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1 Introduction

considerable number of Android apps that are
daily uploaded to different stores to be down-

Dynamic analysis is a prominent approach in analyzing the behavior of
Android apps. To perform dynamic analysis, we need an event generator to
provide proper environment for executing the app in an emulator. Monkey is
the most popular event generator for Android apps in general, and is used
in dynamic analysis of Android malware as well. Monkey provides high code
coverage and yet high speed in generating events. However, in the case of
malware analysis, Monkey suffers from several limitations. It only considers Ul
events but no system events, and because of random behavior in generating Ul
events, it may lose dropping the connectivity of the test environment during
the analysis process. Moreover, it provides no defense against malware evasion
techniques. In this paper, we try to enhance Monkey by reducing its limitations
while preserving its advantages. The proposed approach has been implemented
as an extended version of Monkey, named Curious-Monkey. Curious-Monkey
provides facilities for handling system events, handling evasion techniques, and
keeping the test environment’s connectivity up during the analysis process.
We conducted many experiments to evaluate the effectiveness of the proposed
tool regarding two important criteria in dynamic malware analysis: the ability
to trigger malicious payloads and the code coverage. In the evaluation process,
we used the Evadroid benchmark and the AMD malware data-set. Moreover,
we compared Curious-Monkey with Monkey and Ares tools. The results show
that the Curious-Monkey provides better results in case of triggering malicious
payloads, as well as better code coverage.

(© 2020 ISC. All rights reserved.

loaded and used by users are classified as malware
or malicious codes. These apps may be in various
domains including gaming, educational, social, and
business. Malware apps can harm users in many dif-
ferent ways, such as stealing user sensitive informa-
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tion, sending them to remote servers, or controlling
the user’s mobile phone to do malicious behavior. To
detect Android malware apps, a special analysis pro-
cess is adopted. In general, there are three types of
the analysis process for Android apps: static analysis,
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that examines the program structure [1-3], dynamic
analysis that studies the behavior of the program in
run time [4-7], hybrid analysis that includes both
static and dynamic analysis [8, 9].

To study the behavior of the malware apps in dy-
namic analysis, we need to use a special test environ-
ment such as Google’s Bouncer [10] to run the app
and analyze its behavior. However, Android apps are
event-driven, i.e., we need to feed the app with events
during the analysis process to execute each part of
the code. Feeding events represents the first step that
guides the dynamic analysis process of Android apps.
Bouncer uses Monkey [11] as a random event gener-
ation tool to feed events to the app under test. In
addition to Bouncer, many other dynamic analysis
frameworks use Monkey to feed events to their apps
under test [12].

Several tools are proposed to handle the event gen-
eration process for Android malware dynamic analy-
sis [13, 14]. These tools can be considered as an en-
hancement to the event generation mechanism that
is used by dynamic analysis frameworks. A category
of these tools mainly tries to make Ul events more
realistic and related [13, 15]. Although generating re-
alistic UI events are essential in case of malware anal-
ysis, some other inputs such as system events and fed
values to handle evasion techniques are also required.
The second category of the malware specific event
generation tools rely on finding evidences of the ma-
licious payloads in the code to direct the execution
toward these payloads [14, 16, 17]. However, using
such tools is time-consuming, i.e., they need a lot of
time to inspect the code and direct the execution to-
ward the payloads. Hence, they are not as popular as
the former category.

Despite the existence of specific malware event gen-
erators, Monkey is yet popular for dynamic malware
analysis purpose. The main reason is that it is easy
to use and configure, it obtains high coverage, and
it provides events very fast, so it makes the analysis
time very low, which is very important if the number
of malware apps under test are high. However, Mon-
key has some limitations when it is used for dynamic
malware analysis. For example, it generates only Ul
events but no system events. Ul events include in-
teracting with the activity components of the app
under test, such as click or touch. In contrast, system
events include all other events that can be sent to
the Android device, such as changing the battery sta-
tus or phone status. Moreover, Android malware use
evasion techniques, such as anti-emulation techniques
to detect the environment in which they are running
and to hide the payload if they detect the existence
of emulator. Unfortunately, Monkey is not able to
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generate proper events for handling such techniques.
Finally, in Monkey, the generated events are random-
based, and this may cause activating unintended or
risky activities such as turning on the airplane mode
or turning off the internet when analyzing the mal-
ware in test environment. This may affect the analysis
process because many malware samples communicate
with their command and control (C&C) servers or
download the payload during the execution.

The proposed approach has been implemented
as an extended version of Monkey, named Curious-
Monkey to overcome the aforementioned shortcom-
ings. We have made the source codes of Curious-
Monkey as an open source software available in
GitHub [18]. Our idea is to use Monkey to generate
UI events and interact with the app under test while
generating different types of system events and han-
dling evasion techniques. Finally, we added a facility
for checking the connectivity of the app every time
we send events to the test environment.

