
ISeCure
The ISC Int'l Journal of
Information Security

January 2021, Volume 13, Number 1 (pp. 29–45)

http://www.isecure-journal.org

ATrustedDesign Platform for TrojanDetection in FPGA

BitstreamsUsing Partial Reconfiguration

N. Shekofte 1, S. Bayat-Sarmadi 1,∗, and H. Mosanaei-Boorani 1
1Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: July 31, 2019

Revised: June 11, 2020

Accepted: November 1, 2020

Published Online: November 7, 2020

Keywords:

Hardware Trojan, Trusted Design
Platform, Partial Reconfiguration,

FPGA

Type: Research Article

doi: 10.22042/isecure.2020.
196541.477

A B S T R A C T

Hardware Trojans have emerged as a major concern for integrated circuits in

recent years. As a result, detecting Trojans has become an important issue

in critical applications, such as finance and health. The Trojan detection

methods are mainly categorized into functional and side channel based ones.

To increase the capability of both mentioned detection methods, one can

increase the transition activity of the circuit. This paper proposes a trusted

platform for detecting Trojans in FPGA bitstreams. The proposed methodology

takes advantage of increased Trojan activation, caused by transition aware

partitioning of the circuit. Meanwhile, it benefits partial reconfiguration feature

of FPGAs to reduce area overhead. Experimental studies on the mapped

version of s38417 ISCAS89 benchmark show that for the transition probability

thresholds of 10−4 and 2× 10−5, our method increases the ratio of the number

of transitions (TCTCR) in the Trojan circuit by about 290.93% and 131.48%,

respectively, compared to the unpartitioned circuit. Similar experiments on

s15850 for the transition probability thresholds of 10−4 and 2 × 10−5 show an

increase of 290.26% and 203.11% in TCTCR, respectively. Furthermore, this

method improves the functional Trojan detection capability due to a significant

increase in the ratio of observing wrong results in primary outputs.

c© 2020 ISC. All rights reserved.

1 Introduction

H ardware security and trust have received signif-
icant attention in recent years [1, 2]. One way to

ensure that an integrated circuit (IC) is trusted is to
certify all its design and fabrication process. However,
having a trusted supply chain is not economically fea-
sible [3]. In fact, most companies are nowadays fabless
and let the process of mask production, design fab-
rication and even integration be outsourced. These

∗ Corresponding author.

Email addresses: shekofte@ce.sharif.edu,
sbayat@sharif.edu, mosanaei@ce.sharif.edu

ISSN: 2008-2045 c© 2020 ISC. All rights reserved.

third-party fabs can thus tamper the circuits, which
can alter the main functionality of ICs, leak their
secure information and perform other malicious ac-
tivities by some stealthy modifications [3–6]. These
modifications are referred to as Hardware Trojans.

Nowadays, most modern companies use commercial-
off-the-shelfs (COTS), intellectual property (IP) cores
supplied by third-party vendors, and also field pro-
grammable gate arrays (FPGAs) to reduce the total
cost and time to market [7–9]. The entire system is an
integration of these units [1, 3]. Additionally, recent
improvements of FPGAs in performance has consider-
ably improved their usage as an alternative for ASICs.
Due to increased complexity of modern devices, design-

ISeCure

30 A Trusted Design Platform for Trojan Detection in FPGA Bitstreams Using PR — Shekofte et al.

ing FPGA IPs and integrating them with other FPGA
and ASIC designs are usually performed in different
companies. Thus, these designs are very vulnerable
to Trojan insertion [10]. As a result, finding method-
ologies for detecting or preventing Hardware Trojan
insertion in FPGA designs seems very necessary.

Hardware Trojan detection has become a challenge
in recent years. Many Trojan detection approaches
have been presented so far. They can be categorized
into two main approaches based on side channel anal-
ysis and Trojan activation [11, 12]. Activation of the
Trojan circuit can help Trojan detection by observ-
ing malfunction results in the functionality of the cir-
cuit. It can also accelerate Trojan detection further
using power analysis due to consuming more dynamic
power [13–15]. Side channel analysis approaches, on
the other hand, detect Trojans by measuring some pa-
rameters of the circuits under test, such as power and
delay. Then, these parameters are compared against
the ones achieved from golden circuits [3, 7, 16].

In order to improve the efficiency of traditional
Trojan detection methods, design-for-hardware-trust
(DFHT) methodologies have been emerged [3, 17].
In [18], a trusted design based on ring oscillator net-
work is proposed. Any switching in the Trojan circuit
will cause a voltage drop in power supply. This can
affect the delay of each stage in the circuit and in turn
the RO (ring oscillator) frequency, which can then be
used for Trojan detection. However, existence of a Tro-
jan in one corner of the circuit may not cause the noise
effect to be sensed in an RO placed on the other side.
Hence, a network of ROs is distributed throughout
the chip to improve the accuracy of this methodology.

In [10], a tamper detection method based on error
detection codes in FPGA bitstreams is presented,
considering that the FPGA itself has no Trojan. In
this method, each row/column of CLBs, named as a
parity group (PG), is assumed as a row/column of
a 2D parity. To verify the bitstream, a test pattern
generator (TPG) applies the same test vectors to
all PGs. Then, an output response analyzer (ORA)
checks whether the outputs are the ones expected. Any
difference can indicate a Trojan in the bitstream. Two
randomization methods are also offered for preventing
adversaries from Trojan masking. In the first method,
random CLBs from each row/column is selected as a
row/column of the 2D parity. In the second method,
the parity applied to each row/column is randomly
chosen to be either even or odd.

In [19], spatial correlation of intra-die process varia-
tion in FPGA circuits is used to detect Trojans. In [11],
a methodology is proposed to increase the transition
probability in functional Trojan circuits. For this pur-
pose, dummy scan flip-flops are inserted to increase

the transition of nets with transition probability of
less than a certain threshold. This method can be use-
ful for improving detection methods based on power
side channel analysis by increasing the transition prob-
ability (i.e. transient power) of the Trojan circuit and
also by improving the chance to fully activate the Tro-
jan, which may result in having wrong value at the
primary output. The authors in [20] focus on dummy
scan flip flops (DSFF) insertion, as an effective DFHT
technique. They mention that DFHT approaches are
almost ad-hoc techniques, which are vulnerable to neu-
tralization efforts. However, they show that DSFF can
be easily neutralized without recognizable side effects.

