
ISeCure
The ISC Int'l Journal of
Information Security

July 2011, Volume 3, Number 2 (pp. 69–76)

http://www.isecure-journal.org

Invited Paper

Constructing Cryptographic Definitions

Philip Rogaway 1

1Department of Computer Science, University of California, Davis, California, USA

A R T I C L E I N F O.

Article history:

Received: 10 September 2011

Revised: 12 March 2012

Accepted: 13 March 2012

Published Online: 19 May 2012

A B S T R A C T

This paper mirrors an invited talk to ISCISC 2011. It is not a conventional paper

so much as an essay summarizing thoughts on a little-talked-about subject. My

goal is to intermix some introspection about definitions with examples of them,

these examples drawn mostly from cryptography. Underpinning our discussion

are two themes. The first is that definitions are constructed . They are invented

by man, not unearthed from the maws of scientific reality. The second theme is

that definitions matter . They have been instrumental in changing the character

of modern cryptography, and, I suspect, have the potential to change the

character of other fields as well.

c© 2012 ISC. All rights reserved.

1 Introduction

Let me first try to clarify what I mean when I speak of
a definition. First, a definition here is something that
embodies an important concept in a field. If I say “let
m = d

√
x e”, that’s not the kind of definition I have in

mind. Second, I insist that definitions be mathemati-
cally rigorous. If I say “a message authentication code
allows the recipient of a message to verify the claimed
identity of its sender,” I’ve given a description, not a
definition.

What do I mean when I say that definitions are
constructed? I am using the term here as it is used
in sociology. When we say that some thing, C, is con-
structed, or socially constructed, we are emphasizing
that C need not be the way that it currently is. It
is not inevitable. Instead, C is contingent on social
forces, or it springs from aspects of our disciplinary
culture. I mean, in short, that C was invented.

Those from an engineering background might im-
plicitly assume that all of cryptography is constructed.

Email address: rogaway@cs.ucdavis.edu (P. Rogaway).

ISSN: 2008-2045 c© 2012 ISC. All rights reserved.

But there is an alternative viewpoint, and one that, I
suspect, is quite popular among those who work on the
more rigorous side of cryptography. This alternative
viewpoint is what might be called scientific realism.
Here we say that C is the way it is because that is
the nature or mathematical or physical reality. In or-
der to have a successful theory involving C, it pretty
much has to be as it is now. If C is shaped by the
disciplinary culture, this happens in a superficial way.
In short, C is discovered, either through reasoning or
the exercise of the scientific methodology.

Nobody would contest the claim that a concrete
protocol or primitive, something like AES or TLS,
is constructed. What is at issue is whether or not
our basic notions in cryptography—things like a one-
way function or a secure encryption scheme—whether
these are invented or discovered. Constructionism or
scientific realism.

The thesis here is that all of cryptography’s notions
are highly constructed. As a consequence, the field
can move in very different ways from the way that it
has moved.

ISeCure

70 Constructing Cryptographic Definitions — P. Rogaway

2 NP-Completeness

While this essay is about definitions in cryptography,
I would like to begin with a definitional example from
outside this field. I do this to ground our discussion
in the familiar; hopefully most readers have seen a
definition of NP-completeness, due, independently,
to S. Cook and L. Levin, circa 1971. We speak of a
language L being NP-complete if two conditions hold:
L is in the set we call NP; and for any language A
in NP the language A polynomial-time reduces to L.
Said differently, L is a hardest language in NP.

You’ve just seen an example of a definition—indeed
a wonderful definition. I haven’t defined all of its
constituent parts—I didn’t define NP or tell you what
it means for one language to polynomial-time reduce
to another. Let me skip over that.

Why do I say that this is a wonderful definition?
There are a couple different senses in which I could
justify such a claim. One is an a priori assessment of
the definition’s value. We could say that the notion
of NP-completeness is good because it is particularly
elegant, simple, or potentially useful. We could argue
that it captures strong intuition, or has various nice
properties. You could make this kind of argument.

An alternative is to take an a posteriori view. You
would say that a definition is good if it comes to spawn
lots of work that you hold to be interesting. It is in this
second sense that a definition like NP-completeness
really shines. Back in 1995, C. Papadimitriou did a
literature survey and found that, already, there were
more than 6000 papers per year having the term NP-
complete—more than the number of papers with the
word compiler, database, or operating system. Today,
more than five million web pages contain the term
NP-complete, and more than 137,000 Google-Scholar
articles.