The generated system events are in two main cat-
egories. The first category includes events that are
used for setting up the test environments such as
adding contacts to the device, adding call logs, and
adding history and bookmarks to the browser. The
Second category includes sending events during the
analysis process such as changing the phone status
and rebooting the device. Furthermore, handling eva-
sion techniques is done by using the Xposed module.
This module dynamically hooks some invoked APIs
as in APIs that are used to detect the test environ-
ment and set their returned results with values sim-
ilar to the real device values. The Xposed module
handles most APIs used by malware to evade dy-
namic analysis such as Android.os.Build fields that
provide information about the used device build, An-
droid.telephony.TelephonyManager methods that pro-
vide information about the telephony services in the
used environments, and sleep method that delays the
execution of the payload.

The main advantage of using Curious-Monkey is
that it equips Monkey with techniques that makes it
more suitable for dynamic malware analysis without
affecting its advantages. In other words, adding sys-
tem events and handling evasion techniques provide
a significant contribution because system events are
frequently used by malware to trigger malicious pay-
loads, and the handled evasion techniques are mostly
used by Android malware to hide their malicious pay-
loads from dynamic analysis.

We conducted several experiments to show the ef-
fectiveness of Curious-Monkey. We used Evadroid
benchmark [19] and 100 real-world malware samples
from 10 different families from the AMD malware
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data-set [20, 21]. The comparison process is achieved
against Monkey [11] and Ares [19]. Note that Ares is
the only available tool for us that includes prominent
features that are comparable with Curious-Monkey.
We used the ability to trigger malicious payload and
code coverage as criteria to evaluate the effectiveness
of the proposed approach. The ability to trigger mali-
cious payloads can be measured by logging sensitive
APIs when they are called by the malware during the
execution. We used Droidmon [22] to capture the sen-
sitive APIs, and ACVTool [23] to capture the code
coverage of the executed samples. The results showed
that the proposed approach provides good results in
the case of triggering malicious payloads as well as
the obtained code coverage.

The main contributions of this paper are as follows:

e A tool that is used to handle the input gen-
eration process for dynamic malware analysis.
This tool generates both UI events and system
events that are critical in triggering the mali-
cious payloads in malware apps.

e A collection of the most used system events that
are used to trigger the malicious payloads in
the code based on the empirical study that we
conducted on the Contagio mobile data-set [24].

e An Xposed module that can dynamically handle
the most used evasion techniques by Android
malware. Selection of the evasion techniques
to be handled is based on the empirical study
that we conducted on the Contagio mobile data-
set [24].

The paper is organized as follows. Section 2 illus-
trates the related work of the proposed approach.
Section 3 provides a motivation example to better il-
lustrate the research problem. Section 4 presents the
proposed approach. Section 5 is dedicated to empir-
ical evaluation and comparison of Curious-Monkey
against Ares and Monkey tools, and finally, Section 6
concludes the paper.

2 Related Work

There are many studies on finding the ways for trigger-
ing malicious payloads in the malware codes during
their dynamic analysis process. Some of these studies
focus on making the generated Ul events more real-
istic as in DroidBot [13], while other studies try to
find evidences of the malicious payloads in the code
to direct the execution toward these payloads, as in
Ares [19], and DirectDroid [14].

DroidBot [13] is a model-based event generator
that depends on dynamically building the state tran-
sition model of the app GUI, to provide appropriate
events for transition between different activities of
the sample under test. Alzaylaee et al. [15], proposed

a hybrid approach by using random-based and model-
based techniques for generating Ul events to increase
both the code coverage and the ability to trigger the
malicious payload in the code. Curiousdroid [25] is an-
other model-based approach that provides more com-
plex UI events than Monkey and DroidBot such as
filling up the text filed with appropriate input. These
approaches are introduced as an enhancement to the
UT event generation mechanisms. MEGDroid [26], is
another tool that makes use of MDE approach to pro-
vide both UI and System events. However, despite the
fact that these approaches provide realistic events,
but they take relatively long time to build the model
and to generate these appropriate events.

Other researchers propose target executing the mal-
ware payloads in the code. As an example, Direct-
Droid [14] is an approach that makes use of fuzzing
and on-demand force execution techniques to trigger
the malicious payloads in the code. This approach
consists of two main components, static analyzer and
dynamic executer. The static analyzer performs con-
trol flow analysis and symbolic data flow analysis to
identify each trigger in the payload path. After static
analysis, the dynamic execution is achieved. It repeat-
edly executes the app using fuzzing and on-demand
force execution to reach the location of the payload.
However, this approach suffers from many limitations.
For example, if the malware code is obfuscated, the
static analyzer may not be able to detect each target
location, hence it is impossible to identify each call
path in the code.

FuzzDroid [17] is a framework that refines the ex-
ecution environment to reach the malicious payload
in the code. It uses a hybrid approach to inspect the
code and track the execution path to the malicious
payload. This tool repeatedly executes the malware
code and adapts the environment in each execution
to exceed the guards defined to prevent executing
the malicious payloads. However, this tool currently
considers the guards located in one component and
may fail if the guards are distributed among different
code components.