The authors of [21] propose a Trojan detection
method for ASIC circuits. In this method, circuit under
test (CUT) is divided into a number of partitions and
generates the test vectors heuristically. Scan chains
are being used to control these partitions. The method
considers a power pin pad for each region separately
to locally measure the subtle changes of the transition
current. Such techniques usually impose considerable
area overhead to the circuit due to scan chains and
power pads. Similarly, [22] proposes a new technique
based on scan flip-flops to detect Trojans. This method
does not need any golden circuit and uses equal power
self-authentication. This method imposes significant
area overhead.

In [23], Trimberger addresses various issues in the
protection of FPGA designs from tampering. This pa-
per argues that FPGA configuration bitstreams are
hard to reverse engineer to be tampered by an adver-
sary. It also argues that the bitstream can be further
protected by encryption. However, the circuit design
can be required at an integration company that as-
sembles. Moreover, bitstream reverse engineering is
not completely impossible [23]. Authors of [24] men-
tion that Triple-DES algorithm is used for bitstream
encryption, which can be easily broken by side chan-
nel attacks. On the other hand, bitstream encryption
imposes certain restrictions on FPGA usage, like dis-
abling partial reconfiguration [23]. According to [25],
bitstream encryption is only possible for new FPGA
families, such as Virtex, while many old families are
still widely used (Spartan family for example).

In [26], authors propose a built-in self authentica-
tion (BISA) method, which fills free spaces inside
FPGA with dummy circuits. While the work imposes
negligible area and power overhead, it is a method to
prevent Trojan insertion and can be merged with our
Trojan detection method. Similarly, [27, 28] propose
Trojan insertion prevention methods in ASIC circuits.
While these techniques claim no area overhead, they
impose power overhead.

The work presented in [29] argues that functional

ISeCure

January 2021, Volume 13, Number 1 (pp. 29–45) 31

Trojan detection methods suffer from trigger circuit
activation. In contrast, side-channel based ones can
detect Trojans without fully activation of the trigger
circuit. However, these methods are sensitive to pro-
cess variation and environmental noises. Fortunately,
our proposed method has the ability to perform both
methods and consequently can gain the benefits of
both.

In [30], a machine learning-based run-time method
is proposed to detect hardware Trojans in micropro-
cessor cores. In this method, a changepoint-based
anomaly detection algorithm is used to detect Trojans
that introduce abnormal patterns in the data streams
obtained from performance counters. The authors
in [31] propose an FPGA based Trojan detection and
analysis method, which does not need the existence of
a golden chip. The proposed method is a combination
of a logic testing method, a run-time method, and a
side-channel analysis one. Unlike the logic testing and
side-channel analysis methods, the proposed run-time
method is invasive, in which on-chip digital sensors
are used to detect unexpected differentiation in the
layout of the IC.

In this work, we have focused on detecting Trojans
which are inserted in FPGA bitstreams. Two scenar-
ios, which make bitstreams vulnerable to Trojan in-
sertion, are presented. Both scenarios suffer the un-
trusted path from designer(s) to the user. One possible
approach to authenticate such bitstreams is signature
computation. Although the signature computation of
the bitstream is possible, it has drawbacks. It should
be noted that conditionally triggered Trojans can be
activated by an external condition. For example, such
condition could be based on the output of a sensor
monitoring the temperature, or any kind of environ-
mental condition, such as electromagnetic interference
or humidity [3]. Signature computation, on the other
hand, is an off-chip checking approach. Therefore, it
cannot protect against remote attacks like high-energy
ElectroMagnetic Pulses (EMP), malicious IPs, and
tampers induced by the device programming unit [10].
The authors in [10] argue another drawback as an
aliasing issue. However, we believe that by using cryp-
tographically secure hash functions along with an
asymmetric signature scheme, this problem can be
avoided.

This paper proposes a trusted platform to detect
Trojans in FPGA bitstreams. One of the mentioned
threat scenarios and the proposed solution for encoun-
tering it is shown in Figure 1. The solution enjoys
the increased observability and controllability of a
partitioned circuit, which causes an increased transi-
tion probability in the nets. This can improve Trojan
activation, and detection as a result, by increasing

transition probability in the Trojan circuit. To make
the partitioning more efficient, we use a transition-
aware partitioning, which performs the partitioning
such that all nets have transition probability greater
than a special threshold. On the other hand, we gain
partial reconfiguration feature of FPGA circuits to re-
duce the area overhead of this method. This is because
while a partition is in the test mode, the resources of
the other partitions are available to be used as control
structures, including TPG and ORA.

Experimental results, performed on the mapped
version of s38417 ISCAS89 benchmark [32], show that
for the transition probability thresholds of 10−4 and
2× 10−5, this method increases the ratio of the num-
ber of transitions in the Trojan circuit (TCTCR) by
about 290.93% and 131.48%, respectively, compared
to the unpartitioned circuit. Similar experiments on
s15850 for the transition probability thresholds of
10−4 and 2× 10−5 show an increase of 290.26% and
203.11% in TCTCR, respectively. Additionally, the
ratio of observing wrong results in primary outputs in-
creases considerably, which could be useful for Trojan
detection using functional methods.

The motivation of this work can be summarized as
the following:

• The proposed platform makes it possible to use
different types of detection methods, such as
functional, power-based and delay-based meth-
ods. Moreover, it is possible to use a combination
of these methods to improve Trojan detection
further.

• This methodology can localize the partition in
which the Trojan exists.
• This method improves Trojan detection because

of partitioning and by using partial reconfigura-
tion feature of FPGAs.
◦ In the functional method, this improve-

ment is a result of increased controllability
and observability in the partitioned circuit,
compared to those of the unpartitioned cir-
cuit.

◦ In the power-based method, the improve-
ment is achieved because of amplifying the
dynamic power consumption of the Trojan
against the total dynamic power.

• The end user can generate the test vectors
(TPGs) and analyze the results (ORAs) herself.
Hence, Trojans could not be inserted in them.

• The method introduces a small logic area over-
head due to exploiting the partial reconfigura-
tion feature of FPGAs.