It is my view that this after-the-fact evaluation of a
definition is the preferred way to understand how good
a job a definition has done. Definitions are created to
benefit some community, so the insightful inventor of a
definition has foreseen what it is that this community
needs, and he has provided a foundation to help it
move in that direction. That is what good definitions
in cryptography manage to do.

3 Provable Security

Definitions are not very old in cryptography. They
emerged rather suddenly, around 1982, in a paper of
S. Goldwasser and S. Micali. Before this, the “classical”
approach in cryptography consisted of recognizing
some problem, devising some scheme that aimed to

solve it, and waiting to see if any interesting attacks
emerged. When they did, one would revise the scheme
and try again. Goldwasser and Micali suggested a way
to do better. In the framework they put forward, one
does not begin with a protocol; one begins with a
definition. Once it has been carefully laid out, then
one devises a protocol. Ideally, you would now prove
that your protocol satisfies the definition. In practice,
we usually give proofs that take the form of a reduction.
The proof establishes that some protocol Π meets its
definition D as long as some other protocol π meets
its definition d. If you’re confident that π is good in
sense of definition d, you’ll have to believe that Π is
good in the sense of definition D.

The above idea of provable security utterly trans-
formed the field. Cryptography went from being an
ad hoc set of techniques to a scientifically rich area
well connected to complexity theory, mathematics,
and computer security. Nowadays, I would say that
about half of all work in cryptography falls within the
provable-security tradition. While initially there was
minimal impact of this line of work on cryptographic
practice, this has changed. Provable security has now
come to interact synergistically with the classical ap-
proach to doing cryptography and has given rise to
many practical and high-assurance techniques.

From what I’ve laid out, you might infer that the
overarching purpose of definitions is to enable theo-
rems and proofs. And it is of course true that defi-
nitions are essential for these activities. But I think
that definitions would be important in cryptography
even if we never used them to give a proof. First, def-
initions can lead to attacks. (That attacks can lead
to definitions is all the more clear.) Once you care-
fully define the goal you are after, you can quite often
use that understanding to see how to break a proto-
col that was supposed to meet its formerly-undefined
aim. Second, definitions are essential for productive
discourse. In cryptography, it seems like a lot that is
said doesn’t make a whole lot of sense. Only when
the definitions are clearly articulated can you really
know what it is you’re talking about. Finally, defini-
tions seem to be essential for fostering our ability to
think and understand. Thinking in complex domains
involves building up abstraction boundaries, and, in
many fields, these are embodied by definitions.

4 Pseudorandom Generators

So far we have given a single example of a definition
(NP-completeness). My remaining examples will all
be cryptographic. I will start with the notion of a
pseudorandom generator. The informal goal here is to
create bits that look random (uniformly distributed),

ISeCure

July 2011, Volume 3, Number 2 (pp. 69–76) 71

even if they are not.

In trying to give a definition for this goal it is im-
portant not to think in terms of anticipated solutions.
Instead, one tries to understand what it is that the
question means, what it is to generate random-looking
bits.

The first thing one might imagine is that one can
look at two strings and see that one looks more random
than the other. For example, most would claim that
the string

Y = 0010111010000100111010110111101101110

appears to be more random than the string

Z = 0000000000000000000000000000000000000.

And there is such an approach for dealing with ran-
domness, Kolmogorov complexity, that dates to 1960’s.
But this is not the approach that has had much cryp-
tographic significance. Instead, what Blum and Micali,
and Yao suggested, in the early 1980’s, was that pseu-
dorandomness is a property not of a string but of a
probability distribution.

We begin with syntax. The object we are interested
in studying, a pseudorandom generator (PRG), is a
function that maps a “short seed”—a binary string—
into a longer string. In other words, a PRG is a map
G : {0, 1}n → {0, 1}N where n < N are constants.

We want to measure the “quality” of a PRG. If you
realize a PRG G by G(S) = S ‖ S, for example, this
doesn’t seem like a good PRG, even though it does
comply with our syntax.

