
ISeCure
The ISC Int'l Journal of
Information Security

November 2021, Volume 13, Number 3 (pp. 21–30)

http://www.isecure-journal.org

Selected Paper at the ICCMIT’21 in Athens, Greece

Cross Site Scripting Attack Review ∗∗

Afnan Alotaibi 1, Lujain Alghufaili 1, and Dina M. Ibrahim 1,2,∗
1Department of Information Technology, College of Computer, Qassim University, Buraydah, Saudi Arabia.
2Computers and Control Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt.

A R T I C L E I N F O.

Keywords:
Cross-Site Scripting, Cyber

Security, Vulnerability Detection

Type: Research Article

doi:

10.22042/ISECURE.2022.0.0.0

dor: 20.1001.1.20082045.2021.

13.3.3.0

A B S T R A C T

In the present time, web applications are growing constantly in the whole

society with the development of communication technology. Since the

utilization of WWW (World Wide Web) expanded and increased since it

provides many services, such as sharing data, staying connected, and other

services. As a consequence, these numerous numbers of web application users

are susceptible to cybersecurity breaches to steal sensitive information or crash

the users’ systems, etc. Particularly, the most common vulnerability today

in web applications is the Cross-Site Scripting (XSS) attack. Furthermore,

online cyber attacks utilizing cross-site scripting were responsible for 40% of

the attack instances that struck enterprises in North America and Europe

in 2019. Therefore, cross-site scripting is a form of an injection that targets

both vulnerable and non-vulnerable websites, for the injection of malicious

scripts. Cross-site scripting XSS operates by directing users to a vulnerable

website that contains malicious JavaScript. Then, when malicious code runs in

a victim’s browser, the attacker has complete control over how they interact

with the application. To protect the website or prevent the XSS, must know

the application complexity and the way it handles data must be known so it

could be controlled by the user. However, Detecting XSS effectively is still

a work in progress, and XSS is considered a gateway for various attacks.

However, in this paper, we will introduce the XSS attack and the forms of

XSS as a review paper. In addition, the methods and techniques that help to

detect cross-site scripting (XSS) attacks.

© 2020 ISC. All rights reserved.

∗ Corresponding author.
∗∗The ICCMIT’21 program committee effort is

highly acknowledged for reviewing this paper.

Email addresses: 421200110@qu.edu.sa,

421216187@qu.edu.sa, d.hussein@qu.edu.sa,
dina.mahmoud@f-eng.tanta.edu.eg

ISSN: 2008-2045 © 2020 ISC. All rights reserved.

1 Introduction

Nowadays, web applications have become prevalent
and covered a lot of aspects with the growth of

the entire world. People count on the web applications
to achieve their daily tasks be it personal, medical,
business or else. This massive use of web applications
renders it vulnerable to attacks such as Cross-Site
Scripting XSS. XSS considers the top dangerous at-

ISeCure



22 Cross Site Scripting Attack Review — Alotaibi et al.

tack in today’s web applications since it’s like a gate-
way to a huge number of attacks that have a high
privilege of being defaced and destroyed. Based on
Cisco’s findings in 2018 indicate that all web applica-
tions examined had at least one vulnerability, then
these vulnerabilities could be used to launch an at-
tack and that will result in greater damage and costs.

Consequently, 40 percent of all attack attempts re-
fer to the XSS since it’s the most frequently used tech-
nique [1]. An XSS vulnerability is a type of vulnera-
bility that can threaten web applications by inserting
malicious code to gain access to sensitive information
without the user’s consent such as cookies, passwords,
credit card numbers, etc. XSS accomplishes these at-
tacks when this script is injected in such a way that
the website appears to be error-free without costing
any damage to the users and this script is eventu-
ally implemented inside the confident domain of the
website.

Then the attacker designs and injects a malicious
JavaScript payload into the web application for the
exploitation of XSS vulnerabilities on web applica-
tions. These vulnerabilities are primarily triggered
by user inputs not being properly sorted. Fishing at-
tacks and typo squatting caused by exploiting XSS
vulnerabilities bring tremendous losses to companies
based on what the Internet security threat announced
in 2019 [2]. XSS is a web application attack that dis-
plays dynamic content to users without verifying or
encoding the information they provide. Attackers can
employ XSS to send a malicious script that the user’s
browser considers trustworthy. This malicious script
can access any cookies, session tokens, and sensitive
information stored by your browser, as well as change
the HTML page’s content [3].

