The ISC Int'l Journal of
Information Security

November 2022, Volume 14, Number 3 (pp. 61-69)

http://www.isecure-journal.org

PRESENTED AT THE ISCISC’2022 IN RASHT, IRAN.

Towards a Formal Approach for Detection of Vulnerabilities in the

Android Permissions System *

Amirhosein Sayyadabdi !,

Behrouz Tork Ladani ™, and Bahman Zamani?

L Faculty of Computer Engineering, Department of Software Engineering, University of Isfahan, Isfahan, Iran.
2MDSE Research Group, Department of Software Engineering, University of Isfahan, Isfahan, Iran.

ARTICLE INFO.

ABSTRACT

Keywords: D1

A ng;‘gl drS ecurity, Formal Methods, Android is a widely used operating system that employs a permission-based
Verification access control model. The Android Permissions System (APS) is responsible
Type: for mediating application resource requests. APS is a critical component of

Research Article

doi:
10.22042/isecure.2022.14.3.7

dor:
20.1001.1.20082045.2022.14.3.

the Android security mechanism; hence, a failure in the design of APS can
potentially lead to vulnerabilities that grant unauthorized access to resources
by malicious applications. In this paper, we present a formal approach for
modeling and verifying the security properties of APS. We demonstrate the

7.1 usability of the proposed approach by showcasing the detection of a well-known

vulnerability found in Android’s custom permissions.

© 2022 ISC. All rights reserved.

1 Introduction

ndroid is the dominant end-user operating system
Acurrently available on the market [1]. Different
devices, e.g., smart home appliances, TVs, and mobile
phones employ Android to manage their hardware and
software resources and to serve their users. Android
uses the concept of permissions to manage the users’
access to resources. Applications can access resources
if and only if they obtain appropriate permissions
either via users’ consent or by declaring permissions
in their source code.

The Android Permissions System (APS) is a criti-
cal component of Android’s security mechanism that
protects private user data and sensitive system re-
sources [2]. A flaw in the design or implementation

* Corresponding author.

* The ISCISC’2022 program committee effort is highly ac-
knowledged for reviewing this paper.

Email addresses: ahsa@eng.ui.ac.ir, ladani@eng.ui.ac.ir,
zamani@eng.ui.ac.ir

ISSN: 2008-2045 (©) 2022 ISC. All rights reserved.

of APS can result in a violation of the security of
Android and potentially leads to critical vulnerabil-
ities [3]. APS aims to prevent unauthorized access
to sensitive resources and users’ private data in An-
droid [4]. The Android permissions system has a set
of operations that applications use for gaining access
to resources. The complexity of the operations and
their implementations by the Android platform can
lead to potential security flaws and vulnerabilities.

There are many cases so far that researchers have
found permission-related issues in Android, and in
response, Google has introduced security patches [3].
Due to the complexity of APS, in some cases, the
patches have not been successful in terminating the
vulnerabilities, and the same vulnerabilities with dif-
ferent attack flow remained exploitable [3], [5].

APS continuously evolves along with the Android
platform [2]. Attackers target the shortcomings of
APS to their advantage [2]. In practice, malicious
applications can gain unauthorized access to system
resources and users’ private data because of the APS

ISeﬂure@

62

Towards a Formal Approach for Detection of Vulnerabilities in the APS — Sayyadabdi, Ladani, and Zamani

issues. Formally specifying the access control mecha-
nism in Android gives a deeper understanding of the
operating system, and it allows us to perform a thor-
ough investigation of APS and analyze its security
[6]. Many APS issues are design flaws that require
”system-wide reasoning,” and conventional methods
such as testing and static analysis are not very use-
ful in detecting the flaws because those methods are
more appropriate for detecting issues in individual
components [4].

The main problem that we are trying to address is
to validate the security of APS through the formal
specification of the behavior of APS and verification
of the security properties of APS. This paper presents
a behavioral model of APS and specifies a general se-
curity property that captures the essence of a known
vulnerability. We present a simple model that cap-
tures APS-relevant behaviors, which helps detect a
design flaw in custom permissions. We then specify a
set of operations and define a security property that
implies the permission vulnerability. Finally, we ver-
ify the property using the Temporal Logic Checker
(TLC).

The contributions of the paper can be summarized
as follows: (1) presenting a formal approach for mod-
eling the APS, (2) modeling the behavior of APS
as a case study for the detection of vulnerabilities,
and (3) verifying a security property that reveals a
vulnerability of custom permissions.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly introduce the required background
information. In Section 3, we discuss the related pa-
pers. In Section 4, we present our formal approach,
and in Section 5, we describe our implementation of a
relevant case study, and we evaluate the usefulness of
our approach. Finally, Section 6 concludes the paper.