Let’s suppose n = 100 and N = 200—we aim to
stretch 100-bit strings to 200-bit ones. If you take a
string S ∈ {0, 1}100 that is truly random, and compute
Y = G(S) ∈ {0, 1}200, you’ll now have an induced
distribution on 200-bit outputs. There is probability
mass on at most 2100 points of our size-2200 space
of possible outputs. So it’s actually a very sparse
subset of the 200-bit strings that could ever arise as
pseudorandom outputs. The idea for our definition
of a PRG’s quality is to say that it doesn’t actually
matter. If you give an adversary a string that is formed
by taking a random 100-bit string S and applying G,
or if, instead, you give the adversary a truly random
200-bit string, our poor adversary won’t be able to
tell the difference.

More precisely, an adversary A is imagined to pos-
sess one of two kinds of oracles. One possibility: the
adversary hits a button and, in response, a random
100-bit string S is selected and the adversary is pre-
sented the 200-bit G(S). She can hit the button as
many times as she likes, each time a random S being
chosen afresh. Call this “first” world. Alternatively,

the adversary hits the button and, in response, gets
a random 200-bit string. She can again hit the but-
ton as many times as she likes. Call this the “second”
world. We understand our PRG G as good if for any
reasonable adversary A, its ability to distinguish if it
is in the first world or in the second world is small. To
make this precise, we associate to A and G a real num-
ber Advprg

G (A) that captures the adversary’s ability
to distinguish its two possible worlds:

Advprg
G (A) = Pr[AG($) ⇒ 1]− Pr[A$ ⇒ 1]

This is the probability that A outputs “1” if we answer
its button-pressing with pseudorandom bits minus
the probability that it outputs “1” if we answer its
button-pressing with truly random bits. Advantage 0
means the adversary does terribly. Advantage near 1
means the adversary does great.

We have now given a cryptographic definition. The
definition is a way of associating to a cryptographic ob-
ject (the PRG G) and an adversary (the algorithm A)
a real number, the number telling us how well the
adversary is doing in attacking the object’s aim.

5 Asymptotic vs. Concrete Security

We still haven’t made a firm distinction between a
good and a not good PRG. The traditional approach
to drawing this distinction is to say that G is secure
if it’s computable in polynomial time (in n) and for
every probabilistic polynomial time adversary A, the
advantage Advprg

G (A) that A gets in attacking G is
a negligible function. The technical definition for the
last term: ε(n) is negligible if it vanishes faster than
the inverse of any polynomial: for every c > 0 there
exists an Nc such that ε(n) < n−c for all n ≥ Nc.

The above asymptotic approach lets us draw a rigor-
ous distinction between secure and not secure PRGs.
We have, in the process, quietly changed our notion of
a PRG: n and N are no longer constants but, rather,
the PRG should operate on strings of any length n,
returning outputs of length N(n) > n. The value n is
now called the security parameter.

There’s an alternative approach for defining secu-
rity. It says: don’t try to make binary distinctions.
Once we have said how to associate an advantage
Advprg

G (A) to each A and G, we have defined security.
At this point one can already state theorems relating
the advantage that a first adversary can obtain at at-
tacking a first goal to the advantage that a second
adversary can obtain in attacking a second goal. This
is the concrete-security approach that M. Bellare and
I helped popularize.

ISeCure

72 Constructing Cryptographic Definitions — P. Rogaway

I’d like to ask if this distinction between asymptotic
and concrete security is important, if it’s a significant
difference. The asymptotic approach came first, and
somehow it took a long time until people started to
supplement this with concrete security.

One answer you can reasonably give is to say that
the difference between asymptotic and concrete se-
curity is not at all significant because, first, asymp-
totic definitions and theorems can almost always be
converted into concrete-security ones. The essential
ideas of a definition, theorem, or proof almost always
transcend this concrete vs. asymptotic distinction. In
general, I think it’s fair to say that good definitions,
in cryptography and beyond, are quite robust, in the
sense that diverse elaborations of definitional choices
leave an intact definitional core.