Ares [19] is an approach that forces the execution
path to reach the malicious payloads. It uses the static
information flow analysis approach that is based on
the source-sink concept to detect the guards of the
malicious payloads. Moreover, this approach uses bi-
nary instrumentation to force executing the guards
along the paths to the malicious payload. The source,
which they call it fingerprinting source (FS), repre-
sents any instruction that gives information about
the environment and the sink represents any logical
condition. Ares detects every logical condition and
checks its source. If the source is an FS, it forces the

1S¢0ured)

133




134

Curious-Monkey: Evolved Monkey for TMPs in Android Malware — Hasan et al.

execution of both sides of this condition. However,
using pure static analysis to detect the information
flow paths imposes some limitations, if the code is
obfuscated. Moreover, force executing the path may
cause the app to crash in most cases.

GroddDroid [16] is an event generator that con-
siders the anti-emulation capabilities of the malware.
This tool first runs the code on a real device to get a
reference execution, and then it inspects the code for
malicious payloads. The information from the previ-
ous steps will be used to force executing the evasion
techniques to reach the malicious parts of the code.
However, force executing the paths may cause the
app to crash in most cases.

IntellDroid [27] is a tool that makes use of static
analysis to detect the call paths in Android apps and
the constraints in each path. After that, the detected
constraints are solved, and appropriate events are
generated to execute the detected paths. However,
using static analysis is not sufficient because mal-
ware may use anti-static analysis techniques, such as
obfuscation, to prevent extracting any information.

The main limitations of the tools that are based on
the above approaches is that they cannot cover all the
parts of the code and there is no guaranty to execute
payloads that are distributed in different places of the
code. Moreover, they are very complex and consume
plenty of time when generating different inputs for
each sample; This causes problems when dealing with
large number of samples. Table 1 summarizes the
analysis of the main malware specific input generation
tools.

In summary, the mentioned malware specific input
generation tools have the following shortcomings:

e They do not consider system events or do not
handle evasion techniques,

e They try to find the execution path to the pay-
load and try to execute this path, which im-
plies some limitations, such as consuming long
time to execute the payload (because of the
techniques that are used to find the payload in
addition to multi execution process to bypass
the evasion techniques), and considering only
one part of the code without other parts, i.e.,
there is no guaranty to execute the payload dis-
tributed in different parts of the code.

Curious-Monkey extends our previous work [28],
and tries to handle the aforementioned shortcomings.
In fact, it provides a simple and fast input gener-
ation mechanism that is suitable to handle a large
number of Android malware samples in a short time.
The generated inputs by Curious-Monkey include
both Ul and system events in addition to the values
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that satisfy the evasion techniques along the paths to
the payload. Since the proposed approach is random
based and yet uses feeding values to handle evasion
techniques (i.e., there is no need to multiple execut-
ing the sample under test), the time consumed by
the proposed approach is very short. These features
make Curious-Monkey very suitable to handle a large
number of samples in a short time.

3 Motivation Example

Most of the modern Android malware use techniques
to hinder executing the payload during dynamic
analysis. They normally use complex checks along
the path to the payload that makes it very hard for
the malware analysis tools to bypass these checks
to reach the payload. We reverse-engineered many
samples in the Contagio mobile data-set [24], in
addition to the samples of Evadroid benchmark.
Listing 1 and Listing 2 represent an example code
that is used in many of these analyzed samples
concerning the used API methods to hinder exe-
cuting the malware payload. In this example, we
used Android.os.Build fields as evasion techniques.
Some other methods such as getDeviceld and get-
MacAddress of Android.telephony.TelephonyManager
and the get method in Android.os.SystemPropertie
can also be used. Listing 1 shows the beginning
of the execution path that leads to the payload.
As can be seen from Listing 1, the sample code
registers a boot receiver to listen to the An-
droid.intent.action.BOOT_COMPLETED  intent.
When this intent is received, a dynamic code load
will be activated, i.e., the sample will load another
APK file with the name app.apk (lines 5 to 7), then
a class with the name com.example.test.payload will
be loaded (line 8), and the method checkandtrigger
from this class will be invoked (line 9).

1 public class boot extends BroadcastReceiver {

2 private static final String mACTION =
"android.intent.action.BOOT_COMPLETED";

3 public void onReceive(Context context,Intent intent) {

4 if (intent.getAction().equals(mACTION)) {

5 File filel = new File(getDir("dex",0),"app.apk");

6 File file2 = getDir("outdex", 0);

7 DexClassLoader dLoader =new DexClassLoader(filel.getAbsolutePath(),
file2.getAbsolutePath(), null, getClassLoader());

8 Class<?> c = dLoader.loadClass
("com.example.test.payload");

9 c.getDeclaredMethod("checkandtrigger", new
Class[]{Context.class}).invoke(i,new Object[]{context});

10 13}

Listing 1. First sample code to hinder executing the malware
payload: waiting for the boot intent to start the execution path
to the payload

Listing 2 represents the com.example.test.payload
class, and the checkandtrigger method of this class.
As can be seen from Listing 2, the sample uses
many evasion checks across the path to the payload.
The used checks are Build. MANUFACTURER, and
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Table 1. A comparison among the main existing Android input tools