2 Background and Motivation

APS has evolved considerably compared to its initial
version, e.g., runtime permissions were introduced in
Android 6 [1]. Users now install applications without
having to consent to any specific permissions, and
APS is responsible for prompting the user and ask-
ing for permission whenever the application requests
access.

Android applications cannot directly request scarce
resources (i.e., sensitive resources). Instead, an appli-
cation first asks the Binder Inter-Process Communica-
tion (Binder IPC) module in the Security-Enhanced
Linux (SELinux) kernel (Figure 1). The Binder IPC
then carries out the task of communicating with the
Android API libraries until the request for the re-
source is granted.

1S¢0ured)

The set of permissions used to be static and prede-
fined by Android. However, now applications are al-
lowed to define custom permissions for their internal
resources, such as databases and content providers.
There was a design oversight in the custom permis-
sions of Android 6 that resulted from the ambiguity
of precedence between different custom permissions
with the same name that have different protection
levels, and the order of installation of the applications
determines the actual permission check [4].

Android 10 has made another leap forward and
introduced the concept of Non-Binary Context De-
pendent (NBCD) permissions. APS is now responsi-
ble for taking the current context of the device into
account as well. Context is a general term for any
specific situation on the device. For example, APS
should consider whether an app is running on the
mobile screen and check whether an app has used its
permissions for a specific period.

Android 11 has introduced One-Time permissions,
which are particular types of temporal NBCDs. The
user is no longer forced to either accept or decline a
permission request in perpetuity; instead (s)he can
allow the app to access the resource only once.

The evolution of APS has raised the question of
users’ convenience at the cost of security violations by
malicious applications. Researchers have attempted
and succeeded at formally specifying and verifying
the security of APS before Android 11, but Google
keeps adding new features to APS in almost every
major release. Therefore, it would be helpful if we
could pave the way for researchers who intend to an-
alyze the effects of tweaking the APS model through
modification or the addition of features.

Formal methods have been successful in modeling
the behavior of APS, in specification and verification
of the security properties of APS, and the detection
of flaws and vulnerabilities in APS [3], [4], [6-11].

The recent evolution of Android mandates system-
wide reasoning of the new features of APS, which is
a nontrivial problem because it requires a compre-
hensive introduction of temporal security properties
and verification of those properties. Therefore, in this
paper, we present a comprehensive formal approach
for analyzing the security of APS, which is presented
in Section 4.

The motivation for this work is to support the con-
stant evolution of APS and to facilitate the process of
formally specifying the security properties of APS and
verifying the security properties via model checking.

The prevalence of Android as the world’s most
widely-deployed, end-user-focused operating system

November 2022, Volume 14, Number 3 (pp. 61-69)

has led to the introduction of new features and ca-
pabilities in Android. The new features of APS are
not trivial to specify with conventional methods and
approaches that previous works have provided. Ex-
isting approaches fail to support the evolution and
upgrades of the permissions system because of the
complexity of the new features.

3 Related Work

Formal methods have been applied successfully in the
analysis and verification of the security aspects of
APS [3], [4], [6], [12]. Due to the rapid evolution rate of
Android as the predominant mobile operating system,
the permissions system also evolved to provide users
with ease of use and enhanced security concerning
sensitive resources such as the device’s microphone
and camera. The challenge is that sometimes the
users’ convenience comes at the cost of compromised
system security.

Tuncay et al. [3] proposed a new modular design
named Cusper for the Android permission model to
address the shortcomings of the APS. Cusper sep-
arates the management of the system and custom
permissions. The correctness of Cusper is validated
by: (1) Introducing the first formal model of Android
runtime permissions, (2) Extending it to describe
Cusper, and (3) Formally verifying the required prop-
erties. Cusper is implemented in Android to prove its
practicality.

Talegaon et al. [13, 14] took on the path of formal
methods as well, but they have not employed auto-
matic verification (e.g., via model checking). Instead,
the authors relied on testing techniques based on the
specification that they had provided.

Bagheri et al. [4] pointed out that prior works
on the APS security analysis had primarily focused
on careful, manual scrutiny. The authors provided a
behavioral model of Android in terms of architectural-
level operations via system-level reasoning.

We categorized the literature based on six criteria:

(1) Incorporation of the APS source code in the
model,

(2) Consideration of dynamic permissions,

(3) Formal language used for modeling,

(4) Evaluation method: (1) testing, (2) simulation,
(3) formal proofs, (4) model checking,

(5) Android version.