When A large number of URLs containing mali-
cious code were generated by the attacker and tempt
users to press. Hence The attacker might get cookies
from users when they clicked on these URLs and use
these cookies to log in to their accounts. Moreover,
the expression ”Cross-site scripting” was introduced
in January 2000 by Microsoft security engineers and
its first appearance was in the 1990s [4]. Our paper
organized as follow, introduction about XSS attacks
presented in Section 1. Section 2, related work of XSS
attack with some techniques used to detect or pre-
vent it. Section 3, demonstrate the various types of
XSS attacks. Section 4, mentioned some solation to
detect XSS attack. Finally, we concluded our paper
in Section 5.

2 Related Work

The security component is an important aspect that
plays an important role in online applications, espe-

cially with the increased use of it these days. How-
ever, web applications that are linked to web servers
provide users with several features that may expose
them to security risks. In this section, we’ll look at
some research on XSS and how to avoid exploiting
vulnerabilities to compromise the information of web
application users.

The goal of the researchers in this study [5] is to
present the results of a thorough literature review
by consulting related works on XSS attacks and vul-
nerabilities. Their methodology includes reviewing
approximately 115 studies on XSS using the Barbara
Kitchenham document with standard principles for
systematic literature evaluation. They concentrated
on all studies published since 2000, as well as the
methodology, strategies, algorithms, and tools that
each study offered.

The authors of study [6] advocated that the Ge-
netic Algorithm (GA) be used with Reinforcement
Learning (RL) and threat intelligence to prevent XSS
attacks. The purpose of combining GA and RL is to
optimize their approach so that they can adapt to
new XSS payloads. They also use the GA in conjunc-
tion with statistical inference and RL to detect XSS
assaults. They also contributed to the creation of a
dynamic cross-over rate. To test their model, they
used NetBeans IDE 8.0.2 in Java 1.8, GitHub2, and
xssed3. They collected 50,540 vulnerable payloads
and 1,35,507 normal records using NetBeans IDE
8.0.2 in Java 1.8, GitHub2, and xssed3. 6503 normal
records and 3497 susceptible records were tested in
their dataset. The results of their proposed approach
demonstrate improved XSS detection accuracy and
performance.

The study [7] is containing a comprehensive report
of different approaches to XSS attack detection. They
divided the methodologies into three categories: client-
server detection, client-side detection, and server-side
detection. Furthermore, the writers confirm the XSS
kinds as well as the benefits and drawbacks of each
strategy. Their poll includes a list of technologies
that can be used to protect against XSS attacks, as
well as concerns and obstacles related to XSS. Their
methodology for comparing the previous surveys and
providing the previous methods in a manner that
cover the previous surveys’ flaws, such as:

• They followed the methods in the review [5], as
well as, classified the defense methods into sev-
eral analysis mechanisms and grouped them in
defense system under deployment site. Further-
more, they provide a discussion of the needful
preconditions to begin an XSS attack.

• The authors in [8] are supplying their study
with a highly summarized insight of analysis

ISeCure



November 2021, Volume 13, Number 3 (pp. 21–30) 23

mechanisms, unlike; the study [7] is providing
an extensive review of each category of analysis
mechanisms. Moreover, the study [8] categorizes
Web application vulnerabilities, depending on
the software security approaches. On the other
hand, their survey [7] is categorized depending
on detection mechanisms under the deployment
sites.

• They are following the way the study [9] in no-
tifying the vulnerabilities existing in some tech-
niques for fixing the XSS problem, and they do
not follow the [9] in defense methods catego-
rize i.e. they categorize in deployment sites and
collect them in analysis mechanisms.

In their study [10], the authors combine static anal-
ysis with additional approaches to improve XSS vul-
nerability detection in PHP web applications. They
want to improve the detection system to protect the
web application from XSS attacks. To find the effi-
cient identification of XSS problems in PHP web ap-
plications, their methodology compares the methods
that were previously enhanced by integrating static
analysis with other algorithms such as Genetic algo-
rithm (GA). The study’s findings include improved
detection results and static analysis run time. But
after combining the static analysis with algorithms,
still a false positive rate in results, which is a static
analysis problem.

They discovered the effectiveness of a method that
combines static analysis and a genetic algorithm to
detect XSS vulnerabilities, with no false positives.
However, because the approach is still manual, it is
not suitable for large online applications.

