Integral Cryptanalysis of Reduced-Round SAND-64 Based on Bit-Based Division Property ${ }^{* *}$

Atiyeh Mirzaie ${ }^{1, *}$, Siavash Ahmadi ${ }^{2}$, and Mohammad Reza Aref ${ }^{1}$
${ }^{1}$ Information Systems and Security Lab (ISSL), Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
${ }^{2}$ Electronics Research Institute, Sharif University of Technology, Tehran, Iran

ARTICLE INFO.

Keywords:

Division Property, Integral
Distinguisher, MILP, SAND Block Cipher

Type:
Research Article
doi:
10.22042/isecure.2023.187449

Abstract

Conventional Bit-based Division Property (CBDP), as a generalization of integral property, has been a powerful tool for integral cryptanalysis of many block ciphers. Exploiting a Mixed Integral Linear Programming (MILP) optimizer, an alternative approach to searching integral distinguishers was proposed, which has overcome the bottleneck of the cipher block length. The MILP-aided method starts by modeling CBDP propagation by a system of linear inequalities. Then by choosing an appropriate objective function, the problem of searching distinguisher transforms into an MILP problem. As an application of this technique, we focused on a newly proposed lightweight block cipher SAND. SAND is a family of two AND-RX block ciphers SAND-64 and SAND-128, which was designed to overcome the difficulty regarding security evaluation. For SAND-64, we found a 12-round distinguisher with 23 balanced bits and a data complexity of 2^{63}, with the superiority of a higher number of balanced bits than the designers' one. Furthermore, we applied an integral attack on a 15 and 16 -round SAND-64, including the key recovery step which resulted in time complexity of 2^{105} and $2^{109.91}$ and memory complexity of 2^{52} and 2^{85} bytes, respectively.

(C) 2023 ISC. All rights reserved.

1 Introduction

So far, block ciphers that do not use S-boxes have N been the best candidates in lightweight environments because of simple implementation using logic

[^0]gates instead of lookup tables. According to various requirements, many lightweight block ciphers have been proposed. Midori [1], PRESENT [2], CRAFT [3], CLEFIA [4], SKINNY [5], and GIFT [6] are some instances among this great family of block ciphers. Additionally, two lightweight block ciphers SIMON and SPECK, which are AND-RX and ARX respectively, were proposed by NSA [7]. A newly proposed SIMONbased block cipher family is SAND [8]. Its designers claimed that SAND supports S-box-based security evaluation approaches due to admitting an equivalent S-box-based representation, unlike SIMON. They also
showed that SAND has better efficiency and stronger security bounds even in the related-key setting, in comparison to similar AND-RX block ciphers.

Integral cryptanalysis, introduced by Knudsen and Wagner [9], has been a powerful cryptanalysis against many block ciphers. In Eurocrypt 2015, a new technique to find an integral distinguisher was proposed by Todo [10] by defining "division property", which is a generalization of integral property, and was applied to full round MISTY1 for the first time [11]. A year later, Todo et al. [12] introduced bit-based division property to analyze each bit independently to gain higher precision. Conventional Bit-based Division Property (CBDP) and Bit-based Division Property using Three subsets (BDPT) were two kinds of division property defined in [12]. This technique was applied to SIMON32 and a 14-round distinguisher was found as a result. However, this method is impractical for block ciphers with block length (represented by n) greater than 32 bits due to the 2^{n} complexity requirement. Xiang et al. [13] decreased this complexity significantly by presenting an automated search utilizing a Mixed Integral Linear Programming (MILP) optimizer which formerly had been applied to search for differential and linear characteristics [14]. Xiang defined a new notation called "division trail" as an illustration of CBDP propagation. Furthermore, he showed how to describe CBDP propagation through a cipher using a system of linear inequalities, as the MILP constraints. Also, he proposed stopping rules, and thus transformed the search for the CBDP into an MILP problem. Afterward, many innovations have risen, from MILP-aided methods for primitives with non-bit-permutation linear layers [15-17] to MILPaided method of searching BDPT [18, 19].

Despite proposed improvements in MILP-aided searching methods, Xiang's method is among the most powerful techniques for AND-RX block ciphers like SAND, since these ciphers have no S-box or complex linear layer. As a result, in this paper, we exploited his approach and found a 12-round integral distinguisher with 23 balanced bits for SAND-64, which is the best integral distinguisher found so far, to the best of our knowledge, subject to the number of rounds and balanced bits. Utilizing this characteristic, we proposed an integral cryptanalysis of 15 and 16 -round SAND64 including the key recovery step. The results are illustrated in Table 1.

This paper is organized as follows: Section 2 represents SAND specifications briefly. Section 3 provides the background on division property, propagation rules and the MILP-aided method. We propose the 12-round SAND-64 distinguisher in Section 4. In Section 5 , the detailed procedure of reduced-round attack
has been explained. Eventually, Section 6 concludes the paper.

2 A Brief Description of SAND-64

SAND [8] is a family of two Feistel block ciphers SAND-64 and SAND-128 with the parameters in Table 2.

The round function (F) is illustrated in Figure 1. For the input state $\left(x^{r}, y^{r}\right)=\left(x_{0}^{r}, \ldots, x_{n-1}^{r}, y_{0}^{r}, \ldots, y_{n-1}^{r}\right)$ and the subkey $s k^{r}=\left(s k_{0}^{r}, \ldots, s k_{n-1}^{r}\right)$ of the r-th round (for $0 \leq r<R$), the output state $\left(x^{r+1}, y^{r+1}\right.$) is computed with

$$
\begin{align*}
\left(x^{r+1}, y^{r+1}\right) & =F_{s k^{r}}\left(x^{r}, y^{r}\right) \\
& =\left(P _ { n } \left(G_{0}\left(x^{r} \lll \frac{n}{4} \alpha\right)\right.\right. \\
& \left.\left.\oplus G_{1}\left(x^{r} \lll \frac{n}{4} \beta\right)\right) \oplus y^{r} \oplus s k^{r}, x^{r}\right) . \tag{1}
\end{align*}
$$

More details of SAND-64 are provided as follows (for SAND-64 $n=32$):