But you can also make the case that the asymp-
totic vs. concrete definitional choice is quite signif-
icant. In particular, the character of cryptography
was profoundly influenced by the early choice of an
asymptotic approach. Because asymptotic analysis
hides “low-level” efficiency matters, treating all poly-
nomials as equivalent, and all negligible functions as
equivalent, people tended to focus on broad, abstract
relations among cryptographic goals. There was lit-
tle interest in efficiency. In addition, the asymptotic
approach went hand-in-hand with a preference for
public-key (or “asymmetric”) cryptography, the lovely
idea put forward by W. Diffie and M. Hellman. Here
each party generates a public key and keeps secret
a corresponding secret key. Shared-key (or “symmet-
ric”) cryptography tended to be ignored by theorists,
or even denigrated. We would suggest that one rea-
son for this preferential interest in asymmetric cryp-
tography among theorists is the need for a security
parameter in asymptotic treatments. Security param-
eters are natively present in most public-key schemes,
but are usually absent in symmetric schemes. Since
practitioners have always been interested in efficiency
and in symmetric constructions, I would maintain
that the asymptotic approach to cryptography helped
give rise to a social phenomenon wherein practition-
ers tended to ignore theorists, and theorists tended to
ignore practitioners. Each group came to see the work
of the other as largely irrelevant.

The character of cryptography changed in consort
with the popularization of concrete security. Theorem
statements became more precise, and with that one
started to attend to lower-level relationships between
the security of schemes. New questions became visi-
ble, things that you simply do not see if you describe
everything in terms of asymptotic security. Symmet-
ric cryptography joined that ranks of topics having
legitimate scientific credentials.

I would conclude from this example that specific def-
initional choices dramatically affect the way a theory
develops, and what it is good for. Definitional choices
impact the types of questions that will be asked, and
the types of questions that will be rendered invisible.
I would also conclude that definitions arise within a
particular disciplinary culture. It makes sense, in retro-
spect, that definitions in cryptography would initially
have been asymptotic, because the founders of the
field were coming from a community that had recently
mastered the idea of NP-completeness, and other com-
plexity classes, a tradition that was already steeped in
reductions, polynomiality, and asymptotics. Making
the simplest transition from this world to cryptogra-
phy meant that we were going to create cryptographic
foundations that were asymptotic and would empha-
size the kind of high-level questions that complexity
theory had also come to focus on.

Definitional choices do more than reflect our disci-
plinary culture and sensibilities. Once those choices
have been made, they effectively reinforce that cul-
ture and those sensibilities, distancing us from other
and outside concerns. It is a feedback phenomenon.
As Marshall McLuhan has colorfully explained, we
shape our tools, and then our tools shape us.

6 Blockciphers

Let’s move on to another example, blockciphers. These
are a basic building block of symmetric cryptography,
and I suspect that everyone reading this essay knows
some example blockciphers, like DES and AES. The
question I want to ask here is what a blockcipher is.
In answer, a blockcipher is a function that takes in a
key K from some finite set K of possible keys, and it
takes in an n-bit plaintext block for some constant n >
1. It produces a corresponding ciphertext block, again
of length n. We require that each EK(·) = E(K, ·) be
a permutation, a one-to-one and onto function.

The above is the syntax of a blockcipher; as with
our treatment of PRGs, I’ve begun without specifying
anything about security. There are lots of approaches
to trying to define security. For example, you might
create a definition out of the intuition that a block-
cipher is good if it is hard to recover the key from
witnessing the input/output behavior of the blockci-
pher. Or you might try to capture the property that
it is difficult to recover the plaintext given the cipher-
text. Or you might focus on the unpredictability of
ciphertexts for unknown plaintexts. All of these no-
tions can be built up into definitions—we can come
up with a rigorous Adv-notion for each. But none
of these ideas really work to give us a convenient-to-
use cryptographic primitive. The winning approach

ISeCure

July 2011, Volume 3, Number 2 (pp. 69–76) 73

is to capture that a blockcipher should behave like a
random permutation.

Here I will sketch the pseudorandom permutation
(PRP) notion for blockcipher security. As in the pseu-
dorandom generator setting, we imagine an adversary
dropped into one of two possible worlds. In the first
of these worlds, the adversary, A, is given access to a
box that computes the blockcipher E for a randomly
chosen keyK. At the beginning of the game, a random
key K is selected from the key space K and you give
the adversary blackbox access to the function EK(·).
The adversary can query whatever plaintext blocks
it likes, getting, in response to each X ∈ {0, 1}n, the
output Y = EK(X). Each query the adversary asks
can be based on the prior outputs it has learned. In
the second world, the adversary A, in response to each
query X, gets the image of a random permutation π
(again from n bits to n bits) applied to X. In other
words, to each new query X ∈ {0, 1}n we return a
new, uniformly chosen Y ∈ {0, 1}n. If any query is
repeated, we answer as we did before. We measure the
adversary’s advantage by

Advprp
E (A) = Pr[AEK ⇒ 1]− Pr[Aπ ⇒ 1].