The authors of [11] present a strategy for using in-
trusion detection systems to detect cross-site scripting
(XSS) assaults. SNORT IDS was selected by the re-
searchers since it is free, open-source, and lightweight.
By installing SNORT IDS on the network, this ap-
proach can detect XSS attacks. This technology works
by watching network traffic and issuing alerts when
the IDS detects any irregular packets. According to
the authors, this technique has several limitations,
although it is generally effective in detecting XSS as-
saults. Another strategy for detecting XSS attacks
is presented in [12], which is based on the attention
mechanism of the Long Short-Term Memory (LSTM)
recurrent neural network. There are certain steps in
this model. The data must first be processed, which in-
cludes data encoding. Then they employ word2vec to
elicit XSS payload characteristics. Finally, the LSTM-
Attention detection model was used to discriminate
XSS samples from normal samples. The detection
model for XSS assaults is shown in Figure 1.

Moreover, they concluded their work with the suc-

cess of LSTM since the experiments had shown that
this model had effectiveness to detect XSS attacks.
Also, it had some limitations for instance that this ap-
proach needs to improve accuracy and performance of
classification and it will be addressed in their future
work.

In [13] the authors used PHP’s functions to prevent
XSS attacks and test the efficacy of web pages and
provide adequate information for both web developers
and consumers when creating and using websites to
prevent specific attacks. The PHP will do two tasks
prevent and detect. For the detection PHP will first
check data that have been entered by the users to a
web application. Then for the preventing PHP will
validate every input that the users entered and be sure
it’s have not any malicious injections, if the inputs
have any malicious codes the PHP will immediately
remove them and prevent them from executing. This
technique will be improved in the future to validate
and prevent XSS attacks directly.

In [14] they present a proposed a dynamic detec-
tion framework (TT-XSS) for DOM-XSS to detects
vulnerabilities automatically. Therefore, this frame-
work of dynamic DOM-XSS detection consists from
three base modules: URL information collection, taint
tracking analysis and automatic vulnerability verifi-
cation as shown in Figure 2

Moreover, this framework is very important for de-
velopers to identify and fix vulnerabilities effectively
since it can detect more than 1.8 percent of vulner-
abilities. In addition, the authors mentioned some
limitations of the TT-XSS framework. The TT-XSS
cannot handle two-order inputs and sometimes when
the inputs are complex it takes a long time. These
limitations will be addressed in their future work.

The authors of [14] advocated using the open-
source browser WebKit to combat XSS attacks via a
web browser that relies on machine learning classifi-
cation. Furthermore, this browser divides Web pages
into harmful and non-malicious categories. They im-
proved a web browser prototype before embedding it
in the web browser to improve the classification mod-
ule. According to scientists, machine learning classifi-
cation algorithms can effectively detect and prevent
XSS and new assaults. Furthermore, this strategy
will help not only the academics but also the users.
Finally, the findings show that the Acation module
created and supplied a secure online application for
users to visit Table 1 that illustrates a summary of
the previous studies.

3 XSS Attacks

Incontrovertibly, an XSS attack occurs when the at-
tacker injects malicious code into the web page. On

ISeCure



24 Cross Site Scripting Attack Review — Alotaibi et al.

Figure 1. The LSTM model steps [12]

Figure 2. The dynamic TT-XSS process [14]

the other hand, the user visits the same web page
and is either asked for information or, in the worst-
case scenario, enters confidential information such as
a password to a fake website. Admittedly, the lack of
verifying user inputs is a key factor in XSS attacks.

Furthermore, this section explains the various forms
of XSS attacks that have had a negative impact on
several aspects. correspondingly, it could be any kind
of attack like phishing, URL hijacking, or ransomware
these attacks had their impact on social media apps
for instance Twitter, YouTube, etc. Moreover, there
are two major types of XSS attacks which as [16].

3.1 Non-persistent XSS attack

This type is known as reflective attack since it includes
the reflected action from the web server when the used
demand for certain services such as the results of the
search process, a reflected message of the server, or
another response that contains any or all of the data
sent to the server Figure 3 demonstrates this attack.

In addition, for the website that is vulnerable to
XSS attack, it already implements two conditions.
First, accept the script injection by the website. Sec-
ond, the website had two users to communicate with.

3.2 Persistent XSS Attack

This attack interacts with web pages rather than sim-
ply representing a result, as in the non-persistent at-
tack. Furthermore, this attack is one in which the
injection script is an inevitability on the server’s
databases in various ways like comment fields, logs,
forums, and so on [16]. Then the victim demands the
stored information which relatively contains injected
script [17]. In addition, it is known as a stored attack,
as illustrated in Figure 4.