Table 1 presents a brief taxonomy of the related
work. We have selected a group of papers that are re-
lated to our work in terms of the solution techniques,
the evaluation methods, and the APS features cov-
ered in the study. Complex features such as One-Time
Permissions (introduced in Android 11) and Non-

Android Service
Android App
Android API

Android API Libraries
Libraries 4

v

Android Native
Libraries

x .

Hardware
Abstraction Layer

\
\ BinderIPC
\

SELinux Kernel
\‘I Scarce Resource |>
Hardware

Figure 1. The Android system model for accessing resources
(16]

Binary Context-Dependent Permissions (introduced
in Android 10) [1] have not been formally studied
yet. As of Android 10, the APS functionalities have
moved into a separate package named ” Permission-
Controller,” therefore, APS is no longer a set of rules
that should always hold, and it is more beneficial to
model the APS as an independent state machine.

A critical drawback of previous works is the in-
ability to support the development of APS as a
component-based system. Since APS is a complex
system, it is best to decompose it into smaller sub-
systems. For example, the principles of component-
based software design [15] can come in handy when
modeling the different parts of APS; however, these
principles have not been used extensively by previous
works.

4 The Proposed Approach

An overview of our approach is depicted in Figure 2.
The procedure begins by analyzing the source code of
Android. The analysis phase results will form a set of
interfaces that Android applications use to interact
with APS. In the case of ambiguities in the behavior
of APS, the source code of Android will be built and
deployed to observe the actual behavior using the
system logs whenever necessary.

We present a general approach that is appropri-
ate for supporting the constant changes that are in-
troduced into Android. Previous works fall short of
providing such a general approach because the re-
cent significant changes in Android 10 and 11 have
occurred in only a few years. The system model can
then be specified in TLA™, which serves as a refer-
ence for system behavior. Finally, the results of the
model checker and violated properties will be used to
detect flaws and vulnerabilities. As the threat model
for this paper, we consider a malicious developer (i.e.,
attacker) who may distribute malicious applications
on public stores such as Google Play. The attacker is
aware that an uninformed developer has declared a

ISel}ure@

Table 1. A taxonomy of the related work

Evaluation Methods

[
g
O & 2
g RS
=L B T = [=] E
o g o o SEERe] o)
o8 Ea £ 5 8 =
Work n & 5 Test O = S -
A~ = = & =
< 8 & 4 5} g e
g4 3 T 0 <
§ & =] g
S £ E = <
o B)
g A E
<
m
Talegaon et al. [6, 14]v v - - Vv - - - 5
Almomani et al. [10] - v/ - - - - - - 11
Alepis et al. [17] - - - - - - - 6

)
Tuncay et al. [3] \/\/io NG v’ 6
+
Sadeghi et al. [12] - \/jx/ v V- - >6
=
Betarte et al. [18] - - g\/ v v’ 6
ES
Bagheri et al. [4, 19] - \/EZ NG - 6
Betarte et al. [20] - - § - - - - v’ 6
Betarte et al. [21] - - §\/ v -V 6
:
X. He [22] -V o - - 6
£
+
Sadeghi [23] -V 3 NG a4 - 6
F
Betarte et al. [9] - - §\/ - - - v’ 5
[]
Schmerl et al. [11] - - E - - Vv - 5
Armando et al. [24] - - - - - - - v <5
Fragkaki et al. [25] - - - - v - - v’ 2

privileged custom permission with a specific name.

TLAT is a formal language for specifying digital
systems and complex models. TLAT supports the
modeling of large, complex systems with hierarchical
decomposition. Safety properties, liveness properties,
and fairness properties are expressible in TLAT, and
the TLC model checker can verify the specified prop-
erties. Every TLA™ specification consists of an initial
state and a formula that specifies all the possible next
states. The properties are expressible in TLA™ as well.
The TLC model checker then executes all possible
paths and checks whether or not the specified prop-
erties are satisfied. The flexibility and expressiveness
of TLA™T make it a convenient choice for specifying
APS, which is a complex subsystem of Android.

Figure 3 presents a formal specification of the An-
droid permissions system in TLAT. A set of appli-
cations are allowed to perform three operations: (1)

1S¢0ured)

Towards a Formal Approach for Detection of Vulnerabilities in the APS — Sayyadabdi, Ladani, and Zamani

get installed before the other application, (2) ask for
permission, and (3) be granted the requested permis-
sions.

Analysis of the source code plays an essential role
in our approach because it contributes to the model’s
fidelity by ensuring that the model adheres to the
actual behaviors of APS. In the meantime, the TLAT
language helps abstract the unnecessary implemen-
tation details of the source code. The security prop-
erties can be extracted from three sources: official
documentation, related papers that model the per-
missions system, and the source code of Android. It is
important to note that our approach does not rely on
security properties that are based on implementation
or vulnerability details.