The rest of this paper is organized as follows. Sec-
tion 2 describes some preliminaries behind the pro-
posed work. The proposed trusted design methodology

ISeCure

32 A Trusted Design Platform for Trojan Detection in FPGA Bitstreams Using PR — Shekofte et al.

Automation transition-aware partitioning of the

golden design

Implementing the design by partial reconfiguration

and obtaining the bitstream of each partition

Applying a special test pattern to each partition and

obtaining their related signatures (ORA signatures)

Receiving the bitstreams and decrypting ORA

signatures & test patterns

Writing TPG(s) and ORA(s) for each partition

Comparing the computed ORA signature of each

partition against the one received from the designer

Equal?

D
is

tr
ib

u
te

r

 (
N

O
T

 T
R

U
S

T
E

D
!)

Designer (Trusted) User

`

YESNO

User’s Certificate

Transferring the bitstream of each

partition and encrypted ORA signatures

& test patterns to the distributer

Figure 1. The Trojan detection scenario

is presented in Section 3. In Section 4, an authentica-
tion time analysis method along with the transition-
aware partitioning are presented. Simulation results
and an analysis of overheads are presented in Section 5.
Finally, the concluding remarks are given in Section 6.

2 Preliminaries

In this section, the basic model of hardware Trojans
and one of the most recent classifications of them are
briefly overviewed. Then, a short explanation about
partial reconfiguration is presented.

2.1 Hardware Trojan Structure and
Taxonomy

The basic model of a hardware Trojan is made of two
main components: payload and trigger [33]. Trigger
is the part that activates the Trojan, and its effect
carryovers to the payload [34, 36]. Trigger logic circuit
can be either analog or digital. Digital trigger itself
can be of two types: sequential and combinational.
Combinationally triggered Trojans are activated by
the occurrence of a special condition on the triggered
nodes. Sequentially triggered Trojans, on the other
hand, are the ones that result in an incorrect value
of the payload by the occurrence of a sequence of
operations on the trigger nodes.

There are various types of Trojans each of which
is detectable by a group of detection methods. It is
therefore very important to have a comprehensive
classification of them. One of the most recent and de-

tailed taxonomies is proposed by Wang et al. [3]. They
classify Trojans into three main categories regarding
their action, activation, and physical characteristics.

The physical characteristics category is classified
into four subcategories: type, distribution, size, and
structure. Trojans can be of either parametric or func-
tional type. Parametric Trojans are realized through
some changes in parametric characteristics of the cir-
cuit such as thickness of wires, while functional Tro-
jans are related to some modifications in the functional
characteristics of the circuit such as adding or deleting
logic gates. Trojan distribution describes whether Tro-
jans are located loose or tight throughout the layout.
Trojan size refers to the amount of modification in
gates or number of transistors, where Trojan structure
determines whether the Trojan insertion is combined
with changes in the layout of the circuit or not.

The activation characteristics category shows how
the Trojan becomes activated. Trojans can be either
activated internally or externally, e.g. by a sensor. In-
ternally activated Trojans themselves can be either
conditional, which are only triggered under a special
internal condition, or always on. Action characteris-
tics, on the other hand, refer to the destructive effect
caused by the Trojan. Trojans may change the func-
tion of the circuit, change its specification or leak its
information [35, 36].

ISeCure

January 2021, Volume 13, Number 1 (pp. 29–45) 33

2.2 Partial Reconfiguration

While FPGA technology provides the flexibility to be
re-configured without any need of re-fabrication, par-
tial reconfiguration takes this flexibility even further.
This feature, which has been added to recent FPGA
families, makes it possible to reconfigure only a parti-
tion of the design while the rest remains unchanged
and performs its normal operation [37, 38].

In regular configuration of an FPGA, the device is
assumed as an entity and one bitstream is generated.
However, in the partial reconfiguration, the device is
partitioned into some physical regions. One of the re-
gions, named as the static region, configures at startup
and cannot be re-configured any more. On the other
hand, regions that can be configured multiple times
and with different designs dynamically are known as
dynamic regions. Therefore, in partial reconfiguration
of an FPGA, there exist at least two bitstreams: one
for the static region and one for each single design
of each dynamic region [37]. Planahead software [39],
which is installed with ISE design suite [39], makes it
possible to locate the exact position of each dynamic
region.

3 Proposed Trusted Design Platform

In this section, two scenarios with Trojan insertion
vulnerabilities are explained. Then, the proposed so-
lution for encountering them is presented.

Two vulnerable scenarios for trojan insertion:

• Scenario 1: According to the high complexity of
recent technology products, the process of designing
IPs related to FPGA circuits and integrating them
with other IP designs are usually performed in sep-
arate companies. Therefore, while IP designers are
not aware of this integration process, the untrusted
integrators must have detailed IP designs. As a result,
these products are very vulnerable to Trojan inser-
tion [10].

• Scenario 2: Designs are usually sent to the cus-
tomer through some distributors. Therefore, these
designs are also vulnerable against malicious attacks
caused by untrusted distributors.

The proposed solution: The proposed DFHT so-
lution is based on using partial reconfiguration. The
solutions for encountering each of the two vulnerable
scenarios are explained as follows:

For the first scenario, each designer is supposed to
apply a certain test pattern to her design and obtain
a signature from the outputs (ORA Signature). The
test pattern could be of various types, e.g. parametric
or functional. Similarly, the corresponding signature
could be of various types, e.g., a SHA-1 digest. On

the other hand, the integrator is obligated to partially
reconfigure the designs and generate bitstream for
each one separately. These bitstreams are then passed
to the user and she should apply the test patterns
of the designers to the IPs/designs, obtain the ORA
signatures and compare them with the ones received
from the designers. Any difference can be assumed as
a Trojan insertion. Note that test patterns and ORA
signatures are transferred to the user authentically
and confidentially (see Section 3.1).

It should be noted that designers are assumed to
hand out their IP cores in placed and routed XDL
format. In fact, there must be a two-way interaction
between the integrator and the designers: the integra-
tor should be informed about the size of each design;
then she should inform the designers where each de-
sign will be placed (this is why there is a two-direction
arrow between the integrator and each designer in
Figure 2(a)). Finally, the designers can hand out their
placed and routed XDL files to the integrator. This
way, the possible intra-process variation could be neg-
ligible. Therefore, the influence of Trojans can be
considered to be more dominant than such process
variations. This scenario is illustrated in Figure 2(a).