- Shift boxes $\left(x^{r} \lll \frac{n}{4} \alpha\right.$ and $\left.x^{r} \lll \frac{n}{4} \beta\right)$: The n-bit input variable x^{r} can be assumed as a concatenation of four $\frac{n}{4}$-bit words $x^{r}=$ $\left(x_{0}^{r}, \ldots, x_{n-1}^{r}\right)=x^{r}\{0\}\left\|x^{r}\{1\}\right\| x^{r}\{2\} \| x^{r}\{3\}$ and each word $x^{r}\{i\}$ is rotated by α (or β) to the left within the word circularly, i.e. $x^{r} \lll \frac{n}{4}$ $\alpha=\left(x^{r}\{0\} \lll \alpha\right)\left\|\left(x^{r}\{1\} \lll \alpha\right)\right\|\left(x^{r}\{2\} \lll\right.$ $\alpha) \|\left(x^{r}\{3\} \lll \alpha\right)$. The tuple of rotation constants (α, β) is fixed to $(0,1)$.
- Non-linear functions $\left(G_{0}\right.$ and $\left.G_{1}\right)$: Let the n bit variable x be the input value of G_{0} and G_{1} which can be assumed as a concatenation of four $\frac{n}{4}$-bit words $=x\{0\}\|x\{1\}\| x\{2\} \| x\{3\}$. Let $y=y\{0\}\|y\{1\}\| y\{2\} \| y\{3\}$ represents the output value. The output of G_{0} and G_{1} is calculated as (the symbols \oplus and \odot denote bitwiseXOR and bitwise-AND, respectively):

$$
\begin{align*}
& G_{0}:\left\{\begin{array}{l}
y\{0\}=y\{3\} \odot x\{2\} \oplus x\{0\} \\
y\{1\}=x\{1\} \\
y\{2\}=x\{2\} \\
y\{3\}=x\{0\} \odot x\{1\} \oplus x\{3\}
\end{array}\right. \tag{2}\\
& G_{1}:\left\{\begin{array}{l}
y\{0\}=x\{0\} \\
y\{1\}=x\{0\} \odot x\{2\} \oplus x\{1\} \\
y\{2\}=x\{3\} \odot y\{1\} \oplus x\{2\} \\
y\{3\}=x\{3\}
\end{array} .\right. \tag{3}
\end{align*}
$$

- Bit permutation $\left(P_{n}\right)$: Let the n-bit variables x and y be the input and output values. Then the n-bit permutation P_{n} is a parallel application of a $\frac{n}{4}$-bit permutation $p_{\frac{n}{4}}$ on four $\frac{n}{4}$-bit words. In other words

Table 1. Integral cryptanalysis results of SAND-64

\# Attack \# Distinguisher \#Balanced		Data	Time	Memory complexity		Reference
rounds	rounds	bits	complexity complexity	(Bytes)		
-	12	1	$2^{63} \mathrm{CP}$	-	-	$[8]$
15	12	23	$2^{63} \mathrm{CP}$	2^{105}	2^{52}	This paper
16	12	23	$2^{63} \mathrm{CP}$	$2^{109.91}$	2^{85}	This paper

Figure 1. SAND round function [8]

Table 2. Parameters of SAND

Cipher	Block Branch		Key	Rounds
	size 2n	size n	size $\mathbf{~ m}$	R
SAND-64	64	32	128	48
SAND-64	128	64	128	54

$$
\begin{align*}
& y_{\frac{n}{4} \cdot i+p_{\frac{n}{4}}(j)}=x_{\frac{n}{4} \cdot i+j} \\
& \qquad \text { for } 0 \leq j<\frac{n}{4} \text { and } 0 \leq i<4 \tag{4}
\end{align*}
$$

where $p_{\frac{n}{4}}$ is given in Table 3.

Table 3. p_{8} for SAND-64

$$
\begin{gathered}
j \quad 01234567 \\
\hline p_{8}(j) 52741630 \\
\hline
\end{gathered}
$$

- Key Schedule: The 128 -bit master key is viewed as four 32 -bit words $K=K^{3}\left\|K^{2}\right\| K^{1} \| K^{0}$, which are the initial states of a LFSR. The r th round subkey $s k^{r}(0 \leq r<R)$ is loaded from r-th state of the LFSR, i.e. K^{r}. As a result, discovery of four consecutive subkeys (i.e. $s k^{r}, s k^{r+1}, s k^{r+2}$ and $s k^{r+3}$) reveals the master key uniquely.
Remark. Variable indexing utilized for SAND-64 in this paper is rather different from [8]. Thus, some
differences in equations describing SAND-64 are noticeable. For more details about SAND-64, see [8].

3 Division Property

3.1 Notations

Let \mathbb{F}_{2} denotes the binary finite field and $\mathbf{a}=$ $\left(a_{0}, a_{1}, \cdots a_{n-1}\right) \in \mathbb{F}_{2}^{n}$ be an n-bit vector. For an n-bit vectors \mathbf{x} and \mathbf{u}, we define $\mathbf{x}^{\mathbf{u}}=\prod_{i=0}^{n-1} x_{i}^{u_{i}}$. Also, for any $\mathbf{k}, \mathbf{k}^{\prime} \in \mathbb{F}_{2}^{n}, \mathbf{k} \succeq \mathbf{k}^{\prime}$ means $k_{i} \geq k_{i}^{\prime}$ for all $i=0,1, \cdots, n-1$.

3.2 Bit-Based Division Property: Definition and Propagation Rules

In the following, we will define conventional bit-based division property (CBDP) and present its propagation rules.
Definition 1 (CBDP [11]). Let \mathbb{X} be a multiset whose elements take a value of \mathbb{F}_{2}^{n}. When the multiset \mathbb{X} has the $\operatorname{CBDP} \mathcal{D}_{\mathbb{K}}^{1^{n}}$, where \mathbb{K} denotes a set of n dimensional vectors whose i-th element takes a value between 0 and 1 , it fulfills the condition
$\bigoplus_{\mathbf{x} \in \mathbb{X}} \mathrm{x}^{\mathbf{u}}=\left\{\begin{array}{l}\text { unknown, if there exists } \mathbf{k} \in \mathbb{K}: \mathbf{u} \succeq \mathbf{k} \\ 0, \\ \text { o.w. }\end{array}\right.$.
Propagation Rule 1 (Copy [12]). Let x and
\mathbf{y} denote the input and output of the Copy function, i.e. $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n}$ and $\mathbf{y}=$ $\left(x_{0}, x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n+1}$. If the input multiset \mathbb{X} has $\mathcal{D}_{\mathbb{K}}^{1^{n}}$, then the output multiset \mathbb{Y} has $\mathcal{D}_{\mathbb{K}^{\prime}}^{1^{n+1}}$ where

$$
\mathbb{K}^{\prime} \leftarrow \begin{cases}\left(0,0, k_{1}, \ldots, k_{n-1}\right), & k_{0}=0 \tag{6}\\ \left(1,0, k_{1}, \ldots, k_{n-1}\right),\left(0,1, k_{1}, \ldots, k_{n-1}\right), & k_{0}=1\end{cases}
$$