3.3 DOM-based (Document Object Model)

It is a common and dangerous form of XSS attack.
Thereupon, the DOM (Document Object Model)
based attack that accomplished by insecure data flows

ISeCure



November 2021, Volume 13, Number 3 (pp. 21–30) 25

Table 1. A summary of the previous studies

Ref. Year Study Objective Results

[5] 2015 systematic literature review of XSS cover XSS attack topics
Information tables of XSS

previous studies

[11] 2017
An Approach to detect Cross-site scripting

(XSS) attacks via intrusion detection systems
Detecting XSS attacks

This approach had some flaws, but in general,

it’s efficient enough to detect XSS attacks.

[7] 2018
A comprehensive survey of different approaches

of XSS
Find ways protect from the XSS attack Helpful survey of XSS attack

[13] 2018 Proposed to used PHP’s functions Prevent and detect XSS attack
This technique needs to be improved to detect

and prevent XSS attacks directly.

[14] 2018 Dynamic detection framework (TT-XSS) Detects vulnerabilities automatically

This technique can identify and fix vulnerabilities in

an effective way but cannot handle two-order inputs

and takes a long time.

[10] 2019
An Investigation on Static Analysis with other

Algorithms to Detect Cross-Site Scripting.
improving the detection method of XSS

Are reinforced detection results and the run time.

The false-positive rate in results.

[12] 2020 LSTM-Attention detection model Provide XSS attacks detection

The experiments had shown that this model had

effectiveness to detect XSS attacks.

But it needs to improve the accuracy and

performance of classification.

[6] 2021
Resolving cross-site scripting attacks through genetic

algorithm and reinforcement learning
Prohibit the XSS attacks

Better accuracy in XSS’s detection.

Better performance.

[15] 2021 Machine learning classification techniques Mitigate XSS

This technique can detect and mitigate XSS.

Also had developed and provided a secure web

application to browse.

Figure 3. Non-persistent XSS attack

ISeCure



26 Cross Site Scripting Attack Review — Alotaibi et al.

Figure 4. Persistent XSS attack

from sources controlled by the attacker for instance
URLs and type inputs [18]. Moreover, according to a
recent survey, roughly ten percent of the Alexa Top
5000 websites contain at least one DOM-based XSS
vulnerability [19]. This attack is demonstrated in Fig-
ure 5.

In [20] the authors proposed an approach to prevent
persistent XSS attacks by implementing a pattern fil-
tering method. As known, the success of this attack
is contingent on the attacker injecting malicious code
into the website’s database. For this reason, this ap-
proach is based on checking data before storing them
in the website’s database in a unique way that is not
performed by a browser when it is sent to it.

Furthermore, there is no guarantee that the pro-
posed approach will continue to function effectively in
the future. Generally speaking, the most effective way
to avoid or protect against an XSS attack is using cod-
ing for web applications with escaping mechanisms
in the appropriate locations. Since the DOM-based
attack, has solutions that were insufficient to manage
it like using a single method, the developers of [21]
used a hierarchical approach during the development
process to protect the web application on both the
client and server sides.

Moreover, we should have to use multilayer protec-
tion to achieve a stable system that is difficult to hack
and to prevent DOM-based attacks. For this reason,
the authors suggested using a hierarchical approach
with multilabel levels.

Table 2 illustrates the three types of XSS attacks
and some proposed approaches to address them. Fur-
thermore, TT-XSS and LSTM approaches had been
presented in the related work section in a detailed
way and can be used to detect all XSS attacks. More-
over, the prevention methods had been clarified in
this section.

4 First XSS Vulnerability Detection

As this study mentioned before, the XSS is attacking
by inserting malicious code inside web applications to
gain access to sensitive information without the user’s
consent such as cookies, passwords, credit card num-
bers, etc. Correspondingly, the word “vulnerabilities
detection “in XSS attacks is referred to as examining
flaws in the source code of the web application.

Nevertheless, the purport of this section involves
using source code analysis to detect vulnerabilities
either before an application is implemented or before
an attacker discovers the vulnerability. On the foun-
dation of the kind of information they use from the
web application, vulnerability analysis tools can be
divided into three categories: dynamic, static, and
hybrid as Figure 6 shown.