We assume that two different applications define
two custom permissions with the same name. One
application is malware, which defines custom permis-
sion with a ”normal” protection level. The other ap-
plication is the victim, and it also defines custom per-
mission with the same name but with a ”dangerous”
protection level. As a result of the vulnerability in
APS custom permissions [4], the malware is allowed
to access the resource that is protected by the victim
application because it was installed before the victim.

Our approach is based on studying and observing
the behavior of APS. We analyze the source code of
Android to identify the interfaces along with their
inputs and outputs. We then investigate the inter-
faces to discover the relationships between APS and
other system components and applications. Finally,
we present a behavioral model that captures the
essence of the permissions system in a verifiable man-
ner. Figure 4 presents our method for verifying the
security properties of the Android permissions system
via model checking.

The specification in Figure 3 is a representation of
APS as an independent state machine that interacts
with applications. The specification is available on
GitHub ! . It consists of an initial state for a group of
applications, and each application can perform sev-
eral operations in any possible order. The operations
are specified as atomic actions in TLAT that tran-
sitions the system from its current state to the next
state. This method for defining actions is most use-
ful when combined with the hierarchical decomposi-
tion technique, which can lead to a component-based
model that is also extensible.

Our work takes advantage of the techniques of
Component-Based Software design [15]. We present a
new approach for modeling and verifying the Android

1 https://github.com/sayyadabdi/aps-
verification/blob/main/APS'CS1.tla

November 2022, Volume 14, Number 3 (pp. 61-69)

| Analyze the source code of Android |
v

| Study the interfaces of APS |
v

Build the source code

v

| |

| Observe through debugging |
v

| Design a TLA" model |
4

| Specify the security properties |

| |

| |

| |

v
Verify the properties
2
Search for vulnerability candidates
v

Confirmation of vulnerabilities

Figure 2. The steps of our formal approach

MODULE APS_C§1 —————————————————
CONSTANT APP

VARIABLE askedPerms, grantedPerms, alreadylnstalled

ApsTypeOK £ A askedPerms € [APP — {"NOR", "DAN", “"}]
A grantedPerms € [APP — {"NOR", “DAN", ""}]
A alreadylnstalled € [APP — {0, 1}]

Apslnit 2 A grantedPerms = [r € APP — ™)
A askedPerms = [r € APP > ']
A alreadyInstalled = [r € APP ()

InstallOrder(r) 2 V72 € APP : A alreadylnstalled[r2] = 0
A alreadylnstalled = [alreadyInstalled EXCEPT |[r] = 1]
N\ UNCHANGED (askedPerms, grantedPerms)

A

Ask(r) = Adp e {“NOR", "DAN"} : askedPerms' = [askedPerms EXCEPT ![r] = p|
AN UNCHANGED (grantedPerms, alreadylnstalled)
Grant(r) 2 A (askedPerms|r] = "NOR" V alreadynstalled[r] = 1)
A grantedPerms’ = [grantedPerms EXCEPT ![r] = “DAN"|
A UNCHANGED (askedPerms, alreadylnstalled)

ApsNest 2 37 € APP : InstallOrder(r) v Ask(r) Vv Grant(r)

ApsConsistent = =37 € APP: A askedPerms|r] = "NOR"
A grantedPerms|r] = "DAN"

ApsSpec E ApsInit A D[A[A.s]\lr:rt]g,m,wmmw
THEOREM ApsSpec = O(ApsTypeOK A ApsConsistent)
L

\ * Modification History
* Last modified Tue May 24 21:32:08 TRDT 2022 by AmirHossein

Figure 3. The TLA™ specification of the behavior of APS

permissions system by investigating the source code
of Android along with the official documentation and
executing the source code of Android, which can help
resolve any possible ambiguities in the documenta-
tion. We also take advantage of specifying security
properties at a high level in a general manner, which
can help detect unknown vulnerabilities.

We take the Android’s source code, the official doc-
umentation, and the list of known vulnerabilities to
detect the essential features of APS. We specify the
security properties as TLA™ formulas that the TLC
model checker would check. The results of the model-
checking process are then investigated for the detec-
tion of violated properties. The sequence of states
that lead to a violation can then be used to identify
the events that caused the violation, which can help
detect flaws.