For the second scenario, as shown in Figure 2(b),
the designer herself is expected to partition the design
into some sub-designs and implement them using par-
tial reconfiguration. In fact, she should generate one
bitstream for each partition. Then, similar to the first
scenario, the user should obtain the ORA signatures
of partitions and compare them with the ones received
from the designer. Any difference between the ORA
signatures can be assumed as Trojan insertion. This
scenario and the proposed solution are illustrated in
Figure 1.

3.1 Secure Test Patterns/ORA Signatures
Transfer

In this section, we investigate how a user can authen-
tically obtain the required test patterns and ORA
signatures for each part from its designer.

Suppose M contain test patterns along with ORA
signatures. Algorithm 1 presents the actions that the
designer has to perform to securely send M to the user.
It is worth-mentioning that alternatively the designer
can securely post M on her website; however, this
approach can impose a considerable communication
overhead on the user to obtain them separately.

According to the algorithm, we have used a symmet-
ric key encryption (AES ENC), a cryptographically
secure hash function (SHA), and an asymmetric key
encryption (RSA ENC). It is worth-mentioning that
the user’s certificate has to be obtained authentically

ISeCure

34 A Trusted Design Platform for Trojan Detection in FPGA Bitstreams Using PR — Shekofte et al.

Untrusted Integrator

Designer

1

Designer

2

Designer

n

Designer

(n-1)

User

P&R IP/design+

 Authentic test package

Partitioned Design (Bit Format)+ Authentic test package

Certificate

P&R IP/design+

 Authentic test package

P&R IP/design+

 Authentic test package

P&R IP/design+

 Authentic test package

(a) Scenario 1

Designer

Untrusted Distributer

User

Partitioned Design (Bit Format) + Authentic test package

Partitioned Design (Bit Format) + Authentic test package

(b) Scenario 2

Figure 2. Two vulnerable scenarios and their solutions

Algorithm 1 The Interaction Between the User and Each

Designer - Designer Side

1: Authentically obtain user’s certificate (containing the user

public key, namely UPK)
2: Randomly generate a session key, namely SK

3: Calculate CUser = AES ENCSK(M,SHA(M))

4: Calculate Encaped SK = RSA ENCUPK(SK)
5: Transfer CUser and Encaped SK to the distribu-

tor/integrator or post them on the website

Algorithm 2 The Interaction Between the User and Each

Designer - User Side

1: Obtain CUser and Encaped SK from the integra-

tor/distributor or website
2: Calculate SK = RSA DECPrivateKey(Encaped SK)

3: Calculate (M,SHA(M)) = AES DECSK(CUser)

4: Verify M against SHA(M)

from the user, e.g., directly from her or from her web-
site. Clearly, this certificate contains the user’s public
key (UPK) required in step 4.

The required actions in user side are presented
in Algorithm 2. We note that Figure 2 presents
the case that the designer passes the authentic test
package (Encaped SK and CUser) to the integra-
tor/distributor (and it is not the case that she posts
the package on her website).

The process mentioned in Algorithm 1 and Algo-
rithm 2 ensures that both confidentiality and data

integrity of M are satisfied and integrator/distributor
cannot alter or know about M. It should be noted
that using this method, the designer of each part can
customize the test patterns and their corresponding
ORA signatures for each user. Such a customization
avoids some attack scenarios such as using identical
test patterns and ORA signatures to insert customized
Trojans (in such scenarios, the attacker can pose her-
self as a user and obtain the test patterns and ORA
signatures).

It is worth mentioning that Algorithm 1 and Algo-
rithm 2 are actually simple versions of the SSL (TLS)
protocol. In other words, TPG and ORA can be sent
to the user over HTTPS protocol.

Implementing TPGs and ORAs: According to
the previous section, in both scenarios, the TPGs
and ORAs can be written by the user herself. For
implementing such TPGs and ORAs, it is supposed
that the following files are also given to the user by
the distributor/integrator.

• The binary Xilinx netlist file of the static parti-
tion (.ngc file),

• The constraint file of the static partition, for lo-
cating each dynamic partition in its appropriate
place (.ucf file),

• One Xconfig file, to locate the pins of each dy-
namic partition in its appropriate place.

It should be noted that using this method, TPG(s)
and ORA(s) are applied to each partition by its ad-
jacent partitions. In other words, it is not needed to
have TPGs and ORAs outside the design. This makes
the area overhead of the proposed method almost neg-
ligible, as is elaborated in Section 5.3. Moreover, one
partition might have several TPGs and ORAs. For
example, as shown in Figure 3(a) partition P5 receives
its inputs from partitions P2 and P4. It also sends its
outputs to partitions P6 and P8. Then, while P5 is
the partition under test (PUT), P2 and P4 act as its
TPGs and P6 and P8 act as its ORAs.

3.2 Platform Based Detection Method

The proposed method is a DFHT platform. Because it
can be used for various types of Trojan detection. For
example, it can be exploited as a functional platform,
using TPGs and ORAs, taking advantage of the in-
creased probability of Trojan activation. Moreover, it
can be useful for detecting Trojans using power-based
fingerprinting.

The power-based platform benefits from both in-
creased controllability and localizing the measurement
of transient power. In other words, as only one of the
partitions (PUT) exists (excluding TPG and ORA)
in the test mode, the effect of transient power of the

ISeCure

January 2021, Volume 13, Number 1 (pp. 29–45) 35

M
U

X

2
X

1

P3_Out1

P1_In1

M
U

X

2
X

1

P3_Out2

P4_In1

Primary Output1

Primary Output2
Primary_Input1

Primary_Input2

P1 P2 P3

P4 P5 P6

P7 P8 P9

(a) Using multiplexers

P1 P2 P3

P4 P5 P6

P7 P8 P9

P3_Out1

P3_Out2

Primary Output1

Primary Output2

Primary_Input1

Primary_Input2

A
d
d

it
io

n
a
l

p
ar

ti
ti

o
n

P1_In1

P4_In1

(b) Using an extra partition

Figure 3. Analyzing a special case

Trojan circuit can be more observable. In fact, since
other partitions do not exist in the test mode, the total
number of transitions and in turn the entire dynamic
power of the circuit are lower. Then, this effect could
be sensed by an RO, which is partly placed in PUT.
A simple RO is a device composed of an odd number
of negating gates in a ring, whose output oscillates
between two voltage levels, representing as true and
false. Trojan insertion can affect the delay of the gates
inside the ring and hence change the frequency of the
RO. This is similar to the idea presented in [40], in
which circuit paths of a design are reconfigured to act
as an RO. The rest of the required circuit remaining
from RO is placed in its adjacent partitions (see Fig-
ure 4). In this case, as shown in Figure 4, the adjacent
partitions of the PUT act as its controller. The con-
troller consists of an oscillation cycle counter and a
comparator, for comparing the signatures (similar to
the ORA in the functional platform).