4.1 Static Analysis

A static analysis tool looks at the source code of a
web application to find vulnerabilities in the code.
Through analyzing the source code of the web appli-
cation, a static analysis tool will detect any possible
software path along with the application. As a result,
the static analysis will find any vulnerability in any
program route. However, the most significant limita-
tion of static analysis is the high prevalence of false
positives in report outcomes, which continues to make
static analysis results erroneous and have an impact
on vulnerability detection final results. False-positive
detection occurs when particular paths are identified
as insecure while they are truly secure and free of
vulnerabilities [10].

Various research has examined static analysis on
client-side attacks, such as Gupta and Gupta’s (2016a)
study, which offered an XSS immune defensive archi-
tecture that is considered a Google Chrome browser
extension. The XSS framework is built on comparing
JavasScript strings and sanitizing them while keeping
the context in mind [7]. When server-side vulnera-
bilities are created, XSS attacks occur. As a result,

ISeCure



November 2021, Volume 13, Number 3 (pp. 21–30) 27

Figure 5. The Document Object Model (DOM) attack

Table 2. XSS attacks with detection and prevention methods

XSS attacks Detection Method Ref. Prevention Method Ref.

Non-persistent XSS attack
-TT-XSS

- LSTM

[14]

[12]

Persistent XSS attack Pattern filtering method [21]

DOM-based XSS attack Hierarchical approach [22]

Figure 6. Categories of analysis tools

protection methods to defend the server from such
attacks are being created. One of these approaches is
Scott and Sharp’s (2002) structuring technique, which
creates security policies for huge web applications
that have evolved in a variety of environments [22].

SPDL, or Security Policy Description Language, is
used to code this method, which allows for explicit
validation constraints and transformation rules. Mi-
namide (2005) presented a PHP string analyzer to
statically evaluate dynamically generated server ap-
plication web pages. The PHP analyzer takes two
main inputs: a PHP program and a list of all possible
PHP inputs [23].

4.2 Dynamic Analysis

Instead of communicating with the source code as
a user does with a web browser, interactive tools
communicate with the web application under inves-
tigation. The benefit of dynamic analysis methods
over static analysis is that they generate fewer false
positives. The fact that the fuzzing attempt tries to
stimulate the weakness causes this [10].

The focus of dynamic analysis mechanisms is on
runtime behavior or any activity that isn’t immedi-
ately attributed to the program. The executable code
of the application, on the other hand, is examined
for security issues. Dynamic analysis processes are
thought to be more precise in detecting vulnerabili-
ties and produce fewer false positives. A proxy server-
based strategy, which was upgraded by Ismail et al.
(2009) to secure the user’s private information while
using the web, is one of the dynamic analysis mecha-
nisms in detecting vulnerabilities from the client-side.
The developers wanted to find and gather XSS issues
in the application automatically [24].

Furthermore, this method detects vulnerability us-
ing two major modes: Request change mode and Re-
spond change mode. Mitropoulos et al. (2016) pro-

ISeCure



28 Cross Site Scripting Attack Review — Alotaibi et al.

posed a security solution that combines the web
browser’s JavaScript engine with a Script intercep-
tion layer to defend the application from malicious
JavaScript XSS attacks. This layer’s goal is to identify
any upcoming Script from any possible track to the
Web browser. Later, the entering Script is compared
to a list of whitelisted scripts that are legitimate and
valid [25].

Dynamic analysis tools, such as Wurzinger et
al. SWAP’s methodology (Secure Web Application
Proxy), actively analyze the program states to find
vulnerabilities in the application (2009). SWAP is
made up of two components: a reverse proxy that
handles all requests and responses between the web
server and its clients, and a JavaScript detection
element that is installed on the reverse proxy and
adjusts the web browser to recognize script content
in the server’s responses. DOM. Shahriar and Zulk-
ernine (2011), on the other hand, introduce S2 XS2
to detect XSS attacks automatically. The server-side
application code employs boundaries before and after
in each area that may keep or generate dynamic
content, and this technique is primarily based on
two concepts: boundary injection and policy creation.
Each boundary could indicate the intended content
character [26].

4.3 Hybrid Analysis

As the name implies, hybrid analysis approaches in-
corporate the benefits of both dynamic and static
analysis. Static analysis is performed to identify po-
tential vulnerabilities, which is followed by a confir-
mation stage in which the tool is permitted to try to
exploit the flaw. The tool will only reveal the vulner-
ability if this stage is successful.