Propagation Rule 2 (And [12]). Let x and \mathbf{y} denote the input and output of the And function, i.e. $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n}$ and $\mathbf{y}=$ $\left(x_{0} \wedge x_{1}, x_{2}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n-1}$. If the input multiset \mathbb{X} has $\mathcal{D}_{\mathbb{K}}^{1 n}$, then the output multiset \mathbb{Y} has $\mathcal{D}_{\mathbb{K}^{\prime}}^{1^{n-1}}$ where

$$
\begin{equation*}
\mathbb{K}^{\prime} \leftarrow\left(\left\lceil\frac{k_{0}+k_{1}}{2}\right\rceil, k_{2}, \ldots, k_{n-1}\right), \text { for all } \mathbf{k} \in \mathbb{K} \tag{7}
\end{equation*}
$$

Propagation Rule 3 (XOR [12]). Let x and \mathbf{y} denote the input and output of the XOR function, i.e. $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n}$ and $\mathbf{y}=$ $\left(x_{0} \oplus x_{1}, x_{2}, \ldots, x_{n-1}\right) \in \mathbb{F}_{2}^{n-1}$. If the input multiset \mathbb{X} has $\mathcal{D}_{\mathbb{K}}^{1^{n}}$, then the output multiset \mathbb{Y} has $\mathcal{D}_{\mathbb{K}^{\prime}}^{1^{n-1}}$ where

$$
\begin{align*}
& \mathbb{K}^{\prime} \leftarrow\left(k_{0}+k_{1}, k_{2}, \ldots, k_{n-1}\right) \\
& \quad \text { for all } \mathbf{k} \in \mathbb{K} \text { where }\left(k_{0}, k_{1}\right) \neq(1,1) . \tag{8}
\end{align*}
$$

Please refer to [11] for proofs and further details.

3.3 The MILP-Aided Method

In spite of the bit-based division property's high precision in finding integral distinguisher, the exponential complexity of using this tool makes this method almost impossible for block ciphers with block length greater than 32 bits. Xiang et al. [13] decreased this complexity significantly by utilizing an MILP optimizer. As the first step of Xiang's method, we describe an MILP problem as follows.

Definition 2 (MILP problem [15]). Find a vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ subject to $\mathbf{A x} \leq \mathbf{b}$, so that the objective linear function

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

is minimized, where $\left(c_{1}, c_{2}, \cdots, c_{n}\right) \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$.

Now we define division trail:
Definition 3 (division trail [13]). Let $\{\mathbf{k}\}:=$ $\mathbb{K}_{0} \rightarrow \mathbb{K}_{1} \rightarrow \cdots \rightarrow \mathbb{K}_{r}$ be a chain of CBDP propagation through r rounds of encryption. For any vector $\mathbf{k}_{i}^{*} \in \mathbb{K}_{i}(i \geq 1)$, there must exist a vector $\mathbf{k}_{i-1}^{*} \in \mathbb{K}_{i-1}$ such that \mathbf{k}_{i-1}^{*} can propagate to \mathbf{k}_{i}^{*} according to the propagation rules. Additionally, for $\left(\mathbf{k}_{0}, \mathbf{k}_{0}, \cdots, \mathbf{k}_{r}\right) \in$ $\mathbb{K}_{0} \times \mathbb{K}_{1} \times \cdots \times \mathbb{K}_{r}$, if \mathbf{k}_{i-1}^{*} can propagate to \mathbf{k}_{i}^{*} for all $i \in\{1,2, \cdots, r\}$, we call $\left(\mathbf{k}_{0}, \mathbf{k}_{0}, \cdots, \mathbf{k}_{r}\right)$ an r-round division trail.

In the next step, propagation rules of CBDP are modeled with a system of linear inequalities:
Model 1 (Copy [13]). Let $(a) \xrightarrow{\text { Copy }}\left(b_{0}, b_{1}\right)$ be the Copy function division trail. Then, the inequalities

$$
\left\{\begin{array}{l}
a-b_{0}-b_{1}=0 \tag{9}\\
a, b_{0}, b_{1} \text { are binaries }
\end{array}\right.
$$

are sufficient to describe the propagation through Copy function.
Model 2 (And [13]). Let $\left(a_{0}, a_{1}\right) \xrightarrow{\text { And }}(b)$ be the And function division trail. Then, the inequalities

$$
\left\{\begin{array}{l}
b-a_{0} \geq 0 \tag{10}\\
b-a_{1} \geq 0 \\
b-a_{0}-a_{1} \leq 0 \\
a_{0}, a_{1}, b \text { are binaries }
\end{array}\right.
$$

are sufficient to describe the propagation through And function.
Model 3 (XOR [13]). Let $\left(a_{0}, a_{1}\right) \xrightarrow{\text { XOR }}(b)$ be the XOR function division trail. Then, the inequalities

$$
\left\{\begin{array}{l}
a_{0}+a_{1}-b=0 \tag{11}\\
a_{0}, a_{1}, b \text { are binaries }
\end{array}\right.
$$

are sufficient to describe the propagation through XOR function.

So far, constructing a system of linear inequalities describing one round propagation has been explained. By iterating this procedure r times, a system of inequalities for r round propagation, named \mathcal{L}, is gained. Let's represent the r round division trail by $\left(a_{0}^{0}, a_{1}^{0}, \cdots, a_{n-1}^{0}\right) \rightarrow \cdots \rightarrow\left(a_{0}^{r}, a_{1}^{r}, \cdots, a_{n-1}^{r}\right)$. Apparently, \mathcal{L} is defined on variables $a_{i}^{j}(i=0,1, \cdots n-1$, $j=0,1, \cdots, r)$ and some auxiliary variables. Also, the constrains corresponding to the initial division property should be added to \mathcal{L}, i.e. $a_{i}^{0}=k_{i}(i=$ $0,1, \cdots, n-1$) where $\mathcal{D}_{\{\mathbf{k}\}}^{1 n}$ is the input division property with $\mathbf{k}=\left(k_{0}, k_{1}, \cdots, k_{n-1}\right)$.
If the set \mathbb{K}_{r} doesn't have the unit vector $\mathbf{e}_{m} \in \mathbb{F}_{2}^{n}$, whose elements are 0 except m-th element which is 1 , the m-th output bit of r-round ciphertexts is balanced (i.e. has the zero-sum property). As a result, the objective function of the MILP model is set as

$$
\operatorname{Obj}: \operatorname{Min}\left\{a_{0}^{r}+a_{1}^{r}+\cdots a_{n-1}^{r}\right\}
$$

If \mathbb{K}_{r+1} contains all the n-bit unit vectors for the first time, the division property propagation should stop, and an r-round distinguisher can be derived.