Official Android Source
Documents

Code
High-Level
Modeling

Security
Requirements

TLC Model Checker

Violated Properties

Event Design
Traces Flaws

¥

Confirmation of the Detection of ‘

Figure 4. Our approach for verification of security properties

ApsConsistent = <31 € APP : A ashedPerms[r] = "NOR"
A grantedPerms(r| = “DAN"

Figure 5. A security property of the permissions system

5 Implementation and Evaluation

To showcase our approach’s effectiveness and sound-
ness, we have implemented a proof-of-concept by veri-
fying a case study of a known vulnerability in custom
permissions in Android 6. We modeled the APS in
TLAT, and we specified a general security property
that should be satisfied by the APS model. We spec-
ify the security as the following statement (Figure 5):

ApsConsistent = ”No request for a normal
permission may lead to obtaining a dangerous
permission.”

If the ApsConsistent property gets violated due
to an APS operation or decision, then the system’s
security is also considered violated. As a result, the
traces of the TLC model checker will show the exact
order of operations that lead to the violation, which
can help identify the original vulnerability.

We show that our approach for formal specification
and verification of the security of APS is useful and
sound for detecting flaws in the design of a basic
permissions system. Our implementation of the basic
APS model yields an easy-to-read specification that
helps detect a known vulnerability in the Android’s
custom permissions.

It is important to note that the security property
ApsConsistent is a general property that does not
imply any information about any vulnerabilities or
design flaws. It is a prominent security property that
one would expect of APS. The TLC model checker
instead will come in handy, and it shows us how the
property got violated. The TLC’s explanation helps
detect any possible source of error in the permissions

system, which is the benefit of modeling the APS as
an independent entity that facilitates the verification
of simple security properties against the specification.

We have specified a general property (ApsConsis-
tent) that does not convey information about the vul-
nerability. However, with the help of the TLC model
checker and analyzing the sequence of events, we can
detect the vulnerability in APS, which is an advan-
tage of specifying the system’s behavior as an inde-
pendent state machine in a formal language. The rea-
son is that the model checker can traverse through all
possible behaviors of the specified system and check
whether or not a set of specified properties (security
properties) are satisfied. The model checking results
then may help detect previously unknown flaws and
vulnerabilities because the properties are agnostic
about the details of the vulnerabilities.

An essential advantage of our approach is the tech-
nique for resolving the ambiguities in either the An-
droid’s source code or the official documentation. We
employ the technique of observation-based modeling
by building the source code of Android, which allows
the debugging and the tweaking of the source code
and logging of helpful information that may help re-
solve the ambiguities.

Another approach would be to neglect the APS
ambiguities, but our approach is designed to produce
a model that adheres to the underlying system. Ob-
serving the phenomena being modeled is a useful ap-
proach for gaining a more profound understanding of
the ongoing events in the environment, resulting in a
useful model.

We demonstrate the applicability of our approach
to detecting vulnerabilities without having to specify
the vulnerabilities beforehand, which is particularly
useful for dealing with unknown flaws because the
TLC model checker helps by checking all possible sce-
narios, which could lead to the detection of unknown
vulnerabilities. The generality of properties is a key
feature of our approach.

The TLC model checker traverses all possible se-
quences of states that result from applying the APS
operations. TLC then checks whether the specified
security property holds over all possible paths. If a
property gets violated, then TLC will report an error
(Figure 5, Figure 6). TLC also provides a statistical
result based on the total number of reached states
and the diameter of the traversal graph. The execu-
tion trace reported by TLC shows the order of opera-
tions that have taken place until the security property
ApsConsistent is violated. The security property is
specified as a safety property, which should hold in all
possible model executions. Specifying security prop-
erties as safety properties is a useful way of verifying
the security of APS.

1S¢0ured)

Towards a Formal Approach for Detection of Vulnerabilities in the APS — Sayyadabdi, Ladani, and Zamani

G TLC Errors 3

Model_1

Invariant ApsConsistent is wiolated.

Figure 6. TLC report on the violation of the security property

The advantage of formally specifying the permis-
sions system in a formal language is that it provides
a deeper understanding of the existing system and
helps with performing a security analysis of the per-
missions subsystem of Android responsible for man-
aging applications’ access to resources [6].

Complex systems such as APS require system-wide
reasoning to ensure their correctness. While modeling
the permissions system as a state machine can be
costly and complex, it can still be useful for analyzing
the desired security properties of APS and detecting
the flaws that otherwise could not be detected. The
comprehensiveness results from exhaustive analysis
through verification via model checking a security
property that is expected to be true in all possible
system behaviors.

While software testing is a common practice in the
industry, it is not entirely adequate when verifying the
security of critical system components such as APS
[3]. We chose the TLA™T language to model the APS
behavior because it facilitates a comprehensive formal
analysis of the security of such a complex system.

Complex systems require system-wide reasoning
concerning their correctness; therefore, we modeled
the permissions system as a high-level abstract entity
that performs several operations in the operating sys-
tem and interacts with applications. The results led
to the detection of a known custom permission vul-
nerability in Android 6, which shows the effectiveness
of our approach.