This is the probability that the adversary outputs 1
when we drop it into the first world, minus the proba-
bility that it outputs 1 when we drop it into the second
world.

This is the second cryptographic definition we’ve
described. Informally, blockcipher E is secure as long
as for every reasonable adversary A—adversaries that
don’t spend too much time computing, have descrip-
tion size that’s not too big, and don’t ask too many
queries—the advantage Advprp

E (A) is small—it’s a
number close to zero.

The PRP definition has been enormously produc-
tive. Nowadays, when we speak of a blockcipher, the-
orists usually mean something that does well with
respect to the definition just described. Even crypt-
analysts have come to accept these notions, no longer
viewing key recovery as the one and only property to
violate to have a convincing attack.

I would draw a few conclusions from our account of
blockciphers. First, as with PRGs, we separated the
syntax of the object from its security notion. I believe
that this is always the right thing to do. Second, simple,
pessimistic definitions—meaning that they give the
adversary credit quite generously—are often better
choices than more complex and faithful ones. Our
definition was only a thought experiment for defining
security; in making a definition like this we are not
trying to faithfully capture an adversary’s capabilities

in some usage environment; we are seeking a simple
definition that pessimistically measures the worth
of the scheme. Finally, I would say that definitions
can, in fact, be wrong. The examples I gave earlier of
definitional routes not taken are wrong in the sense
that they do not give rise to nearly as useful a starting
point.

7 Symmetric Encryption

Next I would like to look at what a symmetric encryp-
tion scheme is. Symmetric, or shared key, encryption
is the well-known problem where Alice and Bob want
to send messages to each other protected by a shared
key,K. When we formalize what an encryption scheme
is, the approach, going back to Goldwasser and Micali
(1982) and then adapted to the symmetric setting by
Bellare, Desai, Jokipii, and me (1997), is this. The
encryption algorithm takes in a key K and a plain-
text M . It produces a ciphertext C. The encryption
algorithm may be probabilistic—it can exploit inter-
nal “coins” (randomness) if it so wishes. Correspond-
ingly, the ciphertext may be longer than the plaintext.
Of course there should be a corresponding decryp-
tion algorithm. It takes in the key and ciphertext and
produces a plaintext. Decryption must reverse encryp-
tion: DK(C) must be M whenever C ← EK(M). Our
security notion captures an adversary’s inability to
distinguish the encryptions of equal-length strings.

The question I would like to ask is whether or not
it was necessary to formalize symmetric encryption
in roughly this way. The thesis I expressed in the
Introduction would suggest an answer of no. But I
can tell you that, when I was working on this problem
in the late 1990’s, as I saw it then, there really was
only one reasonable approach. We had already learned,
from Goldwasser and Micali, what was the “right” way
for defining public-key encryption. What was needed
now a thoughtful adaptation of this notion to the
shared-key setting.

I realize now that there are a variety of ways to
go. Here’s an alternative I now favor—it’s usually
called authenticated encryption with associated data
(AEAD). The long name conceals that this is another
way to formalize what an encryption scheme ought to
be and do. Again focusing on the syntax, an encryp-
tion algorithm will now be understood to take in a
key K and a message M , but, also, an initialization
vector, IV, and a header, A. From these four inputs
the encryption algorithm will produce the ciphertext.
It will do so deterministically—no coins allowed. We
may assume this time that the length of the ciphertext
is the length of the plaintext. As before, there must be
a corresponding decryption algorithm. It takes in the

ISeCure

74 Constructing Cryptographic Definitions — P. Rogaway

key, the IV, the header, and the ciphertext, and it pro-
duces the plaintext or else a distinguished symbol ⊥,
which is used to indicate that the provided ciphertext
does not correspond to a valid plaintext. The security
notion captures an adversary’s inability to distinguish
the encryptions of equal-length strings and, also, its
inability to produce a new ciphertext having a valid
associated plaintext.