It should be mentioned that the RO circuit must
consist of an odd number of inverting logic gates.
Therefore, the complementary part must contain an
odd number of inverter gates, if the number of inverting
logic gates in the PUT is an even number. Additionally,
the controller part should apply test patterns in such a
way that the RO gets established and works properly;
e.g., in Figure 4, there are two gates in PUT that
establish the RO. Hence, the second inputs of the
NAND and NOR gates have to be “one” and “zero”,
respectively.

It is worth mentioning that in the case of misusing
unused I/Os, some side-channel characteristics will
be changed. Regardless a pin is being used or not, we
can always verify its value for different test vectors.

0

1

Counter

Comparator

PUT

Figure 4. A simple example of using an RO as ORA

Therefore, it could be detected by either functional or
side-channel analysis Trojan detection.

3.3 Analyzing a Special Case

For applying test pattern to or receiving response
from the partitions with primary inputs/outputs, only
the partitions which include primary outputs/inputs
could be used. Clearly, a primary input cannot be fed
by two nets, simultaneously. Therefore, it should be
specified whether it is connected to a primary output,
receiving test patterns, or acts as a primary input,
receiving its data from outside of the device. To resolve
this issue, two approaches are suggested:

• To use multiplexers: In this method, multiplex-
ers are placed on the way of such inputs. The
select input of multiplexers is set according to
the working mode (normal or test modes). Fig-
ure 3(a) illustrates this method in which a 2x1
multiplexer is used to choose between two dif-
ferent input sources. One input source can be
the primary output net P3 Out1 from parti-
tion P3 (as TPG of P1) and the other one can
be Primary Input1 is connected to the input
P1 In1 of partition P1 (as PUT). Thus, using
this multiplexer, partition P3 can act as a TPG
of P1 and similarly P1 can be used as ORA for
partition P3. Likewise, the other multiplexer is
supposed to choose whether P3 Out2 from par-
tition P3 (as TPG of P4) or Primary Input2 is
connected to the input P4 In1 of partition P4

(as PUT).
• To use an extra partition: In this method, an ex-

tra partition is used instead of all multiplexers.
Then, according to the working mode (test or
normal), a specific bitstream is loaded into this
partition. For example, as shown inFigure 3(b),
the bitstream loaded into the additional parti-
tion is responsible to choose whether P3 Out1
or Primary Input1 is connected to the input
P1 In1. It also chooses whether P3 Out2 or
Primary Input2 is connected to the input
P4 In1.

ISeCure

36 A Trusted Design Platform for Trojan Detection in FPGA Bitstreams Using PR — Shekofte et al.

Comparing the two approaches: Assuming
PICount(Pi) is the number of primary inputs in par-
tition number i and PartitionCount is the number of
partitions; then, the number of multiplexers needed in
the first method can be computed from the following
equation:

#Multiplexers =

PartitionCount∑
i=0

PICount(Pi)

In the second method, as it was explained, the addi-
tional partition is only responsible to connect some
nets to each other. This method thus has no logic
area overhead. However, it imposes a slight routing
overhead because of using switch matrices for the con-
nections. This is briefly discussed in Section 5.3.

3.4 Automated Partitioning

As partitioning a large circuit with significant num-
ber of wires is very difficult to be performed manually
(in case of the second scenario), automated partition-
ing seems to be necessary. For this purpose, we have
used hMetis [41]. This is a software package capable
of partitioning the vertices of a hypergraph into k ap-
proximately equal parts in a way that the number of
hyperedges, which are the connections between parti-
tions, is minimized [42]. Here a hyperedge is described
as an extension of an edge, by which more than two
vertices are connected to each other. Thus, for au-
tomation, we first generated the netlist of a Verilog
code using ISE. Then a C++ code was written for
converting the netlist into the input format of hMetis
(a hypergraph). Afterward, we used hMetis for parti-
tioning the hypergraph. Finally, another C++ code
was written and used for converting these partitions,
which are in graph format, into Verilog codes.

4 Authentication Time Analysis

An adversary inserts the Trojans such that they are be-
ing triggered only under very rare conditions, to avoid
detecting them in the test mode [43–45]. For this pur-
pose, and for conditionally triggered Trojans, Trojan
triggers should either be nets with very low transition
probability (sequentially triggered) or a rare combi-
nation of nets (combinationally triggered) [11, 45].
Schematics of such Trojan circuits are shown in Fig-
ure 5. Analyzing the Trojan activation time of a de-
sign is very important, especially when running in the
test mode. If a Trojan is sequentially triggered, its
transition probability can be a proper estimation of
its transition time [11]. Transition probability of a net
is defined as the probability of switching from 0 to
1, which is also equal to the probability of switching
from 1 to 0. Suppose Pbi0 and Pbi1 are the proba-
bilities for net i to be 0 and 1, respectively. Then,

transition probability of the net will be Pbi0× Pbi1
as is computed in Equation (1).