The TLAT language supports the concept of a
theorem (Figure 8), which is a statement that the
TLC model checker can check effectively. After the
successful termination of TLC with no reported errors,
we can assume that the theorem is correct and there
are no violations of the specified properties.

There is also the option of specifying the system
using the PlusCal algorithm language. PlusCal is eas-
ier to read and resembles the syntax of programming
languages. Specifications written in PlusCal will be
automatically translated into TLAT, which can also
be used to feed the TLC model checker because the
security properties are still written in TLA™.

The process of extending the APS specification
includes the identification of other operations that are
implemented by the Android platform. Since TLAT

November 2022, Volume 14, Number 3 (pp. 61-69)

® Error-Trace Exploration O

Error-Trace BT B
Name Value -
8 askedPerms <<"NOR", "'=>
8 grantedPerms ", e
v & <Grantline 21, col 13to State (num = 4)
@ alreadylnstalled =<1,0>>
= askedPerms <<"NOR", "'>>

= grantedPerms <<"DAN", ">>

+ Select 2 line in Error Trace to show its “
value here.

+ Double-click on 2 line to ge to

corresponding action in spec — or while

haldine down COTBT. fo an fo the aricinal hd

Figure 7. An execution trace reported by TLC

ApsSpec = ApsInit A O[ApsNewt] grantedPerms

THEOREM ApsSpec = O(ApsTypeOK N ApsConsistent)

Figure 8. A theorem to be verified using the TLC model
checker

supports hierarchical decomposition, we can model
separate parts of APS as independent components.

By designing the basic model of APS as a
component-based artifact, we achieve the goal of
extensibility that will be useful for upgrading the
model to adhere to the next features of Android.

The principles of component-based software design
[15] are applicable as well because we can implement
the same ideas in our formal model. The ultimate
advantage of designing a component-based model of
APS is that we can also build a framework that fa-
cilitates the modeling of future versions of Android.
Our approach is designed to support the future evo-
lution and upgrades of the Android operating system,
which is a distinguishing feature compared with other
existing approaches.

6 Conclusion and Future Work

The Android permissions system (APS) is a critical
component of the Android operating system. The
complexity of APS mandates system-wide reasoning
and investigation of the underlying platform. Present-
ing a formal approach for modeling and verifying APS
is useful for supporting future versions of Android
and verifying its security properties.

The complexity of the permissions system now re-
quires support for extending the model in the future.
One way of supporting the extensibility of the model
is to follow well-known software engineering tech-
niques, such as component-based design principles,
which we employed in our approach via the support
of the TLA™ formal language for hierarchical decom-
position.

We presented a new approach for formal specifi-
cation and verification of the security properties of
APS. We also presented a basic model of custom per-

missions in APS. We then used the model to verify a
general security property, which led to the detection
of an existing vulnerability.

We showed that our approach yields a basic model
that can help detect a known vulnerability by verify-
ing a general security property that did not convey
any information about the vulnerability itself. We
showed the effectiveness of our approach in finding
flaws and detecting design vulnerabilities in the per-
missions system, which is useful because it can also de-
tect unknown vulnerabilities since the model checker
traverses all possible behaviors of the specification.

Our formal approach is designed to result in a
valid, verifiable, and extensible model of APS, which
is the key distinguishing feature of our new approach
compared with other existing formal approaches.

Extending the basic model of APS to support the
newest features of Android would be a fit candidate
for the next step in fully implementing our formal

approach to the verification of the security properties
of APS.

The application of component-based design prin-
ciples will also be an important aspect of future at-
tempts to model the complete behavior of APS. De-
signing the basic model as an extensible model would
be useful for supporting future versions of Android
because components can then be modeled by inde-
pendent teams and incorporated into the basic model,
which also helps with error detection because of the
segregation of components’ responsibilities. Scrutiny
of the APS source code will also yield a better under-
standing of the actual behavior of APS, which can
help resolve any possible ambiguities in the official
documentation of the Android operating system.

One possible future direction is to design a static
analysis tool that automatically investigates the
source code of Android and detects the interfaces of
APS and their inputs and outputs. This tool will
produce results that will be useful in the modeling
process. The procedure of detecting APS interfaces
is currently a manual task in our approach, which
could benefit from being automated using a static
analysis tool.

Acknowledgment

This work is partially funded by Iran National Science
Foundation (INSF) under project No. 4003042.

References

[1] René Mayrhofer, Jeffrey Vander Stoep, Chad
Brubaker, and Nick Kralevich. The Android
Platform Security Model. ACM Transactions on
Privacy and Security, 24(3):35, 2021.