Inputs type

Handling evasion techniques

Approach Required time
UI events System events Values Force execution  Feed values
Monkey [11] v’ Small
DroidBot [13] v’ Medium
Alzaylace et al. [15] v/ Medium
Curiousdroid [25] v’ Medium
MEGDroid [26] v’ v’ Medium
DirectDroid [14] N v’ N v’ v’ Large
FuzzDroid [17] v’ v’ v’ v’ Large
Ares [19] v’ v’ v’ Large
GroddDroid [16] v’ v’ v’ Large
IntellDroid [27] v’ v’ v’ v’ Large
Curious-Monkey v’ v’ v’ v’ Small

Build.SERTAL (line 4), Build. BOARD (line 5), and
Build HARDWARE (line 10). The used checks deter-
mine if the returned values are for emulator or not,
for example, if Build. MANUFACTURER equals to
EnvironmentCompat. MEDIA_UNKNOWN (line 4),
it implies that the sample is running in the emulator,
so the check will not be satisfied, and the payload
will not be triggered.

public class payload {
public void checkandtrigger(Context context) {
boolean check;
boolean check2 = Boolean.valueOf (Build.MANUFACTURER.equals
(EnvironmentCompat .MEDIA_UNKNOWN)) . booleanValue()
| |1Build.SERIAL.equals (EnvironmentCompat . MEDIA_UNKNOWN) ;
5 if (Boolean.valueOf (check2).booleanValue() ||
Build.BOARD.equals (EnvironmentCompat .MEDIA_UNKNOWN)) {
6 check2 = true;
7 } else
{
8 check2 = false;
9 s
10 if (Boolean.valueOf (check2).booleanValue() ||
Build.HARDWARE.equals("goldfish")) {
11 check = true;
12 ¥
13 if (!Boolean.valueOf (check).booleanValue()) {
14 Toast.makeText (context, "Payload triggered!",
15 }r}y

ENEAINIE

1) .show();

Listing 2. Second sample code to hinder executing the malware
payload: using Build fields as evasion techniques

When using Monkey or Ares to run the codes in
Listing 1 and Listing 2 and other similar samples,
none of them can trigger the payload. For the case
of Monkey, it generates Ul events only, and since the
execution path to the payload starts with a system
event (reboot the device), this tool will not be able
to trigger the payload. In the case of Ares, since the
evasion techniques is in the dynamic load code and
Ares uses static analysis to detect and defeat the
evasion techniques, it is not able to bypass the evasion
techniques to reach the payload.

As can be seen from this motivation example, the
malicious payload in the code is triggered after send-
ing the boot intent (i.e., reboot the device), and han-
dling the evasion techniques along the path to the
payload. In other words, regardless of the generated

UI events, the malicious payload will not be triggered
unless the boot intent is received and the checks are
satisfied. Consequently, this example shows the impor-
tant role of system events and handling the evasion
techniques during the execution to trigger malicious
payloads from the code.

4 The Proposed Approach

The proposed approach makes use of Monkey as its Ul
event generator. Moreover, it is equipped with system
events, handling evasion techniques dynamically, and
connectivity checks to make Monkey more suitable
for dynamic malware analysis. In the following, we
will illustrate the steps of the proposed approach, the
types of the used connectivity checks, the types of the
provided events, and the proposed Xposed module
that handles the evasion techniques.

4.1 The Steps of The Proposed Approach

We start with installing the malware APK into the
test environment, then both system and UI events
are sent to execute the app under test. During the
execution, the evasion techniques are handled dynam-
ically by the Xposed module. Note that the proposed
approach works in the following order:

e Set up the test environment: it includes send-
ing system events that are responsible for set-
ting up the test environments, such as set call
log, add history and bookmarks to the browser,
and insert different types of accounts (see Sec-
tion 4.3).

e Check the connectivity of the test environment:
this is achieved to ensure that the malware apps
can do many malicious behaviors such as con-
necting to their C&C servers (either by internet
or SMSs). However, the check includes checking
both Airplane mode and internet connection.
(see Section 4.2).

e Monkey is set to generate 10000 UI events. Note
that we check the connectivity of the test envi-
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ronment every time Monkey finishes producing
events.

e The generated Ul events will start the execu-
tion paths. If some evasion techniques found
along the paths, the Xposed module handles
them whenever they are invoked and set their
returned values to values similar to real device
values.

e Send run time system events: such events are
sent after launching the apps by Monkey (see
Section 4.3). Note that we check the connectiv-
ity of the test environment every time an event
has been sent.

e The Xposed module handles the possible eva-
sion techniques which exist along the execution
paths that are started by the run time system
events.

e Monkey is set to generate next 10000 UI events,
and the evasion techniques along the paths will
be handled by the Xposed module.

e The logs of this operation are obtained and
saved to analyze the results of running the mal-
ware.

It should be noted that this order is achieved ac-
cording to our experimental observation on malware
samples from AMD malware data-set. i.e., we tried
different orders for sending events to run the apps un-
der test. According to our experiments, the aforemen-
tioned order provided the best results regarding the
number of logged sensitive APIs and code coverage.