On the other hand, hybrid analysis inherits the
problem of static analysis, which is a high rate of
false positives in the results. As a result, this method
is employed less frequently than static and dynamic
analysis methods. The static analysis looks at the
code of an application without running it, identify-
ing security issues. As a result, there is no run-time
overhead, and 100 percent code coverage is feasible
because it can analyze all alternative execution paths
(unlike testing where code coverage is a popular prob-
lem). It’s also valuable since it may be applied early
in the software development lifecycle, even if only a
small piece of the code is useable [10].

Static analysis and dynamic data tainting are pro-
posed by Vogt et al. (2007) as a defensive technique
against XSS assaults. This method is based on trac-
ing or flagging sensitive information on the client-side.
Without the user’s approval, no private information
will be utilized or shared with an untrustworthy third

party, as expected. The Dynamic Data Tainting tech-
nique does this by tainting the user’s sensitive infor-
mation and then tracing it dynamically anytime it is
accessed by any script [27]. Curtsinger et al. (2011),
on the other hand, propose ZOZZLE, a classifier-
based JavaScript deobfuscator. This method can be
used to identify and defeat XSS attacks in a browser.
furthermore, an approach that uses an Abstract Syn-
tax Tree (AST) to tell the difference between ma-
licious and benign JavaScript code. This technique
employs hierarchical-context sensitive information for
detection [28].

Ben Jaballah and Kheir (2016) proposed a Grey
box approach for detecting viral interactions with web
applications. This strategy combines the advantages
of both white box and black box thinking. White
box testing techniques can detect critical problems
in online applications, but they are unable to handle
logical flaws. While black-box testing methodologies
analyze the development of the application, they have
a significant false-positive rate [29].

Song et al. (2009) also offers the Spectogram, a
statical anomaly detection network-based sensor that
tries to detect anomalies in online traffic. It defeats
an XSS attack by using genuine data instead of harm-
ful input. It analyses and isolates the scripts provided
in the HTTP request parameters, then creates the
script’s architecture and content based on these pa-
rameters [30]. Static analysis, according to many de-
velopers, is the most effective way for finding bugs
in a web application. In terms of discovering prob-
lems, Microsoft estimates that code review is 20 to
30 times more effective than software testing. Fur-
thermore, when used correctly, it will reveal nearly
half of the flaws already present. To improve static
analysis performance, researchers began integrating
static analysis with different techniques.

5 Conclusion

To sum up, what has been stated earlier, Cross-Site
Scripting (XSS) vulnerability is considered to be one
of the most prevailing vulnerabilities in the web appli-
cation which eventually can cause violations or dam-
ages to the user or site. Cross-site Scripting (XSS)
is a type of code injection attack that occurs on the
client side.

By embedding malicious code in a legitimate web
application, the attacker plans to perform malicious
scripts in the victim’s web browser. Moreover, this
attack has various forms which have had a negative
effect on several factors of web applications. The
major forms of XSS are non-persistent XSS attacks
and persistent XSS attacks. For the vulnerability
detection of XSS through the vulnerability analysis

ISeCure



November 2021, Volume 13, Number 3 (pp. 21–30) 29

categories which are: static analysis, dynamic analysis,
and hybrid analysis.

References

[1] Germán E Rodŕıguez, Jenny G Torres, Pamela
Flores, and Diego E Benavides. Cross-site script-
ing (xss) attacks and mitigation: A survey. Com-
puter Networks, 166:106960, 2020.

[2] Ibrahim Nadir and Taimur Bakhshi. Contem-
porary cybercrime: A taxonomy of ransomware
threats & mitigation techniques. In 2018 Inter-
national Conference on Computing, Mathematics
and Engineering Technologies (iCoMET), pages
1–7. IEEE, 2018.

[3] Nadya ElBachir El Moussaid and Ahmed Touma-
nari. Web application attacks detection: A sur-
vey and classification. International Journal of
Computer Applications, 103(12), 2014.

[4] Miao Liu, Boyu Zhang, Wenbin Chen, and Xun-
lai Zhang. A survey of exploitation and detec-
tion methods of xss vulnerabilities. IEEE access,
7:182004–182016, 2019.

[5] Isatou Hydara, Abu Bakar Md Sultan, Hazura
Zulzalil, and Novia Admodisastro. Current state
of research on cross-site scripting (xss)–a system-
atic literature review. Information and Software
Technology, 58:170–186, 2015.