Pbi0→1 = Pbi0× (Pbi1 | the net value has been 0)

= Pbi0× Pbi1 = Pbi1× Pbi0

= Pbi1× (Pbi0 | the net value has been 1)

= Pbi1→0 = Pbitransition
(1)

C C_modified

Payload

Trigger

n 1 0

Counter
A

(a) Sequentially internally-triggered Trojan

C

Payload

C_modified

 A

B

Trigger

(b) Combinationally internally-triggered Tro-
jan

Figure 5. Trojan examples [1]

Even in the case of combinationally triggered Tro-
jans, transition probability can be useful for estimat-
ing the Trojan trigger time. In this case, the Trojan
is triggered when a special combination of a subset
of nets (i.e. trigger inputs) occurs. With n number of
trigger inputs, the probability of Trojan triggering is
as presented in Equation (2) [11, 46]:

PbTrojan−Trig =

n∏
i=1

{Pbi0 or Pbi1} (2)

According to Equation (1), transition probability
of a net i is very low if Pbi1 >> Pbi0 or Pbi0 >>
Pbi1. Additionally, PbTrojan−Trig in Equation (2) is
expected to be very low if Pbi1 >> Pbi0 or Pbi0 >>
Pbi1. It should be noted that the result obtained from
Equation (2) is non-deterministic. Because either sides
of the or operation might be selected, according to
the structure of the Trojan circuit, which obviously is
not determined before being detected. In other words,
Equation (2) depends on the Trojan circuit and also
the nets that are used as inputs of that circuit. It is
noted that the mentioned circuit can be a combination

ISeCure

January 2021, Volume 13, Number 1 (pp. 29–45) 37

of gates or one or more LUTs. We would like to have
Pbi0 and Pbi1 such that selecting either does not
result in low value of the PbTrojan−Trig, which clearly
means low Trojan detection capability. Therefore, for
increasing PbTrojan−Trig, we need to make the values
of Pbi0 and Pbi1 close to each other. In other words, to
improve Trojan detection for net i, we should reduce
the PbiT j value of nets in Equation (3):

PbiT j = |Pbi0− Pbi1| (3)

This concept is even more important for the nets with
large PbiT j that are suspicious to act as inputs of the
Trojan circuit.

According to Equation (4), we can show that in-
creasing Pbitransition and decreasing PbiT j are pro-
portional:

Pbitransition = Pbi1× Pbi0

=
(Pbi0 + Pbi1)

2 − (Pbi0− Pbi1)
2

4

=
1− |Pbi0− Pbi1|2

4
=

1− PbiT j
2

4
(4)

Therefore, it could be concluded that, in both cases
(i.e. sequentially and combinationally triggered Tro-
jans), detection probability will improve by increasing
Pbitransition.

4.1 Calculating Transition Probability

For calculating Pb0 and Pb1 of every net in an FPGA
resource level circuit, we have developed a tool referred
to as FPGA TPC (FPGA Transition Probability Cal-
culator). We note that we have inspired from TPC
tool in Trust-hub [47] (It is noted that TPC was a tcl
script written for calculating transition probability of
nets within an ASIC circuit, which was not suitable
in our case). The FPGA TPC algorithm is presented
in Algorithm 3. According to this algorithm, Pb0 and
Pb1 for inputs of each DFF and primary input are
initialize with 0.5. Then the probability of each cell
output is computed according to the probabilities of
its inputs and the cell type. As it is mentioned in the
algorithm, for each cell, the probability of its cone
(i.e. the logic circuit connecting to the cell inputs) is
calculated earlier.

To clarify, an example of applying FPGA TPC to a
simple sequential circuit (s27) is shown in Figure 6. In
this figure, TP1, TP2, and TP3 show the transition
probability of nets after one, two and three clock
cycles, respectively. As there may exist a number of
DFFs from a primary input to a net, the transition
probability of nets will be changed by increasing clock
cycle count. Moreover, it is noted that DFFs usually

have feedbacks. So, transition probabilities may never
become a fixed value. Therefore the numebr of clock
cycles in the algorithm should be selected according to
the precision which is needed. In our experiments, we
have chosen this number to be at least the maximum
number of DFFs from primary inputs to primary
outputs. Therefore, the required clock cycles for this
example is 3.

Algorithm 3 Transition Probability Calculation Algorithm

1: procedure FPGA TPC
2: Initialize nClock with the number of clocks

3: Initialize cellsQueue with null

4: for each cell do
5: initialize its nInputs with its number of input pins

6: initialize its nUpdatedInputs (number of updated

inputs of cell) with 0
7: end for

8: for each primary input do

9: initialize its Pb0 and Pb1 with 0.5
10: end for

11: for each cell connected to primary inputs do
12: cell.nUpdatedInputs++

13: if cell.nUpdatedInputs==cell.nInputs then

14: cellsQueue.Add(cell)
15: end if

16: end for

17: for each input net of flip flops do
18: initialize its probability with 0.5

19: end for

20: for each GND net do
21: set its Pb1 with 0

22: end for

23: for each VCC net do
24: set its Pb1 with 1

25: end for
26: while (nClocks > 0) do

27: for each flip flop do

28: set its output net probability with its inputs
net probability

29: for each cell which is connected to flip flop
output net do

30: cell.nUpdatedInputs++

31: if cell.nUpdatedInputs==cell.nInputs then

32: cellsQueue.Add(cell)
33: endif

34: end for
35: end for

36: for each cell in cellsQueue except flip flops do
37: set its output net probability with the calculated

probability //Calculated with lib.tcl

38: for each connected-cell which is connected to

output net of the cell do
39: connected-cell.nUpdatedInputs++

40: if connected-cell.nUpdatedInputs ==

connected- cell.nInputs then
41: cellsQueue.Add(connected-cell)

42: end if
43: end for

44: end for

45: nClocks−−
46: end while

47: end procedure

ISeCure

38 A Trusted Design Platform for Trojan Detection in FPGA Bitstreams Using PR — Shekofte et al.

G2_IBUF

O

IBUF

G1_IBUF

O

IBUF
G3_IBUF

OI

IBUF

G0_IBUF

OI

IBUF

G17_OBUF

OI

OBUF

FD

D

C

Q

DFF_2/Q

TP1=0.5

TP2=0.375

TP3=0.384

TP1=0.375

TP2=0.344

TP3=0.336

I0

I1

I2

O

G131

LUT3

I0

I1

I2 O

G101

LUT5

I3

I4

TP1=0.469

TP2=0.458

TP3=0.456

GND

VDD

G0

CK

G2

G1

G3

CK_BUFGP

+

BUFGP

O

I0

I1

I2
O

G171

LUT6

I3

I4

I5

TP1=0.484

TP2=0.504

TP3=0.385

I0

I1

I2
O

G111

LUT6

I3

I4

I5

TP1=0.484

TP2=0.607

TP3=0.633

FD

D

C

Q

DFF_0/Q
TP1=0.5

TP2=0.469

TP3=0.458

FD

D

C

Q

DFF_1/Q
TP1=0.5

TP2=0.484

TP3=0.607

G3

TP3=0.5

TP3=0.5

TP3=0.5

TP3=0.5

TP3=0.5

TP3=0.5

TP3=0.5

TP3=0.5

TP1: TP after 1 clock cycle

TP2: TP after 2 clock cycles

TP3: TP after 3 clock cycles (final result)