4 Integral Characteristic for 12 Rounds of SAND-64

We apply the MILP-aided method to SAND-64 as follows: Denote one round division trail of SAND-64 by

$$
\begin{aligned}
& \left(a_{0}^{i}, \ldots, a_{n-1}^{i}, b_{0}^{i}, \ldots, b_{n-1}^{i}\right) \rightarrow \\
& \quad\left(a_{0}^{i+1}, \ldots, a_{n-1}^{i+1}, b_{0}^{i+1}, \ldots, b_{n-1}^{i+1}\right) .
\end{aligned}
$$

In order to get the inequalities representing all possible division trails of one round SAND-64, we define some auxiliary vectors. These vectors denote the division properties of interior values. As an example, we denote $\left(t_{0}^{i}, \ldots, t_{n-1}^{i}\right)$ and $\left(u_{0}^{i}, \ldots, u_{n-1}^{i}\right)$ the input division property of the first and second shift box. According to model 1 , the following inequalities are sufficient to model the Copy operation:
$\mathcal{L}_{1}: a_{j}^{i}-t_{j}^{i}-u_{j}^{i}-b_{j}^{i+1}=0, \quad$ for $j \in\{0,1, \ldots, n-1\}$.
Now, consider the XOR just after the permutation box; We represent its inputs and output division properties by $\left(p_{0}^{i}, \ldots, p_{n-1}^{i}\right),\left(y_{0}^{i}, \ldots, y_{n-1}^{i}\right)$ and $\left(q_{0}^{i}, \ldots, q_{n-1}^{i}\right)$, respectively. We model the XOR operation by the following inequalities according to model 3:

$$
\begin{equation*}
\mathcal{L}_{2}: p_{j}^{i}+y_{j}^{i}-q_{j}^{i}=0, \quad \text { for } j \in\{0,1, \ldots, n-1\} \tag{13}
\end{equation*}
$$

At last, we denote $\left(f_{0}^{i}, \ldots, f_{n-1}^{i}\right),\left(g_{0}^{i}, \ldots, g_{n-1}^{i}\right)$ and $\left(h_{0}^{i}, \ldots, h_{n-1}^{i}\right)$ the inputs and output division properties of the left AND in G_{0} illustration, respectively. The following inequalities represent the AND operation model according to model 2 :

$$
\mathcal{L}_{3}:\left\{\begin{array}{ll}
h_{j}^{i}-f_{j}^{i}>=0, & \text { for } j \in\left\{0,1, \ldots, \frac{n}{4}-1\right\} \tag{14}\\
h_{j}^{i}-g_{j}^{i}>=0, & \text { for } j \in\left\{0,1, \ldots, \frac{n}{4}-1\right\} \\
h_{j}^{i}-f_{j}^{i}-g_{j}^{i}<=0, & \text { for } j \in\left\{0,1, \ldots, \frac{n}{4}-1\right\}
\end{array} .\right.
$$

Other And, Copy and XOR operations of SAND-64 round function are modeled similarly. Additionally, since we consider bit-based division property, division property propagation through circular shift or permutation is just a circular shift or permutation of the coordinates of the vector. This results in a system of constraints, containing 288 inequalities for each round of SAND-64.

So, 1-round SAND-64 division trails has been modeled completely. For r-round model, this process should be used r times. Furthermore, the initial condition (input division property) should be added to system of inequalities. By applying Gurobi MILP solver[20], a 12-round distinguisher with 23 balanced bits is found which starts with division property $\left(1_{31} 0_{1}, 1_{32}\right)$ (i.e. all bits are active except $\left.x_{31}^{0}\right)$ at the
plaintext. It is remarkable that total number of constrains given to the solver equals to $12 \times 288+64=$ 3520 inequalities. The balanced bits are

$$
\begin{gathered}
\left\{y_{i}^{12}: i \in\{2,3,4,6,7,9,10,11,13,14,15,17,18,19\right. \\
21,22,23,24,26,27,28,30,31\}\}
\end{gathered}
$$

We will use this distinguisher for the 15 and 16 rounds attack. So the data complexity would be 2^{63} chosen plaintexts, which all of the bits take all possible values except x_{31}^{0}.

5 Integral Cryptanalysis of Reduced-Round SAND-64

In this section, we propose an integral attack on 15 and 16 -round SAND-64. The attack utilizes the $12-$ round characteristic described in Section 4 from round 1 to 12 . To the best of our knowledge, this is the first attack on reduced-round SAND-64 ever presented.

In the partial decryption step, the subkey $s k^{12}$ has no effect on whether y_{i}^{12} is balanced or not; so, it isn't involved in attack procedure and should be guessed individually.

In Table 4, required bits of subkeys for calculating each balanced y_{i}^{12} (or $P_{n}^{-1}\left(y_{i}^{12}\right)$ equivalently) from the ciphertext, is represented. For example, according to row number 1 , to calculate the bit $P_{n}\left(v_{1}^{12}\right)=y_{2}^{12}$ we require 5 bits of $s k^{13}, 13$ bits of $s k^{14}$ and 25 bits of $s k^{15}\left(v^{i}=\left(v_{0}^{i}, \ldots, v_{31}^{i}\right)\right.$ denotes the input to the permutation box in i-th round). Apparently, the columns corresponding to $s k_{i}^{13}$ and $s k_{i}^{14}$ are used for 15 -round attack and $s k_{i}^{13}, s k_{i}^{14}$ and $s k_{i}^{15}$ for 16 -round attack.