[6] Iram Tariq, Muddassar Azam Sindhu,
Rabeeh Ayaz Abbasi, Akmal Saeed Khattak,
Onaiza Maqbool, and Ghazanfar Farooq Sid-
diqui. Resolving cross-site scripting attacks
through genetic algorithm and reinforcement
learning. Expert Systems with Applications,
168:114386, 2021.

[7] Upasana Sarmah, DK Bhattacharyya, and Ju-
gal K Kalita. A survey of detection methods for
xss attacks. Journal of Network and Computer
Applications, 118:113–143, 2018.

[8] Mukesh Kumar Gupta, MC Govil, and Girdhari
Singh. Static analysis approaches to detect sql
injection and cross site scripting vulnerabilities
in web applications: A survey. In International
Conference on Recent Advances and Innovations
in Engineering (ICRAIE-2014), pages 1–5. IEEE,
2014.

[9] Rahul Johari and Pankaj Sharma. A survey on
web application vulnerabilities (sqlia, xss) ex-
ploitation and security engine for sql injection.
In 2012 international conference on communi-
cation systems and network technologies, pages
453–458. IEEE, 2012.

[10] Abdalla Wasef Marashdih, Zarul Fitri Zaaba,
Khaled Suwais, and Nur Azimah Mohd. Web
application security: An investigation on static
analysis with other algorithms to detect cross site
scripting. Procedia Computer Science, 161:1173–

1181, 2019.
[11] Kunal Gupta, Rajni Ranjan Singh, and Manish

Dixit. Cross site scripting (xss) attack detection
using intrustion detection system. In 2017 In-
ternational Conference on Intelligent Computing
and Control Systems (ICICCS), pages 199–203.
IEEE, 2017.

[12] Li Lei, Ming Chen, Chengwan He, and Duojiao
Li. Xss detection technology based on lstm-
attention. In 2020 5th International Conference
on Control, Robotics and Cybernetics (CRC),
pages 175–180. IEEE, 2020.

[13] Twana Assad Taha and Murat Karabatak. A pro-
posed approach for preventing cross-site script-
ing. In 2018 6th International Symposium on
Digital Forensic and Security (ISDFS), pages 1–
4. IEEE, 2018.

[14] Ran Wang, Guangquan Xu, Xianjiao Zeng, Xiao-
hong Li, and Zhiyong Feng. Tt-xss: A novel taint
tracking based dynamic detection framework for
dom cross-site scripting. Journal of Parallel and
Distributed Computing, 118:100–106, 2018.

[15] Vikas K Malviya, Sawan Rai, and Atul Gupta.
Development of web browser prototype with em-
bedded classification capability for mitigating
cross-site scripting attacks. Applied Soft Com-
puting, 102:106873, 2021.

[16] Mehul Singh, Prabhishek Singh, and Pramod Ku-
mar. An analytical study on cross-site scripting.
In 2020 International Conference on Computer
Science, Engineering and Applications (ICC-
SEA), pages 1–6. IEEE, 2020.

[17] Shaimaa Khalifa Mahmoud, Marco Alfonse, Mo-
hamed Ismail Roushdy, and Abdel-Badeeh M
Salem. A comparative analysis of cross site script-
ing (xss) detecting and defensive techniques. In
2017 Eighth International Conference on Intelli-
gent Computing and Information Systems (ICI-
CIS), pages 36–42. IEEE, 2017.

[18] Jinkun Pan and Xiaoguang Mao. Detecting
dom-sourced cross-site scripting in browser ex-
tensions. In 2017 IEEE International Confer-
ence on Software Maintenance and Evolution
(ICSME), pages 24–34. IEEE, 2017.

[19] Sebastian Lekies, Ben Stock, and Martin Johns.
25 million flows later: large-scale detection of
dom-based xss. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communi-
cations security, pages 1193–1204, 2013.

[20] Imran Yusof and Al-Sakib Khan Pathan. Pre-
venting persistent cross-site scripting (xss) at-
tack by applying pattern filtering approach. In
The 5th International Conference on Information
and Communication Technology for The Muslim
World (ICT4M), pages 1–6. IEEE, 2014.

[21] Ankit Shrivastava, Santosh Choudhary, and

ISeCure



30 Cross Site Scripting Attack Review — Alotaibi et al.

Ashish Kumar. Xss vulnerability assessment
and prevention in web application. In 2016 2nd
International Conference on Next Generation
Computing Technologies (NGCT), pages 850–853.
IEEE, 2016.