The two notions I’ve sketched are very different
views about what an encryption scheme is. It is the
second approach that leads, I believe, to mechanisms
that are easier to correctly use. First, we do not have
to ask our encryption algorithm to generate good ran-
dom bits; in fact, we forbid them from generating any
random bits. The source of “newness” for each mes-
sage is embodied by the IV. Second, the provisioning
of authenticity makes for a scheme that is easier to
correctly use. There is a long history of protocol de-
signers implicitly assuming more of their encryption
schemes than what the constructions actually provide.
Third, in the absence of an explicit header, one could
not do something as simple as authenticate the source
address in a networking packet. The predictable con-
sequence is to turn users of encryption schemes, those
designing networking protocols, into unwitting design-
ers of cryptographic schemes.

It is only since 2004 that we have shared-key encryp-
tion schemes architected to the AEAD abstraction
boundary. Two of these schemes—CCM and GCM—
were quickly standardized by the U.S. National Insti-
tute of Standards and Technology (NIST), and others.
These modes have already eclipsed traditional modes
of operation like CBC as the preferred way to encrypt
in higher-level protocols. CCM is the method by which
one nowadays encrypts in WiFi networks, while GCM
is one of the permitted methods for IPSec.

I would again like to draw some conclusions. First,
we have evidenced that questions utterly basic to a
field—like the question “what is symmetric encryp-
tion?” for cryptography—are highly constructed. The
classical definition is as it is because of inessential
choices made when the community addressed its ini-
tial challenges. Second, I would emphasize that defini-
tions are not written in stone. They emerge, change,
and die out far more often than people imagine. They
are part of a dialectic within a community. Third, I
would conclude that how we define something—simple
things like how many arguments get fed into an en-
cryption scheme—can have a profound effect on how
useful that object will be.

Smart people can mess up when they don’t under-
stand the underlying definition. In 2001, a number
of authors put forward fast authenticated-encryption
schemes: Jutla; Gligor and Donescu; and myself, Bel-

lare, Black, and Krovetz. The U.S. National Security
Agency (NSA) then put out their own proposal for
authenticated encryption, which they called “Dual
Counter Mode.” But I myself broke the proposal
within a couple of hours. Others quickly broke it, too.
I am not skilled at attacking things, but I understood
the definition of what an authenticated-encryption
scheme was supposed to do. The folks at the NSA who
designed the mode must not have.

I would conclude, finally, that practice that has not
yet met theory is an excellent place to be crafting defi-
nitions. The definition for AEAD might have emerged
ten or even twenty year earlier if theorists had simply
reverse-engineered what practitioners were already
trying to do. Many theorists seem to believe that the-
ory invariably precedes practice. My own experience
suggests that the converse holds at least as often—
that practice routinely leads theory, and that it can
take a long time for the theory to catch up.

8 Collision-Resistant Hashing

My next example is a collision-resistant hash func-
tion. Such an object H takes in a string of arbitrary
length and gives a message digest of, say, 160 bits:
H : {0, 1}∗ → {0, 1}160. Examples include MD5 and
SHA-1.

The first property that people speak of in trying to
understand what one of these functions is supposed
to do is collision resistance. You will see “definitions”
in the literature of the sort:

H is collision resistant if it is computationally in-
feasible to find distinct strings X and X ′ such that
H(X) = H(X ′).

We know that there are lots of such collisions—if
H : {0, 1}∗ → {0, 1}160 there will already be numerous
pairs of 161-bit strings that hash to the same value.
The difficulty is in finding such a collision.

To formalize the security goal we can define
Advcol

H (A) as the probability that adversary A out-
puts distinct X and X ′ such that H(X) = H(X ′). We
compare Advcol

H (A) to the computational resources
used by A. Informally, we regard H as secure if ev-
ery “reasonable” adversary A gets “small” advantage
measure Advcol

H (A).

The problem with the above is that it is, well, kind
of bogus. No matter what H may be, there will always
be an efficient algorithm A that outputs a collision
for it—namely, the efficient algorithm that knows a
collision X,X ′ for H and outputs it.

I will say it again. Specify any hash function H :
{0, 1}∗ → {0, 1}160. There will always exist an algo-

ISeCure

July 2011, Volume 3, Number 2 (pp. 69–76) 75

rithm A that prints out H-colliding 161-bit strings
X,X ′. The algorithm is as efficient as can be—just a
couple lines of code—and it gets advantage 1.

At some level, the above reasoning is clearly
specious: of course the collision-printing algorithm ex-
ists; the difficulty is our inability to explicitly specify
it. So we can try it again, saying that a hash func-
tion H is collision-resistant if there is no person—no
living human being—who can write a collision down.