5.1 15 Rounds Attack

The procedure of the key recovery step for 15 -round SAND-64 is summarized in Table 5. We explain some steps in detail and the rest is similar:

Step 1. According to row number 12 of Table 4, calculating the bit $P_{n}\left(v_{16}^{12}\right)=y_{21}^{12}$ requires 15 bits of $s k^{13}$ and $s k^{14}$ in total ($\left\{s k_{i}^{13}: i \in\{16,1,9,17\}\right\}$ and $\left.\left\{s k_{i}^{14}: i \in\{0,4,5,8,12,13,16,20,21,23,28\}\right\}\right)$. So partial decryption of 2^{63} ciphertexts with 2^{15} different keys, results in a time complexity of $2^{63+15} \times 3$-round En.
So far, 15 key bits are involved in the attack. Checking whether the bit $P_{n}\left(v_{16}^{12}\right)=y_{21}^{12}$ is balanced for each key guess, provides a filter of 2^{-1} on the space of 2^{15} keys, on average. So, 2^{14} keys remain after filtering out the wrong ones.

Step 2. According to row number 13 of Table 4, we need 15 key bits to calculate the bit $P_{n}\left(v_{17}^{12}\right)=$ $y_{18}^{12}\left(\left\{s k_{i}^{13}: i \in\{18,17,2,10\}\right\}\right.$ and $\left\{s k_{i}^{14}: i \in\right.$ $\{1,2,5,9,10,13,17,18,20,21,25\}\})$. So, the time
complexity of partial decryption would be $2^{63+15} \times 3$ round En. Checking whether the bit $P_{n}\left(v_{17}^{12}\right)=y_{18}^{12}$ is balanced for each of 2^{15} key guesses, provides a filter of 2^{-1} on the space of 2^{15} keys, on average and 2^{14} keys remain. So far, 25 key bits are involved in attack (5 key bits of step 2 were already involved in previous step i.e. $s k_{17}^{13}$ and $\left.\left\{s k_{i}^{14}: i \in\{5,13,20,21\}\right\}\right)$. Now remaining keys from steps 1 and 2 should be merged properly; 5 key bits $s k_{17}^{13}$ and $\left\{s k_{i}^{14}: i \in\right.$ $\{5,13,20,21\}\}$ are the same which results in 2^{5} different keys. Then multiplied by 2^{9} and 2^{9} endured by steps 1 and 2 , respectively. So, this procedure takes a time complexity of 2^{23} (i.e. merging complexity of step 2 equals to 2^{23}) and the set of remaining keys contains 2^{23} different keys.

Step 3. We need 15 key bits $\left\{s k_{i}^{13}: i \in\{11,19,18,3\}\right\}$ and $\left\{s k_{i}^{14}: i \in\{2,6,7,10,14,15,17,18,22,23,30\}\right\}$ to calculate the bit $P_{n}\left(v_{18}^{12}\right)=y_{23}^{12}$ and the time complexity of partial decryption would be $2^{63+15} \times 3$ round En. By a filter of 2^{-1} on the space of 2^{15} keys, 2^{14} keys remain. So far, 34 key bits are involved in the attack (6 key bits of step 3 were already involved in previous steps i.e $s k_{18}^{13}$ and $\left\{s k_{i}^{14}: i \in\right.$ $\{2,10,17,18,23\}\})$. Merging 2^{14} remaining keys of step 3 and 2^{23} keys of previous steps needs a time complexity of 2^{31} (2^{6} different keys from 6 identical key bits i.e. i.e $s k_{18}^{13}$ and $\left\{s k_{i}^{14}: i \in\{2,10,17,18,23\}\right\}$, multiplied by 2^{8} and 2^{17} because of step 3 and the previous ones, respectively). Finally, 2^{31} keys remain.
Attack complexity: The partial decryption time complexity of each step is denoted in Table 5. The summation equals to

$$
T_{1} \approx 2^{63+22.375} \times \frac{3}{15} \approx 2^{83.053}
$$

Also, the total time complexity of merging the remaining keys would be $T_{2} \approx 2^{50.558}$, which is calculated by adding up the merging complexities of each step. As mentioned in Section 2, the discovery of four consecutive subkeys (i.e. $s k^{r}, s k^{r+1}, s k^{r+2}$ and $s k^{r+3}$), reveals the master key uniquely. The key recovery step guessed 63 key bits $\left(s k^{14}\right.$ and $\left\{s k_{i}^{13}\right.$: $i \in\{1,2, \ldots, 31\}\})$ and 65 key bits remain from the master key which should be guessed. Additionally, 2^{40} keys remained from the key recovery step. Therefore, the total number of master key candidates would be $2^{40+65}=2^{105}$, where brute-force takes a time complexity of $T_{3}=2^{105}$. Eventually, the total time complexity becomes

$$
T=T_{1}+T_{2}+T_{3} \approx 2^{105}
$$

The data complexity, as mentioned in Section 4, is 2^{63} chosen plaintexts. Also, the memory complexity is dominated by steps 10,11 , and 12 which needs 2^{52} bytes.

5.2 16 Rounds Attack

Since the procedure of the key recovery step for 16 round SAND-64 is similar to the 15 -round one, we only represent it in Table 6 and discuss attack complexity.

Attack complexity: The partial decryption time complexity of each step is denoted in Table 6. The summation equals to

$$
T_{1} \approx 2^{63+48.865} \times \frac{4}{16} \approx 2^{109.865}
$$

Also, the total time complexity of merging the remaining keys would be $T_{2} \approx 2^{84.219}$, which is calculated by adding up the merging complexities of each step. The key recovery step guessed 95 key bits $\left(s k^{15}, s k^{14}\right.$ and $\left\{s k_{i}^{13}: i \in\{1,2, \ldots, 31\}\right\}$) and 33 key bits remain from the master key which should be guessed. Additionally, 2^{72} keys remained from the key recovery step. Therefore, the total number of master key candidates would be $2^{72+33}=2^{105}$, where brute-force takes a time complexity of $T_{3}=2^{105}$. Eventually, the total time complexity becomes

$$
T=T_{1}+T_{2}+T_{3} \approx 2^{109.91}
$$

The data complexity, as mentioned in Section 4, is 2^{63} chosen plaintexts. Also, the memory complexity is dominated by step 6 which needs 2^{85} bytes.