4.2 Types of The Used Connectivity Checks

In general, Monkey causes turning on the airplane
mode or turning off the internet connection because
it generates random Ul events that occasionally cause
dropping down the notification list and click on either
airplane or wireless button. Connectivity plays a vital
role in dynamic malware analysis because most mal-
ware samples need to connect to their C&C servers
using either internet or SMSs. This connection is re-
quired to either send instructions to the malware or
send the victim’s information to the remote server. In
other scenarios, malware may download the payloads
during the execution time (dynamic loading code).
Hence, it is essential to keep the connectivity in the
test environment. In the proposed approach, we reuse
the checks illustrated in [15] to check the connectiv-
ity of both airplane mode and internet connection.
So, we wrote two codes, the first one checks if the
airplane mode is enabled, and disable it if so. While
the second one, checks if the wireless or the data are
off, and turn them on if so.
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4.3 The Generated Events

Curious-Monkey can generate two types of events: Ul
and system events. We directly use Monkey to gener-
ate Ul events because of its high code coverage. How-
ever, as mentioned before, for the case of malware
analysis, Monkey suffers from a number of shortcom-
ings and needs to be extended with system events. In
the following, we will demonstrate both types of the
generated events by the proposed approach.

4.3.1 Generating UI Events

UI events include any event that can interact with
the activity components of the app under test. We
use Monkey to generate Ul events. Monkey is a tool
that is developed as a part of the Android toolkit
to execute the apps under test. This tool generates
different types of Ul events, such as clicks, drags, and
touches, randomly. We configure Monkey to generate
10000 UI events each time, as we set the proposed
approach to run Monkey two times, as illustrated in
Section 4.1.

4.3.2 Generating System Events

System events include any event that does not interact
with the activity components of the app under test.
In general, these events are produced to respond to
the requested permissions and registered receivers in
the apps. We added the events mentioned in [29] and
the events that we got from extensively analyzing
malware in the Contagio mobile data-set [24]. We
categorize these events into two types. The first type
is used to set up the test environment and is sent
after installing the malware APK file, as illustrated in
Section 4.1. This type includes the following events:

Adding contacts to the test environment

Adding SMSs.

Adding browser history and bookmarks.

Adding different types of files to the test envi-

ronment.

Opening the camera and take photos.

e Adding different accounts to the test environ-
ment.

e Making different download operations.

e Adding calls log to the test environment.

The main goal of these events is to make the test
environment similar to a real device that is used by
the user. This is because some malware check to see
if the device is used in a tracking and analysis mode
or is work in a regular device used by a regular user.

The second type of system events is used to simu-
late the real device in most cases. It includes sending
the events after running Monkey for the first time.
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This type of events mostly includes sending intents
to match the intent filter of the registered receivers
or to respond to the requested permissions. However,
this type is categorized as the following:

e Changing the battery status such as battery
low, full, and charging,

e Sending intents to change the media status such
as media injected and media mounted,

e Sending intents to change the package status
such as package added, package removed, and
package changed,

e Sending boot intent to reboot the device,

e Sending intents to change the power status such
as power connected, and power disconnected,

e Sending intents to change the time status pa-
rameters such as time zone, and time set,

e Sending intents to change the UMS (USB Mass
Storage) status such as UMS connected and
UMS disconnected,

e Many other events, such as receiving messages,
changing the network status, and replacing the
data status.

4.4 Xposed Module

To handle the evasion techniques used by the malware,
we use the Xposed framework [30]. This framework
roots the test environment and provides the ability
to add different types of modules. Xposed modules
dynamically hook predefined APIs and provide many
operations to work with the hooked APIs, such as
setting their returned results to specific values, get-
ting their arguments (in case of methods), and get-
ting their returned results. Therefore, we developed
an Xposed module that hooks some predefined sensi-
tive APIs used for evasion techniques and sets their
returned values to values similar to the real device
values.

Back to the motivation example, the existing
checks along the execution path to the payloads use
Android.os.Build fields to detect the existence of
an emulator. The proposed Xposed module hooks
these fields whenever they are invoked and set their
values as the following: 1) the value “google” for
Build. MANUFACTURER in line 4, 2) the value
“C4F12FDD949F22F” for Build.SERIAL in line 4, 3)
the value “samsung” for both Build. BOARD in line
5, and Build. HARDWARE in line 10. This way, the
checks along the path to the payload will be handled
and as a result the payload will be triggered.

To facilitate adding or removing the predefined
APIs to be hooked, we set the Xposed module to read
these APIs from a JSON file. However, the hooked
APIs in the experiments can be categorized as follows:

e Telephony: this category contains An-

droid.telephony. TelephonyManager methods,
such as getDeviceld, getSubscriberld, and get-
SimSerialNumber. Android malware widely use
these methods to detect the environment in
which they run. For example, Android malware
can use the method getDeviceld to get the
ID of the test environment and check if the
returned value is equal to “000000000000000”
or not. Positive answer means that the malware
is running on an emulator.

e Build: this category contains the fields of the
Android.os.Build class. These fields are also
widely used by Android malware to get informa-
tion about the device build, such as MODEL,
HARDWARE, and MANUFACTURER.

e Location: some malware use GPS to get the
device location and run their malicious behavior
accordingly.

e WIFI: some malware use the MAC address or
the IP address of the WIFI to detect the test
environment.

e System properties: includes using the fields
of Android.os.SystemProperties class, such as
ro.product.name and ro.serialno to detect the
test environment.

e File: this category includes reading system
files to determine the test environment, such
as /proc/tty/drivers that includes information
about the device drivers, and /proc/cpuinfo
that includes information about the device
CPU.

e Time: this category differs from other cate-
gories as it delays the payload execution until
a specific period or determines triggering the
payload in a specific time. Examples of this cat-
egory are the sleep method that delays the exe-
cution for a specific period, or getHours method
from java.util.Date that determines the hour of
the day in which the payload can be triggered.