Figure 6. An example of transition probabilities resulted by FPGA TPC program

4.2 Transition-aware Partitioning

As it was mentioned in Section 4, transition probability
of a net is a proper estimation for its transition time.
Actually, the average number of clock cycles needed
to generate a transition in a net could be computed
from Equation (5) [11]:

Avg # clk cycles = Pbi
−1
transition − 1 (5)

According to Equation (5), increasing Pbitransition
in a net will decrease the average time to generate a
transition in a net exponentially, which can consider-
ably enhance the probability of Trojan activation in
the test mode, as a result. We can define a rare event
as the one with a transition probability of less than
a special threshold (pth). Then, if all nets of a circuit
have transition probability greater than or equal to
pth, we can make sure, with a high probability, that
the Trojan would be activated in the test mode (if
there is any) [11]. Hereafter, we refer to such circuits
as ideal ones.

According to the above-mentioned, in an ideal cir-
cuit, Pth

−1 − 1 clock cycles, on average, will be re-
quired for each transition. Suppose Ntr is the required
number of transitions in Trojan circuit for triggering
the Trojan. Then, assuming TTester to be the period
of the clock, authentication time of circuit will be
computed by Equation (6)[11]:

TAu = Ntr × (Pth
−1 − 1)× TTester (6)

In the proposed method, the input nets of each
partition obtain their values directly from TPG(s),
in the test mode. Therefore, such nets have Pb0 =
Pb1 = 0.5 and in turn Pbtransition = 0.25. Hence, it is
expected that the internal nets of each partition have
also a Pbtransition closer to 0.25 on average, compared
to those in an unpartitioned circuit. In other words,
partitioning the circuit helps to reduce the number

of rare event nets by increasing the overall transition
probability.

For having an ideal partitioning in the second sce-
nario, we should ensure that all partitions are ideal.
A simple way for this purpose is to start from two
partitions and increase the number of partitions until
we achieve an ideal partitioning. Clearly, as the num-
ber of partitions increases, the number of interface
pins (i.e. pins as interface between partitions) also
increases. Therefore, the probability of routing con-
gestion increases too. It is thus important to perform
partitioning in an efficient way to meet the transition
probability threshold constraint, while the number of
partitions is minimized. Here we present a transition-
aware partitioning, which halves each non-ideal par-
tition of the circuit till it reaches to an ideal parti-
tioning. This partitioning methodology is presented
in Algorithm 4 with more details.

We note that, in this algorithm, we have used auto-
mated partitioning (hMetis) tools to split a partition
into two partitions. hMetis, as described in Section 3.4,
performs partitioning such that the number of hyper-
edges (interface pins) between two partitions becomes
minimized. This is important as we use the adjacent
partitions of each partition as its TPG/ORAs. Af-
terward, this will reduce the probability of routing
congestion even further.

5 Results and Evaluations

For analyzing the proposed method, we applied it
to two ISCAS89 benchmarks: I) s38417, with 28 in-
puts, 106 outputs, and 1636 D-type flip-flops, and II)
s15850 with 77 inputs, 150 outputs, and 534 D-type
flip-flops. We performed transition-aware partition-
ing (described in Section 4.2) using FPGA TPC pro-
gram and the automated partitioning explained in Sec-
tion 3.4. We first synthesized and mapped the designs
into Virtex6 ML605 FPGA using ISE design suite for
the sake of FPGA-level simulation Then we used these

ISeCure

January 2021, Volume 13, Number 1 (pp. 29–45) 39

Algorithm 4 Transition Aware Partitioning Algorithm

Input: MyCircuit.v (the unpartitioned circuit)
Output: MyQueue (list of all partitions of MyCircuit.v, mak-

ing an ideal partitioning).

1: initialize S and MyQueue with empty queues;
2: initialize MyPartition with a partition;

3: add MyCircuit.v to S;

4: while S is not empty do
5: MyPartition = S.dequeue();

6: if MyPartition is ideal then

7: MyQueue.enqueue(MyPartition);
8: else

9: split MyPartition into partitions MyPartition1

and MyPartition2, using automated partitioning
described in Section 3.4;

10: S.enqueue(MyPartition1);
11: S.enqueue(MyPartition2);

12: end if

13: end while
14: return MyQueue

mapped designs as the input of FPGA TPC script,
which was run in Planahead software.

Experiments were performed for two transition prob-
ability thresholds: I) Pth1 = 10−4 and II) Pth2 =
2× 10−5. Then, three small Trojans were inserted to
both unpartitioned and partitioned circuits. For in-
serting the Trojans more realistically, nets with the
least transition probability were used as the inputs of
Trojan trigger circuits.

Trojans can be activated partially or fully. Partial
Trojan activation does not cause the payload output
to become wrong; however, there are some transitions
in the Trojan circuit [11]. Partial activation of Trojan
can accelerate Trojan detection using side channel
analysis methods, such as delay and power analysis.
Full activation of Trojan can help even further by
increasing the probability of observing wrong results
on primary outputs.

According to the above-mentioned explanations,
two parameters are defined for evaluating the results:

• Wrong primary output ratio (WPOR): This pa-
rameter could be considered as a factor of Tro-
jan detectability using functional analysis meth-
ods and is defined in Equation (7). In this equa-
tion, “# of test vectors resulting WPO” and
“# of clock cycles observing WPO” refer to
“the number of test vectors resulting in wrong pri-
mary outputs” and “the number of clock cycles
resulting wrong primary outputs”, respectively:

WPOR =
of test vectors resulting WPO

the entire number of test vectors

=
of clock cycles observing WPO∑
simulation cycles of all partitions

(7)

• Trojan circuit TC ratio (TCTCR): This param-
eter, defined in Equation (8), is related to par-
tial Trojan activation. Therefore, it could be
noticed as a factor of Trojan detectability us-
ing power analysis methods. In Equation (8),
TC of a circuit refers to the sum of transi-
tion counts of all nets in the circuit during the
simulation time. Additionally, Sim Cycle and
Avg TCofCircuit refer to the simulation clock
cycles, and the average transition count of the
circuit per clock cycle, respectively.