[22] David Scott and Richard Sharp. Abstracting
application-level web security. In Proceedings of
the 11th international conference on World Wide
Web, pages 396–407, 2002.

[23] Yasuhiko Minamide. Static approximation of
dynamically generated web pages. In Proceedings
of the 14th international conference on World
Wide Web, pages 432–441, 2005.

[24] Peter Wurzinger, Christian Platzer, Christian
Ludl, Engin Kirda, and Christopher Kruegel.
Swap: Mitigating xss attacks using a reverse
proxy. In 2009 ICSE Workshop on Software
Engineering for Secure Systems, pages 33–39.
IEEE, 2009.

[25] Dimitris Mitropoulos, Konstantinos Stroggylos,
Diomidis Spinellis, and Angelos D Keromytis.
How to train your browser: Preventing xss at-
tacks using contextual script fingerprints. ACM
Transactions on Privacy and Security (TOPS),
19(1):1–31, 2016.

[26] Hossain Shahriar and Mohammad Zulkernine.
S2xs2: a server side approach to automatically
detect xss attacks. In 2011 IEEE Ninth Inter-
national Conference on Dependable, Autonomic
and Secure Computing, pages 7–14. IEEE, 2011.

[27] Philipp Vogt, Florian Nentwich, Nenad Jo-
vanovic, Engin Kirda, Christopher Kruegel, and
Giovanni Vigna. Cross site scripting prevention
with dynamic data tainting and static analysis.
In NDSS, volume 2007, page 12, 2007.

[28] Charlie Curtsinger, Benjamin Livshits, Benjamin
Zorn, and Christian Seifert. Zozzle: Fast and
precise in-browser javascript malware detection.
In 20th USENIX Security Symposium (USENIX
Security 11), 2011.

[29] Wafa Ben Jaballah and Nizar Kheir. A grey-box
approach for detecting malicious user interac-
tions in web applications. In Proceedings of the
8th ACM CCS International Workshop on Man-
aging Insider Security Threats, pages 1–12, 2016.

[30] Yingbo Song, Angelos D Keromytis, and Salva-
tore Stolfo. Spectrogram: A mixture-of-markov-
chains model for anomaly detection in web traf-
fic. 2009.

Afnan Alotaibi is a graduated
student from Computer Science de-
partment, Shaqra University, since
2017. She is currently a Master the-
sis student in cybersecurity program
at Department of Information Tech-
nology, College of Computer, Qassim

University, Buraydah 51941, Saudi Arabia.

Lujain Alghufaili is a graduated
student from Computer Science de-
partment, Shaqra University, since
2019. She is currently a Master the-
sis student in cybersecurity program
at Department of Information Tech-
nology, College of Computer, Qassim

University, Buraydah, Saudi Arabia.

Dina M. Ibrahim is an Assistant
Professor at the Department of Infor-
mation Technology, College of Com-
puter, Qassim University, Buraydah,
Saudi Arabia from September 2015
till now. In addition, Dina works as
an Assistant Professor in the Com-

puters and Control Engineering Department, Faculty
of Engineering, Tanta University, Egypt. She was
born in the United Arab Emirates, and her B.Sc.,
M.Sc., and Ph.D. degrees have taken from the Com-
puters and Control Engineering Department, Faculty
of Engineering, Tanta University in 2002, 2008, and
2014, respectively. Dina works as a Consultant Engi-
neer, then a Database administrator, and finally acts
as a Vice Manager on Management Information Sys-
tems (MIS) Project, Tanta University, Egypt, from
2008 until 2014. Her research interests include net-
working, wireless communications, machine learning,
security, and the Internet of Things. She is serving as
a reviewer in Wireless Network (WINE) the Journal
of Mobile Communication, Computation, and Infor-
mation since 2015, and recently in the International
Journal of Supply and Operations Management (IJ-
SOM). Dina has also acted as a Co-Chair of the In-
ternational Technical Committee for the Middle East
Region of the ICCMIT conference since 2020.

ISeCure


	1 Introduction
	2 Related Work
	3 XSS Attacks
	3.1 Non-persistent XSS attack
	3.2 Persistent XSS Attack
	3.3 DOM-based (Document Object Model)

	4 First XSS Vulnerability Detection
	4.1 Static Analysis
	4.2 Dynamic Analysis
	4.3 Hybrid Analysis

	5 Conclusion