5 Evaluation and Comparison

To evaluate Curious-Monkey, we implemented it using
Java programming language to generate and send
both types of events to the test environment. Also,
we used Java and XML to implement the Xposed
module as an Android app. We used Genymotion
emulator [30] with Google Nexus 5 image on it as
the test environment in our experiments. Android
Lollipop with APT level 21 was used as the Android
operating system. Finally, we used a fresh clone of the
emulator before running each sample to ensure that
the analyzed samples are not affected by each other.

The evaluation is performed to find two impor-
tant metrics: the coverage metric, which represents
the percentage of the lines of code that are executed
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by the event generator, and the number of sensitive
API calls, which represents the event generator’s abil-
ity to trigger the malicious payload in the code. We
used ACVTool [23] to measure the code coverage
metric, and Droidmon [22] (which is an open-source
Dalvik monitoring framework based on Xposed frame-
work [30]) to hook the calls of sensitive APIs (that
reflect the malicious behavior of the sample under
test) and to report all the monitoring information in
the logs obtained by the Logcat tool [31].

In the evaluation process, we use Evadroid bench-
mark and 100 samples that are randomly selected
from 10 different families from AMD malware data-set
(as illustrated in Table 2). Note that, in the Evadroid
benchmark, when the payload is triggered, as a re-
sult of the generated events and handling the evasion
techniques, a Toast message will appear to show that
the event generator successfully triggers the payload.
While in the AMD data-set, we chose the malicious
behaviors introduced in GroddDroid [16] and cap-
ture the sensitive APIs that reflect these malicious
behaviors. As a result, when these sensitive APIs are
captured, it indicates that the payload or part of it,
is triggered.

In this section, we conduct experimental evalua-
tions to address the following research questions:

RQ1) How effective is Curious-Monkey?
RQ2) How does Curious-Monkey perform comparing
with other tools?

Table 2. The used malware samples in the evaluation process
and the number of samples in each family (in parenthesis)

1) Utchi (12) 6) Kuguo (12)
2) Koler (9) 7) Triada (10)
3) Fakelnst (8) 8) FakeDoc (8)
4) Fusob (13) 9) SimpleLocker (8)
5) FakeTimer (13) 10) Mmarketpay (7)

5.1 Results

In this section, we answered the aforementioned re-
search questions based on the experimental results.

RQ1) The effectiveness of Curious-Monkey

To show the effectiveness of Curious-Monkey, we used
two metrics: the code coverage and the ability to trig-
ger the malicious payload or part of it. In this experi-
ence, some samples from both Evadroid benchmark
and AMD data-set are used.

1S¢0ured)

1- Triggering the malicious payload

In this section, we evaluate the ability of Curious-
Monkey in triggering the malicious payload (or part of
it). To do that, we use both Evadroid samples and the
samples in Table 2. In the Evadroid benchmark case,
we ran the samples using Curious-Monkey and wait
for the Toast message that indicates if the payload
was triggered or not. Table 3 represents the results
of using Curious-Monkey in triggering the payload in
the Evadroid benchmark samples.

Table 3. Triggering the payloads in Evadroid benchmark

Sample name Payload triggered?

AccelH Yes
AdbEnable Yes
AdbPortDetector Yes
AtNight Yes
BatteryCharging Yes
BatteryFull Yes
BatteryStatus Yes
ConstantCallsl Yes
ConstantCalls2 Yes
Constantsl Yes
Constants2 No
ConstantsDLC Yes
DivByld Yes
GetIpAddress Yes
Installed Apps Yes
LongAction Yes
PostDelayed Yes
ProcNetTcp Yes
QemuFingerprinting No
SignatureVerification Yes
Sleep Yes
Uptime Yes