6 Conclusion

In this paper, we analyzed the security of SAND-64 against integral cryptanalysis based on conventional bit-based division property. SAND is a newly proposed family of two AND-RX block ciphers SAND-64 and SAND-128, which was designed to overcome the difficulty regarding security evaluation. The attack was applied using the MILP-aided method of searching integral distinguisher proposed by Xiang et al. [13]. In this technique, firstly, division property propagation of three basic operations (copy, bitwise AND, XOR) is modeled by linear inequalities. So, a linear inequality system that can accurately describe the division property propagation of a block cipher given an initial division property, can be constructed. Secondly, by choosing an appropriate objective function, the search algorithm is converted into an MILP problem and feasible solutions to this problem determine whether a useful distinguisher exists. As a result, we presented a 12-round integral characteristic with 23 balanced bits and a data complexity of 2^{63}, which is better than what the designers claimed in the number of balanced bits (the distinguisher proposed by the designers covers 12 rounds with 1 balanced bit and a data complexity of 2^{63}). Furthermore, we provided a 15 and 16 round attack including key recovery step, resulting in time complexity of 2^{105} and $2^{109.91}$ and

Table 4. Required bits of subkeys for each balanced bit

$\begin{gathered} \text { Row } \\ \text { number } \end{gathered}$	$\mathrm{P}_{\mathrm{n}}^{-1}\left(\mathrm{y}_{\mathrm{i}}^{12}\right)$	$\left\{\mathbf{s k}_{\mathbf{i}}^{13}\right\}$	$\begin{gathered} \#\left\{\mathbf{s k}_{\mathbf{i}}^{13}\right\} \\ \text { (Bits) } \end{gathered}$	$\left\{\mathbf{s k}_{\mathbf{i}}^{14}\right.$ \}	$\begin{gathered} \#\left\{\mathbf{s k}_{\mathbf{i}}^{14}\right\} \\ \text { (Bits) } \end{gathered}$	\{skis ${ }_{\mathbf{i}}^{\mathbf{1 5}}$ \}	$\begin{gathered} \#\left\{\mathbf{s k}_{\mathbf{1}}^{15}\right\} \\ \text { (Bits) } \end{gathered}$
1	1	\{1,2,9,17, 25$\}$	5	$\begin{gathered} \{1,2,4,5,9,12,13 \\ 17,20,21,25,27,28\} \end{gathered}$	13	$\begin{gathered} \hline \hline\{0,1,2,3,4,5,6,8,9,11, \\ 12,13,14,16,17,19,20,21, \\ 24,25,26,27,28,29,30\} \end{gathered}$	25
2	2	$\{2,3,10,18,26\}$	5	$\begin{gathered} \{1,2,6,7,9,10,14,17, \\ 18,22,24,25,30\} \end{gathered}$	13	$\begin{gathered} \{1,2,3,4,5,6,7,9,10,12,13, \\ 14,15,17,18,20,21,22,25, \\ 26,27,28,29,30,31\} \\ \hline \end{gathered}$	25
3	3	$\{3,4,11,19,27\}$	5	$\begin{gathered} \{3,4,6,7,11,14,15,19 \\ 22,23,27,29,30\} \end{gathered}$	13	$\begin{gathered} \{0,2,3,4,5,6,7,8,10,11,13, \\ 14,15,18,19,21,22,23,24 \\ 26,27,28,29,30,31\} \end{gathered}$	25
4	5	$\{5,6,13,21,29\}$	5	$\begin{gathered} \{0,1,5,6,8,9,13,16 \\ 17,21,24,29,31\} \end{gathered}$	13	$\begin{gathered} \{0,1,2,4,5,6,7,8,9,10,12, \\ 13,15,16,17,20,21,23, \\ 24,25,26,28,29,30,31\} \\ \hline \end{gathered}$	25
5	6	$\{6,7,14,22,30\}$	5	$\begin{gathered} \{2,3,5,6,10,13,14, \\ 18,21,22,26,28,29\} \end{gathered}$	13	$\begin{gathered} \{0,1,2,3,5,6,7,8,9,10,11, \\ 13,14,16,17,18,21,22, \\ 24,25,26,27,29,30,31\} \\ \hline \end{gathered}$	25
6	8	\{1, 8, 9, 17, 24\}	5	$\begin{gathered} \{0,4,5,7,8,12,13,15, \\ 16,20,21,28,30,31\} \end{gathered}$	14	$\begin{aligned} & \{0,1,2,3,4,5,7,8,9,10,11, \\ & 12,13,15,16,17,18,19,20 \\ & 23,24,25,26,27,28,29,31\} \end{aligned}$	27
7	9	$\{2,9,10,18,25\}$	5	$\begin{aligned} & \{1,2,4,5,9,10,12,13, \\ & 17,18,21,25,27,28\} \end{aligned}$	14	$\begin{aligned} & \{0,1,2,3,4,5,6,8,9,10,11, \\ & 12,13,14,16,17,18,19,20 \\ & 21,24,25,26,27,28,29,30\} \end{aligned}$	27
8	10	$\{3,10,11,19,26\}$	5	$\begin{aligned} & \{1,2,6,7,9,10,14,15, \\ & 18,22,23,24,25,30\} \end{aligned}$	14	$\begin{gathered} \{1,2,3,4,5,6,7,9,10,11,12, \\ 13,14,15,17,18,19,20,21, \\ 22,25,26,27,28,29,30,31\} \end{gathered}$	27
9	12	$\{5,12,13,21,28\}$	5	$\begin{aligned} & \{0,1,3,4,8,9,11,12, \\ & 16,17,20,24,26,27\} \end{aligned}$	14	$\{0,1,3,4,5,6,7,8,9,11,12$, $13,14,15,16,19,20,21,22$, $23,24,25,27,28,29,30,31\}$	27
10	13	$\{6,13,14,22,29\}$	5	$\begin{aligned} & \{0,1,5,6,8,9,13,14, \\ & 17,21,22,24,29,31\} \end{aligned}$	14	$\{0,1,2,4,5,6,7,8,9,10,12$, $13,14,15,16,17,20,21,22$, $23,24,25,26,28,29,30,31\}$	27
11	14	$\{7,14,15,23,30\}$	5	$\begin{gathered} \{2,3,5,6,10,11,13,14 \\ 18,19,22,26,28,29\} \end{gathered}$	14	$\begin{aligned} & \{0,1,2,3,5,6,7,8,9,10,11, \\ & 13,14,15,16,17,18,21,22, \\ & 23,24,25,26,27,29,30,31\} \\ & \hline \end{aligned}$	27
12	16	\{16, 1, 9, 17\}	4	$\begin{gathered} \{0,4,5,8,12,13, \\ 16,20,21,23,28\} \end{gathered}$	11	$\begin{gathered} \{0,1,3,4,7,8,9,11,12,15,16 \\ 17,18,19,20,23,24,26,27,31\} \end{gathered}$	20
13	17	$\{18,17,2,10\}$	4	$\begin{gathered} \{1,2,5,9,10,13, \\ 17,18,20,21,25\} \end{gathered}$	11	$\begin{aligned} & \{0,1,2,4,5,8,9,10,12,13,16, \\ & 17,18,19,20,21,24,25,27,28\} \end{aligned}$	20
14	18	$\{11,19,18,3\}$	4	$\begin{aligned} & \{2,6,7,10,14,15, \\ & 17,18,22,23,30\} \end{aligned}$	11	$\begin{aligned} & \{1,2,3,5,6,9,10,11,13,14,17 \\ & 18,19,20,21,22,25,26,28,29\} \end{aligned}$	20
15	20	$\{13,21,20,5\}$	4	$\begin{gathered} \{0,1,4,8,9,12,16, \\ 17,19,20,24\} \end{gathered}$	11	$\begin{aligned} & \{0,3,4,5,7,8,11,12,13,15,16 \\ & 19,20,21,22,23,27,28,30,31\} \end{aligned}$	20
16	21	\{22, 21, 6,14$\}$	4	$\begin{gathered} \{1,5,6,9,13,14,16, \\ 17,21,22,29\} \end{gathered}$	11	$\{0,1,4,5,6,8,9,12,13,14,16$, $17,20,21,22,23,24,28,29,31\}$	20
17	22	$\{15,23,22,7\}$	4	$\begin{gathered} \{2,3,6,10,11,14,18, \\ 19,21,22,26\} \end{gathered}$	11	$\begin{aligned} & \{1,2,5,6,7,9,10,13,14,15,16, \\ & 17,18,21,22,23,24,25,29,30\} \end{aligned}$	20
18	25	\{24, 1, 9, 25\}	4	$\begin{aligned} & \{4,5,7,12,13,15,20, \\ & 21,25,27,28,30,31\} \end{aligned}$	13	$\begin{aligned} & \{0,1,2,3,4,5,6,8,9,10,11, \\ & 12,13,14,16,17,18,19,20 \\ & 24,25,26,27,28,29,30,31\} \end{aligned}$	27
19	26	$\{26,25,2,10\}$	4	$\begin{gathered} \{1,2,4,9,10,12,17, \\ 18,24,25,26,27,28\} \end{gathered}$	13	$\begin{gathered} \hline\{1,2,3,4,5,6,7,9,10,11,12, \\ 13,14,15,17,18,19,20,21, \\ 25,26,27,28,29,30,31\} \\ \hline \end{gathered}$	26
20	27	$\{11,27,26,3\}$	4	$\begin{aligned} & \{1,6,7,9,14,15,22, \\ & 23,24,25,27,29,30\} \end{aligned}$	13	$\begin{gathered} \{0,2,3,4,5,6,7,8,10,11,12, \\ 13,14,15,18,19,20,21,22, \\ 24,25,26,27,28,29,30,31\} \\ \hline \end{gathered}$	27
21	29	$\{13,29,28,5\}$	4	$\begin{gathered} \{0,1,3,8,9,11,16,17, \\ 24,26,27,29,31\} \end{gathered}$	13	$\begin{aligned} & \{0,1,2,4,5,6,7,8,9,10,12, \\ & 13,14,15,16,20,21,22,23, \\ & 24,25,26,27,28,29,30,31\} \end{aligned}$	27
22	30	$\{30,29,6,14\}$	4	$\begin{gathered} \{0,5,6,8,13,14,21, \\ 22,24,28,29,30,31\} \end{gathered}$	13	$\begin{gathered} \{0,1,2,3,5,6,7,8,9,10,11, \\ 13,14,15,16,17,21,22,23, \\ 24,25,26,27,29,30,31\} \end{gathered}$	26
23	31	$\{15,31,30,7\}$	4	$\begin{aligned} & \{2,3,5,10,11,13,18, \\ & 19,25,26,28,29,31\} \end{aligned}$	13	$\begin{aligned} & \{0,1,2,3,4,6,7,8,9,10,11, \\ & 12,14,15,16,17,18,22,23, \\ & 24,25,26,27,28,29,30,31\} \end{aligned}$	27