[2] Parnika Bhat and Kamlesh Dutta. A Survey on

1S¢0ured)

Towards a Formal Approach for Detection of Vulnerabilities in the APS — Sayyadabdi, Ladani, and Zamani

[10]

[11]

[12]

Various Threats and Current State of Security
in Android Platform. ACM Computing Surveys,
52(1):35, 2019. Publisher: ACM New York, NY,
USA.

Giliz Seray Tuncay, Soteris Demetriou, Karan
Ganju, and Carl A. Gunter. Resolving the
Predicament of Android Custom Permissions.
In Proceedings of the Network and Distributed
System Security Symposium, NDSS 18, page 15,
San Diego, CA, USA, 2018. The Internet Society.
Publisher: Internet Society.

Hamid Bagheri, Eunsuk Kang, Sam Malek, and
Daniel Jackson. A Formal Approach for De-
tection of Security Flaws in the Android Per-
mission System. Formal Aspects of Computing,
30(5):525-544, 2018. Publisher: Springer.

Rui Li, Wenrui Diao, Zhou Li, Shishuai Yang,
Shuang Li, and Shanqing Guo. Android Custom
Permissions Demystified: A Comprehensive Secu-
rity Evaluation. IEEFE Transactions on Software
Engineering, Early Access:20, 2021. Publisher:
IEEE.

Samir Talegaon and Ram Krishnan. A Formal
Specification of Access Control in Android with
URI Permissions. Information Systems Frontiers,
page 18, 2020. Publisher: Springer.

Wook Shin, Shinsaku Kiyomoto, Kazuhide
Fukushima, and Toshiaki Tanaka. Towards For-
mal Analysis of the Permission-Based Security
Model for Android. In Proceedings of the In-
ternational Conference on Wireless and Mo-
bile Communications, ICWMC 09, pages 87-92,
Cannes/La Bocca, France, 2009. IEEE.

Hamid Bagheri, Alireza Sadeghi, Joshua Gar-
cia, and Sam Malek. COVERT: Compositional
Analysis of Android Inter-App Permission Leak-
age. IEEE Transactions on Software Engineer-
ing, 41(9):866-886, 2015. Conference Name:
IEEE Transactions on Software Engineering.
Gustavo Betarte, Juan Campo, Carlos Luna, and
Agustin Romano. Formal Analysis of Android’s
Permission-Based Security Model. Scientific An-
nals of Computer Science, 26(1):27-68, 2016.
Iman M. Almomani and Aala Al Khayer. A Com-
prehensive Analysis of the Android Permissions
System. IEEE Access, 8:216671-216688, 2020.
Publisher: IEEE.

Bradley Schmerl, Jeff Gennari, Alireza Sadeghi,
Hamid Bagheri, Sam Malek, Javier Cdmara, and
David Garlan. Architecture Modeling and Anal-
ysis of Security in Android Systems. In Bedir
Tekinerdogan, Uwe Zdun, and Ali Babar, edi-
tors, Proceedings of the Furopean Conference on
Software Architecture, ECSA ’16, pages 274-290,
Copenhagen, Denmark, 2016. Springer.

Alireza Sadeghi, Reyhaneh Jabbarvand, Negar

buréd)

[15]

[16]

Ghorbani, Hamid Bagheri, and Sam Malek. A
Temporal Permission Analysis and Enforcement
Framework for Android. In Proceedings of the In-
ternational Conference on Software Engineering,
ICSE 18, pages 846-857, Gothenburg, Sweden,
2018. ACM.

Samir Talegaon and Ram Krishnan. Role-Based
Access Control Models for Android. In Proceed-
ings of the International Conference on Trust,
Privacy and Security in Intelligent Systems and
Applications, TPS-ISA ’2020, pages 179-188, At-
lanta, GA, USA, 2020. IEEE.

Samir Talegaon and Ram Krishnan. A Formal
Specification of Access Control in Android. In
Sanjay K. Sahay, Nihita Goel, Vishwas Patil,
and Murtuza Jadliwala, editors, Proceedings of
the International Conference on Secure Knowl-
edge Management in Artificial Intelligence Era,
volume 1186 of SKM 19, pages 101-125, Goa,
India, 2020. Springer.

Roger S. Pressman and Bruce Maxim. Software
Engineering: A Practitioner’s Approach. Mec-
Graw Hill, New York, NY, 8th edition edition,
2014.

G. Blake Meike and Lawrence Schiefer. Inside
the Android OS: Building, Customizing, Man-
aging and Operating Android System Services.
Addison-Wesley Professional, Hoboken, 1st edi-
tion edition, 2021.