As can be seen from Table 3, Curious-Monkey
could trigger the payload in 20 samples from
Evadroid benchmark, while it failed to trigger the
payload in 2 samples: Constants2 and QemuFinger-
printing. After investigating these two samples, we
found that, in the case of the Constant2 sample,
the used checks before reaching the payload are,
Build. MODEL, Build. PRODUCT, Build.BRAND,
and Build. FINGERPRINT. The proposed approach
could set the returned values for the first three checks
to the values similar to real device values, but it failed
to set the returned values of Build. FINGERPRINT
check because of the limitation in the Xposed frame-
work. While in the case of QemuFingerprinting,
we could not install this sample into Genymotion
emulator. All samples of a malware family in the se-
lected families from the AMD data-set have common
malicious behaviors that are according to the classifi-
cation represented in GroddDroid [16]. Therefore, we
adopted GroddDroid classification and selected the
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sensitive APIs that reflect each category in this clas-
sification. Note that, we represented each malicious
category with a number. To get the number of each
category we sum up the frequency of invoking sensi-
tive APIs that reflect this category. For example, the
SMS category includes two sensitive API methods,
sendTextMessage, and sendMultipartTextMessage
from Android.telephony.SmsManager class, to get
the number of this category, we sum up the frequency
of invoking these two API methods from the 100
samples illustrated in Table 2. The result was 2 for
sendTextMessage, and 0 for sendMultipart TextMes-
sage, so the number of SMS category is 2. Table 4
represents the results of using Curious-Monkey to
trigger the most common malicious categories from
the samples introduced in Table 2.

Table 4. Most common malicious categories triggered by Cu-
rious-Monkey

Malicious Category Curious-Monkey

SMS 2

Telephony 78
Binary 0

Dynamic 34
Reflection 20
Crypto 22
Network 22

As can be seen from Table 4, the most triggered
category is the Telephony category. This category
includes many methods that are commonly used by
Android malware to get information about the test
environment in which they run. For example, the
method getDeviceld is used to get the ID of the test
environment, and the method getSubscriberld is used
to get the subscribed ID of the test environment.

2-Code coverage

To evaluate the ability of Curious-Monkey to execute
as much as possible from malware code lines, we
used ACVTool [23] to get the code coverage of the
samples illustrated in Table 2 when they are executed
by Curious-Monkey. Figure 1 represents the obtained
coverage from the aforementioned samples, when they
are executed by Curious-Monkey.

As can be seen from Figure 1, Curious-Monkey pro-
vides code coverage varied between 9.7% and 57.6%,
which can be considered as very good in the case
of malware. The family with the lowest code cover-
age was Kuguo because it has complex functionality,
many complex activities, and many guards that could
not be handled by Curious-Monkey such as waiting
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Figure 1. Code coverage obtained by Curious-Monkey

for a message from the attacker to trigger the pay-
load. On the other hand, the family with the highest
code coverage was FakeTimer, because the samples
of this family have very simple functionality and a
small number of activities with simple views in each
activity.

RQ2) Comparing with other tools

In this section, we compare Curious-Monkey with
Monkey and Ares. In the case of Ares, we use the
Evadroid benchmark samples. Moreover, the used
metric in this evaluation is the ability to trigger mali-
cious payload. In case of Monkey, we use 100 samples
illustrated in Table 2 from the AMD data-set. The
used metrics in this evaluation are code coverage and
the invoked sensitive APIs that reflect the malicious
behavior of the used samples.

a-Comparing with Ares

Table 5 represents a comparison between Curious-
Monkey and Ares. As can be seen from Table 5,
Curious-Monkey could detect more payloads than
Ares. This is because Curious-Monkey uses dynamic
analysis to detect and set the returned values of the
invoked method to resist against evasion techniques.
In contrast, Ares uses static analysis to detect the eva-
sion techniques which makes it useless in many cases.
For example, in case of ConstantsDLC malware sam-
ple (in the Evadroid benchmark) Ares fails to detect
the payload because the evasion techniques are lo-
cated in dynamic load code. Also, similarly in cases of
DivByld, and LongAction samples, Ares again could
not detect the payloads because it uses static infor-
mation flow analysis to detect the evasion techniques
and hence bypass them using force execution. In fact,
in the recent two samples, Ares fails to detect the
evasion techniques because these samples did not ful-
fill the information flow analysis requirements used
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by Ares. Therefore, no force execution is applied and
the payload is not detected. On the other hand, as we
explained in RQ1, Curious-Monkey could not trigger
the samples’ payload because of the limitation in the
Xposed framework (Constants2 sample) or limitation
in the used emulator (QemuFingerprinting sample).

Table 5. Ares vs. Curious-Monkey: Triggering the payload

Sample name Ares Curious-Monkey
AccelH Detected Detected
AdbEnable Detected Detected
AdbPortDetector Detected Detected
AtNight Detected Detected
BatteryCharging Detected Detected
BatteryFull Detected Detected
BatteryStatus Detected Detected
ConstantCallsl  Detected Detected
ConstantCalls2 Detected Detected
Constants1 Detected Detected
Constants2 Detected Not detected
ConstantsDLC  Not detected Detected
DivByld Not detected Detected
GetIpAddress Detected Detected
Installed Apps Detected Detected
LongAction Not detected Detected
PostDelayed Detected Detected

b-Comparing with Monkey

In the second comparison, we compare Curious-
Monkey with Monkey, the most used event generator
in both general purpose and specific dynamic mal-
ware analysis domains. To do the job we set Monkey
to run 20000 times. Each sample is executed five
times by each approach, and the best result is logged.
We used 100 samples randomly selected from 10
families in the AMD data-set. Figure 2 shows the
amount of code coverage that is obtained from both
Monkey and Curious-Monkey.