Table 5. Key recovery of 15 -round attack

Step	$P_{n}^{-1}\left(y_{i}^{12}\right)$	\#Key bits required	\#Total guessed key bits	Time complexity	\#Total keys after filter
1	16	15	15	2^{63+15}	2^{14}
2	17	15	25	2^{63+15}	2^{23}
3	18	15	34	2^{63+15}	2^{31}
4	20	15	40	2^{63+15}	2^{36}
5	21	15	44	2^{63+15}	2^{39}
6	22	15	50	2^{63+15}	2^{44}
7	25	17	54	2^{63+17}	2^{47}
8	26	17	55	2^{63+17}	2^{47}
9	27	17	56	2^{63+17}	2^{47}
10	29	17	58	2^{63+17}	2^{48}
11	30	17	59	2^{63+17}	2^{48}
12	31	17	60	2^{63+17}	2^{48}
13	1	18	60	2^{63+18}	2^{47}
14	2	18	60	2^{63+18}	2^{46}
15	3	18	61	2^{63+18}	2^{46}
16	5	18	61	2^{63+18}	2^{45}
17	6	18	61	2^{63+18}	2^{44}
18	8	19	62	2^{63+19}	2^{44}
19	9	19	62	2^{63+19}	2^{43}
20	10	19	62	2^{63+19}	2^{42}
21	12	19	63	2^{63+19}	2^{42}
22	13	19	63	2^{63+19}	2^{41}
23	14	19	63	2^{63+19}	2^{40}