But the above should seem even more silly: if we
are trying to come up with a mathematically rigorous
treatment of hash functions, certainly you can’t base
it on what human beings do or do not know. No
definitions in mathematics have such a character.

What is the solution to this foundational dilemma?
The way that theorists have usually addressed this
issue is to say that a cryptographic hash function
oughtn’t have a signature H : {0, 1}∗ → {0, 1}n. In-
stead, we should consider a family of hash func-
tions, our hash-function family having signature
H : K × {0, 1}∗ → {0, 1}n. Each key K ∈ K names
a hash function HK(·) from the family. The user of
the hash-function family selects a K and publishes
it. The foundational problem vanishes because we
will demand the inexistence of an efficient algorithm
that, given K, finds collisions for HK(·). While, true,
there will be an efficient collision-finding adversary
for each K, there might not be an efficient collision-
finding adversary that works for a random K.

The problem with the above move is its fundamental
lack of fidelity with respect to modeling real-world
hash functions. Objects like SHA-1 were not described
as having a key, and reinterpreting them as elements
of a hash-function family is inherently a stretch.

In a paper a few years ago (2006), I pointed out that
this entire dilemma is all a bit of a misunderstanding.
There was never a need to key hash functions to have
a sensible security notion. All you have to do is to
change the way that you state your theorems. We
won’t write an “existential” claim like

If there is an effective algorithm A for attacking
the H-using protocol Π then there is an effective
algorithm C for finding a collision in H.

We can’t state meaningful theorems in this way be-
cause the conclusion is always true. Instead, we will
make an “explicit-reduction” claim like

There is an (explicitly given) algorithm R such
that when A does well at attacking the H-using
protocol Π then C = RA does well at finding a
collision in H.

Now, one’s ability to break Π does imply one’s ability
to break H, exactly what we want.

From where did this entire confusion arise? The
first rigorous paper on cryptographic hash functions,
by I. Damg̊ard (1987), already explained that

Instead of considering just one hash function, we
[must] consider families of them, in order to make
a complexity-theoretic treatment possible.

When I read this statement as a graduate student,
I took the claim to be true, even incontrovertible.
Years later, I can look back and identify some of
the implicit assumptions that made this seem so.
First, the statement implicitly assumes an asymp-
totic treatment of our goals. Even more, it assumes
that we want our security notions to hold for non-
uniform adversaries—those that can have some
security-parameter-dependent advice. Finally, we
assume existential-format theorem statements. When
you abandon this set of assumptions, moving to
hash-function families no longer seems so right.

I conclude from all of this that implicit and unrec-
ognized assumptions can determine a good deal of
what we think and do. Deeply embedded disciplinary
assumptions can come to assume almost doctrinal
unassailability. The assumptions can effectively vanish
from our view. In the words of L. Fleck (1935/1979),
“Once a structurally complete and closed system of
opinions consisting of many details and relations has
been formed, it offers enduring resistance to anything
that contradicts it. . . . What does not fit into the sys-
tem remains unseen.” It is not that we see alternatives
to how we are doing things, and, carefully considering,
reject these possibilities. It is, more, that we never see
the alternatives—even things that, later, seem obvious
and compelling.

9 Zero-Knowledge

The beautiful idea of zero-knowledge proofs was mo-
tivated by simple protocols like the one I’ll describe
right now. A prover would like to convince a verifier
that a pair of graphs G0 and G1 are isomorphic. (Re-
member that two graphs are isomorphic if they are
the same up to the naming of their vertices.) In order
to show this the prover could exhibit the isomorphism:
he could provide a permutation that serves to map
the vertices of the first graph into the vertices of the
second graph, and the verifier would check that the
proposed isomorphism really does preserve adjacency.
The “problem” with this proof, from a cryptographic
standpoint, is that it reveals everything; the verifier
now knows the isomorphism. The question I’d like to
ask is if you can prove that two graphs are isomorphic
without revealing the isomorphism—indeed without
revealing anything beyond that fact that the graphs
are isomorphic.