As shown in Figure 2, Curious-Monkey could
achieve better coverage than Monkey in most cases.
This improvement can be noticed as in Koler, Fu-
sob, and Triada. This is because in these samples
generating system events and handling evasion tech-
niques execute some parts of the code that cannot be
reached by UI events. In other families, the improve-
ment was little, as in Uthci, Fakelnst, and FakeTimer.
This is because the selected samples from these fami-
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Figure 2. Monkey vs Curious-Monkey: Code coverage

lies mainly use UI events and had a small number
of code lines. Therefore, the generated Ul events
are almost enough to execute as much as possible
from these samples. Finally, in some families such as
Kuguo, Triada, and Mmarketpay, both approaches
achieved a little code coverage. This is because the
samples in these families have complex activities
that require complex interaction, such as filling some
text fields with meaningful information then clicking
the buttons, which cannot be achieved by Monkey.
In addition to some guards that prevent executing
the code and could not be handled by the proposed
approach, such as triggering by attackers.

To measure the second metric (i.e., the number of
sensitive API calls), Droidmon [22] is used. Note that
the captured sensitive API calls reflect the malicious
behavior of the sample under test. Table 6 represents
the top 10 logged sensitive APIs called when using
Curious-Monkey and the corresponding values in the
case of using Monkey. Table 7 also represents the
top 10 logged sensitive APIs, which are called when
using Monkey, and the corresponding values in case
of using Curious-Monkey.

Both tables show that more sensitive API meth-
ods could be extracted from Curious-Monkey,
compared to Monkey using the same set of mal-
ware apps. For instance, the API method an-
droid.telephony. TelephonyManager/getDeviceld was
logged from 20 malware samples when using Curious-
Monkey in the analysis process and from 10 malware
samples in case of using Monkey. This proves our
initial hypothesis about the impact of system events
and handling evasion techniques in triggering the
hidden payloads (or part of it) in the malware code.

Note that the number of APKs, that we could log
their corresponding sensitive APIs is 35, while in the
case of Monkey, sensitive APIs from only 14 APKs are
called. As a result, we can say that Curious-Monkey
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Table 6. Top 10 logged sensitive API calls when using Curious-Monkey compared to those of Monkey

Sensitive API calls

Monkey Curious-Monkey

android.telephony.TelephonyManager /getDeviceld 10 20
java.lang.reflect.Method /invoke 11 20
java.net.ProxySelectorImpl/select 8 17
android.telephony. TelephonyManager /getNetworkOperator 2 15
android.telephony. TelephonyManager /getSubscriberId 1 10
android.telephony. TelephonyManager /getLinel Number 0 10
dalvik.system.PathClassLoader 0 10
dalvik.system.BaseDexClassLoader/findLibrary 0 9
javax.crypto.Cipher/doFinal 1 9
dalvik.system.DexFile/openDexFile 0 9

Table 7. Top 10 logged sensitive API calls when using Monkey compared to those of Curious-Monkey

Sensitive API calls

Curious-Monkey Monkey

android.telephony. TelephonyManager /getDeviceld 20 10
java.lang.reflect.Method/invoke 20 11
java.net.ProxySelectorImpl/select 17 8
javax.crypto.spec.SecretKeySpec 7 5
javax.crypto.Cipher/update 6 5
android.telephony. TelephonyManager /getNetworkOperatorName 5 4
java.net.URL/openConnection 5 4
android.telephony. TelephonyManager /getSimCountrylIso 5 3
android.telephony. TelephonyManager /getNetworkCountryIso 5 3
dalvik.system.BaseDexClassLoader/findResource 4 3

outperforms Monkey when we deal with dynamic mal-
ware analysis. Moreover, we should notice that trig-
gering the payloads of 35 samples from 100 samples is
relatively low. This is because many other factors help
in triggering the malicious payloads, such as realistic
Ul events, and handling other outsmarting techniques
that can be used to hide the malicious payloads. How-
ever, there is a trade-off between the speed of analysis
and the ability to trigger the malicious payload. Since
the proposed approach is random-based, it provides
high speed in the analysis process with acceptable
results in the case of triggering the malicious payload.

6 Conclusion

This paper presented a random-based approach,
called Curious-Monkey, that can be used to gener-
ate events for dynamic malware analysis. Curious-
Monkey integrates a random-based UI event genera-
tor tool, i.e., Monkey, with generating system events
and handling evasion techniques. By doing so, we
can leverage the advantage of Monkey to enhance

the chance of triggering malicious payload in the
code and to increase the obtained code coverage.
The generated system events represent the most
frequent events that are used by malware to trigger
malicious payloads. Moreover, the handled evasion
techniques represent the most used techniques by
malware to hinder their malicious payload. We com-
pared Curious-Monkey with both Monkey and Ares.
The results showed that using system events and
handling evasion techniques provide a considerable
improvement in case of triggering malicious payload
and the achieved code coverage. However, this is not
sufficient to trigger malicious payloads because of
some outsmarting techniques used by malware, such
as triggering the payload by attacker instructions, or
detecting the frequency of the generated events. We
aim to handle these techniques as our future work.
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