Table 6. Key recovery of 16 -round attack

Step	$P_{n}^{-1}\left(y_{i}^{12}\right)$	\#Кеу bits required	\#Total guessed key bits	Time complexity	\#Total keys after filter
1	1	43	43	2^{63+43}	2^{42}
2	2	43	61	2^{63+43}	2^{59}
3	3	43	72	2^{63+43}	2^{69}
4	5	43	81	2^{63+43}	2^{77}
5	6	43	86	2^{63+43}	2^{81}
6	8	46	88	2^{63+46}	2^{82}
7	9	46	88	2^{63+46}	2^{81}
8	10	46	88	2^{63+46}	2^{80}
9	12	46	90	2^{63+46}	2^{81}
10	13	46	90	2^{63+46}	2^{80}
11	14	46	92	2^{63+46}	2^{81}
12	16	35	93	2^{63+35}	2^{81}
13	17	35	93	2^{63+35}	2^{80}
14	18	35	93	2^{63+35}	2^{79}
15	20	35	94	2^{63+35}	2^{79}
16	21	35	94	2^{63+35}	2^{78}
17	22	35	94	2^{63+35}	2^{77}
18	25	44	94	2^{63+44}	2^{76}
19	26	43	94	2^{63+43}	2^{75}
20	27	44	94	2^{63+44}	2^{74}
21	29	44	94	2^{63+44}	2^{73}
22	30	43	94	2^{63+43}	2^{72}
23	31	44	95	2^{63+44}	2^{72}

memory complexity of 2^{52} and 2^{85} bytes, respectively. The results are also summarized in Table 1. Notably, the practical security of full-round SAND-64 is not
dramatically gotten to risk by the proposed attack.

References

[1] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A block cipher for low energy. In International Conference on the Theory and Application of Cryptology and Information Security, pages 411436. Springer, 2015.
[2] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. Present: An ultralightweight block cipher. In International workshop on cryptographic hardware and embedded systems, pages 450-466. Springer, 2007.
[3] Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh. Craft: lightweight tweakable block cipher with efficient protection against dfa attacks. IACR Transactions on Symmetric Cryptology, 2019(1):5-45, 2019.
[4] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128bit blockcipher clefia. In International workshop on fast software encryption, pages 181-195. Springer, 2007.
[5] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The skinny family of block ciphers and its lowlatency variant mantis. In Annual International Cryptology Conference, pages 123-153. Springer, 2016.
[6] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. Gift: a small present. In International conference on cryptographic hardware and embedded systems, pages 321-345. Springer, 2017.
[7] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and Louis Wingers. The simon and speck families of lightweight block ciphers. cryptology eprint archive, 2013.
[8] Shiyao Chen, Yanhong Fan, Ling Sun, Yong Fu, Haibo Zhou, Yongqing Li, Meiqin Wang, Weijia Wang, and Chun Guo. Sand: an and-rx feistel lightweight block cipher supporting s-box-based security evaluations. Designs, Codes and Cryptography, 90(1):155-198, 2022.
[9] Lars Knudsen and David Wagner. Integral cryptanalysis. In International Workshop on Fast Software Encryption, pages 112-127. Springer, 2002.
[10] Yosuke Todo. Structural evaluation by gener-
alized integral property. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 287314. Springer, 2015.
[11] Yosuke Todo. Integral cryptanalysis on full misty1. Journal of Cryptology, 30(3):920-959, 2017.
[12] Yosuke Todo and Masakatu Morii. Bit-based division property and application to simon family. In International Conference on Fast Software Encryption, pages 357-377. Springer, 2016.
[13] Zejun Xiang, Wentao Zhang, Zhenzhen Bao, and Dongdai Lin. Applying milp method to searching integral distinguishers based on division property for 6 lightweight block ciphers. In International Conference on the Theory and Application of Cryptology and Information Security, pages 648678. Springer, 2016.
[14] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and linear cryptanalysis using mixed-integer linear programming. In International Conference on Information Security and Cryptology, pages 57-76. Springer, 2011.
[15] Wenying Zhang and Vincent Rijmen. Division cryptanalysis of block ciphers with a binary diffusion layer. IET Information Security, 13(2):8795, 2019.
[16] Ling Sun, Wei Wang, and Meiqin Q Wang. Milpaided bit-based division property for primitives with non-bit-permutation linear layers. IET Information Security, 14(1):12-20, 2020.
[17] Kai Hu, Qingju Wang, and Meiqin Wang. Finding bit-based division property for ciphers with complex linear layers. IACR Transactions on Symmetric Cryptology, pages 396-424, 2020.
[18] Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Milp-aided method of searching division property using three subsets and applications. In International Conference on the Theory and Application of Cryptology and Information Security, pages 398-427. Springer, 2019.
[19] Senpeng Wang, Bin Hu, Jie Guan, Kai Zhang, and Tairong Shi. Exploring secret keys in searching integral distinguishers based on division property. IACR Transactions on Symmetric Cryptol-
ogy, pages 288-304, 2020.
[20] http://www.gurobi.com/.

Atiyeh Mirzaie received the B.Sc. and M.Sc. degrees in Electrical Engineering from Sharif University of Technology, Tehran, Iran, in 2021 and 2023 , respectively. She is currently a Ph.D. candidate in Electrical Engineering-Communication Systems and Networks at Sharif University of Technology. Her main areas of research interest cover Cryptography and Secure Communication with an emphasis on Symmetric Key Cryptanalysis, Automated Attacks of Block Ciphers, and IoT Security.

Siavash Ahmadi received the B.Sc., M.Sc., and Ph.D. degrees in Electrical Engineering from Sharif University of Technology, Tehran, Iran, in 2012, 2014, and 2020, respectively. He is currently an Assistant Professor at the Electronics Research Center at the Sharif University of Technology. His special fields of interest include Cryptology, wireless, Cellular Networks, the Internet of Things, and Artificial Intelligence, with an emphasis on security.

Mohammad Reza Aref received the B.Sc. degree from the University of Tehran, Iran, in 1975, and the M.Sc. and Ph.D. degrees from Stanford University, Stanford, CA, USA, in 1976 and 1980, respectively, all in Electrical Engineering. He returned to Iran in 1980 and was actively engaged in academic affairs. From 1982 to 1995, he was a Faculty Member at the Isfahan University of Technology. He has been a professor of Electrical Engineering at the Sharif University of Technology, Tehran, since 1995 and a distinguished professor since 2013. His current research interests include areas of Communication Theory, Information Theory, Cryptography, and Statistical Signal Processing.

[^0]: * Corresponding author.
 ${ }^{* *}$ The ISCISC'2023 program committee effort is highly acknowledged for reviewing this paper.
 Email addresses: atiyeh.mirzaie@ee.sharif.edu,
 s.ahmadi@sharif.edu, aref@sharif.edu

 ISSN: 2008-2045 © 2023 ISC. All rights reserved.