ISeCure

76 Constructing Cryptographic Definitions — P. Rogaway

The problem and its solution, invented by S. Gold-
wasser, S. Micali, and C. Rackoff (GMR) (1985), be-
gins by having the prover select a random isomorphic
copy of the graph G0. A random isomorphic copy
of G0 is also a random isomorphic copy of G1 (iso-
morphism of graphs is an equivalence relation). The
prover sends his graph H to the verifier. The verifier
now flips a coin b ∈ {0, 1} and challenges the prover
to demonstrate that Gb actually is isomorphic to H.
The prover obliges by exhibiting the requested isomor-
phism, which the verifier checks.

I claim that when the verifier interacts with the
prover I’ve described, he really does get some evi-
dence that G0 is isomorphic to G1. If the two graphs
are isomorphic, the prover will be able to provide the
specified evidence. But if the two graphs are not iso-
morphic, then H can be isomorphic to at most one of
the two graphs. The verifier, who chose b at random,
has at least a 50% chance of catching the prover in
his lie. If the prover and verifier repeat this game 100
times and then the prover will be able to trick the ver-
ifier with probability at most 2−100. For all practical
purposes, this number is zero.

Intuitively, the prover manages to establish that G0

and G1 are isomorphic without revealing anything
about the isomorphism. GMR make this formal with
the idea of a simulator. The simulator is used to
concretize the intuition that the prover leaks zero
information in an interaction if that which a verifier
obtains is nothing but a sample from a distribution
that the verifier itself could generate.

The definition of zero knowledge, and the ideas
behind it, have been profoundly influential. More than
17,000 Google Scholar articles, and 149,000 web pages,
refer to zero-knowledge proofs. And yet I think it’s fair
to say that zero-knowledge, at least in the traditional
form that I’ve described, has had little impact on
cryptographic practice. It somehow hasn’t mattered.
I conclude that if a notion is elegant enough, real-
world applications may not be needed. I would also
comment that names can be important. When you
have a good notion, and you have a good name for
it as well, that is an unbeatable package. The phrase
zero knowledge manages to capture, in just these two
words, a wonderful paradox: how can something be
knowledge if it is also zero? The name itself already
inspires the imagination. Good definitions excite the
imagination and aspirations of a community.

10 Conclusion

People have come to think of cryptography as a field
that’s all about schemes, attacks, and proofs. And all
of these things are vital aspects of cryptography. And

yet, missing from this picture are definitions. Less well
noticed, they are, just the same, at least as important
for determining the character of the field.

Acknowledgments

I would like to cordially thank Rasool Jalili, Mohsen
Kahani, and everyone else involved in inviting my
participation at ISCISC 2011. I would like also to
thank the anonymous referee who provided careful
comments on this manuscript. Publication timing
constraints have made it infeasible to implement all
of the referee’s insightful comments.

This work was supported by NSF CNS 0904380.
Many thanks to the NSF for their continuing support
of my research.

Further Reading

[1] Mihir Bellare. Practice-Oriented Provable Secu-
rity. Lectures on Data Security, Modern Cryp-
tology in Theory and Practice, Summer School,
Aarhus, Denmark, July 1998. Lecture Notes in
Computer Science, vol. 1561, Springer, pp. 1–15,
1999.

[2] I. Damg̊ard. A “Proof-Reading” of Some Is-
sues in Cryptography. Automata, Languages and
Programming, 34th International Colloquium,
ICALP 2007. Lecture Notes in Computer Sci-
ence, vol. 4596, Springer, pp. 2–11, 2007.

[3] O. Goldreich. Foundations of Cryptography—A
Primer. Foundations and Trends in Theoretical
Computer Science, vol. 1, no. 1, now publishers,
pp. 1–116, 2005.

Philip Rogaway is a professor in the De-

partment of Computer Science at the Uni-
versity of California, Davis, USA. He has
also been a frequent visitor to Chiang Mai

University, Thailand. His research is in cryp-

tography. He did his Ph.D. at MITs Theory
of Computation group (1991), worked at
IBM for some time, and then came to UCD

(1994). His research has focused on obtaining provably-good
solutions to protocol problems of genuine utility. He is also

interested in social and ethical issues connected to technology.

ISeCure

	1 Introduction
	2 NP-Completeness
	3 Provable Security
	4 Pseudorandom Generators
	5 Asymptotic vs. Concrete Security
	6 Blockciphers
	7 Symmetric Encryption
	8 Collision-Resistant Hashing
	9 Zero-Knowledge
	10 Conclusion

