aggregation query SELECT
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Figure 11. Volume of Transferred Data While Processing the
Sample Range Query

SUM(BillToAddressID) FROM Sales.SaleOrderHeader

WHERE 200 < CustomerID < 300. Figure 9 depicts a
similar comparison result in terms of the query execu-
tion time. The results of our empirical study approve
the correctness of our analysis on computation cost
in the previous section.

With n = 3 (the number of DSSs) and k£ = 3,
Figures 10, 11, and 12 show the volume of transferred
data as communication overhead between the client
and server(s) while executing the above sample queries.
The transferred data in our approach generally is
both the encrypted buckets and data shares. These
figures confirm that the communication overhead in
our approach is significantly less than those of the
bucketing schemes, though the client communicates
with an IS and three DSSs. With regard to having no
false hits, bucketing scheme 1 has the least transferred
data among other bucketing schemes for the typical
range and aggregation queries. Since the transferred
data in our approach is less than that in bucketing
scheme 1, it is less than all other bucketing schemes.

5.4 Comparison

Different properties of our approach in comparison
with similar confidentiality concerned work in the area
of secure database outsourcing are summarized in Ta-
ble 1. Our approach supports different kinds of queries
containing exact match, range, aggregation, and pat-
tern matching on string and numeric data types. There
is no post processing on the client-side other than exe-
cuting an interpolation function on received responses
from DSSs without any false hits. Security is an ad-
vantage of our approach as well. While other schemes
suffer from either statistical attacks on confidentiality
of data or having high computation overhead, our ap-
proach is protected against such attacks in addition
to having a low computation overhead. As another

w10
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3.5 | —%— bucketing scheme 1 4
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volume of data (byte)

o ) . : : ;
o 05 1 15 2 25 3
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Figure 12. Volume of Transferred Data While Processing the
Sample Aggregation Query

advantage, the outsourced data can be updated with-
out imposing a significant overhead on the client and
servers. Computation and communication overheads
mentioned in Table 1 indicate the client-side overhead
because in data outsourcing scenario usually it is as-
sumed that the client (unlike the server(s)) has limited
computational and storage resources.

6 Conclusion and Future Work

We presented a distributed scheme for secure database
outsourcing based on the idea of threshold secret shar-
ing and separating indexes from data. Distribution of
data among several servers led to supporting different
kinds of query on both numeric and string data types
with low computation and communication costs. Dis-
tributing the database between n servers and retriev-
ing the responses from k ones arise some issues such
as availability, communication overhead, and storage
cost on the server-side. As future work, defining a
tradeoff between these issues helps organizations to
choose a desirable model with respect to the values
of n and k. Outsourcing the access control to the un-
trusted server in a multi user environment and im-
proving the proposed approach to assure query result
correctness are among our future work in order to put
the idea of database outsourcing into practice.
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Table 1. Comparison of Important Confidentiality Concerned Proposals for Secure Data Outsourcing

Approaches
Secret Our
o +
BuIcl:(;txli}:sed B -Tl.'ee OPES Sharing- Proposed
exing Indexing Based [1] Approach
Exact Match Yes Yes Yes Yes Yes
Range Yes Yes Yes Yes Yes
Query Support
Aggregation No No No Yes Yes
Pattern Matching* No No No Yes Yes
£ Data Type String Yes Yes No Yes Yes
P
:;".)‘ Support Numeric Yes Yes Yes Yes Yes
g High .
S g
£ Computational (considerable ngh (number &l Low Low Low
= false hit ecryptions)
= Overhead alse hits)
g Highlight :
S 1ghlights High (number of
Communicational Reasonable communications Low Low Low
passes)
Vulnerable to Vulnerable to  Vulnerable to
Security statistical attacks Fairly secure statistical statistical Fairly secure
(almost) attacks attacks
Update-ability Moderate Weak Good Good Moderate

* Only for string data
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