Efthimios Alepis and Constantinos Patsakis. Un-
ravelling Security Issues of Runtime Permissions
in Android. Journal of Hardware and Systems
Security, 3(1):45-63, 2019.

Gustavo Betarte, Juan Campo, Carlos Luna,
Camila Sanz, Felipe Gorostiaga, and Maximil-
iano Cristid. A Formal Approach for the Verifi-
cation of the Permission-Based Security Model
of Android. CLEI FElectronic Journal, 21(2):21,
2018.

Hamid Bagheri, Eunsuk Kang, Sam Malek, and
Daniel Jackson. Detection of Design Flaws in the
Android Permission Protocol through Bounded
Verification. In Proceedings of the International
Symposium on Formal Methods, FM 15, pages
73-89, Oslo, Norway, 2015. Springer.

Gustavo Betarte, Juan Campo, Felipe Gorosti-
aga, and Carlos Luna. A Certified Reference
Validation Mechanism for the Permission Model
of Android. In Fabio Fioravanti and John P. Gal-
lagher, editors, Proceedings of the International
Symposium on Logic-Based Program Synthesis
and Transformation, LOPSTR ’17, pages 271—
288, Namur, Belgium, 2018. Springer.

Gustavo Betarte, Juan Campo, Maximiliano
Cristia, Felipe Gorostiaga, Carlos Luna, and
Camila Sanz. Towards Formal Model-Based

November 2022, Volume 14, Number 3 (pp. 61-69)

Analysis and Testing of Android’s Security Mech-
anisms. In Proceedings of the Latin American
Computer Conference, CLEI 17, pages 1-10, Cor-
doba, Argentina, 2017. IEEE.
[22] Xudong He. Modeling and Analyzing the An-
droid Permission Framework Using High-Level
Petri Nets. In Proceedings of the International
Conference on Software Quality, Reliability and
Security, QRS ’17, pages 232-239, Prague, Czech
Republic, 2017. IEEE.
Alireza Sadeghi. Efficient Permission-Aware
Analysis of Android Applications. Doctoral Dis-
sertation, University of California, Irvine, Irvine,
CA, USA, 2017.
[24] Alessandro Armando, Gabriele Costa, and
Alessio Merlo. Formal Modeling and Reason-
ing about the Android Security Framework. In
Catuscia Palamidessi and Mark D. Ryan, ed-
itors, Proceedings of the International Sympo-
stum on Trustworthy Global Computing, TGC
12, pages 64-81, Newcastle upon Tyne, UK, 2013.
Springer.
Elli Fragkaki, Lujo Bauer, Limin Jia, and David
Swasey. Modeling and Enhancing Android’s Per-
mission System. In Proceedings of the FEuro-
pean Symposium on Research in Computer Se-
curity, ESORICS ’12, page 18, Pisa, Italy, 2012.
Springer.

23

S
Sl

Amirhosein Sayyadabdi is a Ph.D.
candidate in computer engineering
at the University of Isfahan. He ob-
tained an M.Sc. degree in system soft-
ware and a B.Sc. degree in software
engineering.

1 Behrouz Tork Ladani received his
bachelor’s degree in computer engi-
neering from the University of Isfa-
han (UI), Isfahan, Iran, in 1996, and
an M.Sc. degree in software engineer-
ing from the Amirkabir University
of Technology (Tehran Polytechnic),
Tehran, Iran, in 1998, and a Ph.D.
degree in software engineering from the University
of Tarbiat Modarres, Tehran, in 2005. He joined UI
In 2005, where he is currently a professor of Com-
puter Engineering Faculty. His research interests are
around modeling, analysis, and verification of security
in information systems, including software security
(vulnerability detection and malware analysis) and
soft security (computational trust and rumor control
in social networks). Dr. Tork Ladani is a member
of the Iranian Society of Cryptology (ISC) and has
been a Program Committee Member of the Interna-
tional ISC Conferences on Cryptology and Informa-
tion Security (ISCISC). He is the Managing Editor
of the Journal of Computing and Security (JCS) and
a member of the Editorial Board of the International
Journal of Information Security Science (IJISS).

Bahman Zamani Bahman Zamani
holds a Ph.D. in Computer Science
from Concordia University, Montreal,
QC, Canada for his work on Pattern
Language Verification. Currently, he
is an Associate Professor in the De-
partment of Software Engineering at,
the University of Isfahan, Isfahan, Iran. His main re-
search interest is Model-Driven Software Engineering
(MDSE). He is the founder and director of the MDSE
Research Group at the University of Isfahan.

ISeﬂur@

	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 The Proposed Approach
	5 Implementation and Evaluation
	6 Conclusion and Future Work