TCTCR =
TC of Trojan circuit

TC of the entire circuit

' TC of Trojan circuit

Sim Cycle×Avg TCofCircuit
(8)

It should be noted that Avg TCofCircuit is
assumed as a fixed number for large values of
simulation cycles. Therefore, for a long duration
of simulation time and for making comparison
between the results simpler, we could ignore this
parameter. In fact, instead of Equation (8), we
can define TCTCR as the following:

TCTCR =
TC of Trojan circuit

Sim Cycle
(9)

In the following, it is shown that the proposed
method increases both partial and full activation of
Trojans. Moreover, it is shown that in the case of full
Trojan activation, the probability of observing wrong
results on primary outputs increases significantly com-
pared to that of the unpartitioned circuit.

5.1 Unpartitioned (Original) Circuit

Simulations were run for 400,000 clock cycles for each
benchmark. One random test vector was applied to
the circuits per cycle. Table 1 shows the results of
each Trojan activity in the unpartitioned circuits.
Rows 1 and 2 of the table, referred to as In1 TC
and In2 TC, respectively, show the transition count
of the Trojan trigger inputs. TC of trigger output
is shown in row 3. Row 4 of Table 1 shows Trojan
circuit TC ratio, described earlier. All these numbers
were obtained from the switching activity interface
format (saif) of the design, generated by ISE design
suite [39]. The number of observed wrong results in
the payload output and primary outputs of the circuits
are referred to as “wrong payload output count” and
“wrong primary output count,” which are shown in
rows 5 and 6 of the table, respectively. In fact, “wrong
primary output count” takes “wrong payload output
count” one step further by making Trojan effect to
be observable even on the primary outputs of the

ISeCure

40 A Trusted Design Platform for Trojan Detection in FPGA Bitstreams Using PR — Shekofte et al.

circuits. Finally, wrong primary output ratio (WPOR)
is shown in row 7 of the table for making the results
more sensible.

5.2 Partitioned Circuit

The given results after transition aware partitioning
for two different transition probabilities are explained
as follows:

Partitioned circuit with Pth1: After running
FPGA TPC on the circuits, 24 nets in s38417 and
26 ones in s15850 circuits were found with a transi-
tion probability of lower than pth1. Using automated
partitioning and according to transition aware parti-
tioning, it was observed that 11 partitions in s38417
and 10 ones in s15850 circuit are needed to have no
rare event nets left in the partitions. The partitioning
related to s38417 is shown in Figure 7. In this figure,
partition number 1 is obtained by splitting the circuit
twice. Partitions 2 and 3 are achieved after splitting
the circuit for 3 times, while partitions 4 to 11 are
obtained by four times splitting the circuit. It is worth
mentioning that we stop splitting a partition once
the transition probability of all nets in the partition
becomes larger than Pth1.

Simulations were run for 400,000
11 cycles in s38417,

and 400,000
10 ones in s15850 circuit to make the results

fairly comparable with the ones obtained before par-
titioning. In fact, all partitions were assumed to be
run for this number of clock cycles. This way, the en-
tire number of clock cycles (i.e. simulation time), for
each circuit, would remain to be 400,000 cycles. As
the simulation results in Table 2 show, for all of the
three Trojans, In1 TC, In2 TC and trigger output TC
of each circuit increased significantly, compared to the
ones in Table 1. Additionally, TCTCR (row 4) for cir-
cuits s38417 and s15850 increased by about 290.93%
and 290.26% compared to the unpartitioned circuit,
respectively. TCTCR calulcations related to circuit
s38417 is discussed below:

• Average of TCTCR for unpartitioned circuit =

0.236+4.125e−4+0.587
3 ' 0.27447,

• Average of TCTCR for partitioned circuit (Pth1)
=

0.885+0.898+1.436
3 = 1.073,

• Increased average of TCTCR (unpartitioned
against partitioned circuit with pth1) ' 100 ∗
1.073−0.27447

0.27447 = 290.93%.

It should be noted that TCTCR in row 4 is com-
puted assuming a fixed value for Avg TCofCircuit
in Equation (8). However, while testing a partition

1

3

2
4

5

6

7

8

9

10

11

Figure 7. s38417 benchmark after partitioning with pth1

in the partitioned circuit, only PUT, TPG and ORA
partitions are running (having activities). Therefore,
Avg TCofCircuit is expected to be smaller while
testing a partition, compared to testing an unparti-
tioned circuit. In other words, the numbers in row 4
of Table 2 are expected to be even larger, i.e., the
power based Trojan detection capability is better than
what is reported in Table 2. However, for simplicity,
Avg TCofCircuit is assumed identical for both cases
(before and after partitioning).

The numbers in rows 5 to 7 of Table 2 increased
significantly, which shows a considerable improvement
in Trojan detection using functional methods.

Partitioned circuit with Pth2: After running
FPGA TPC on the circuits, it was observed that 13
nets in s38417 and 16 ones in s15850 circuit have a
transition probability of less than pth2. It was also
observed that 7 partitions in s38417 and 8 ones in
s15850 circuit are needed to remove all rare event nets.
Therefore, simulations for circuits s38417 and s15850
were run for 400,000

7 and 400,000
8 cycles, respectively.

Simulation results in Table 3 show a considerable
increase in the results compared to Table 1. Moreover,
TCTCR for circuits s38417 and s15850 increased by
about 131.48% and 203.11%, respectively. TCTCR
calulcations for circuit s38417 is elaborated below:

• Average of TCTCR for partitioned circuit (Pth2)
=

0.622+0.751+0.533
3 ' 0.6353333,

• Increased average of TCTCR (unpartitioned
against partitioned circuit with pth2) ' 100 ∗
0.6353333−0.27447

0.27447 = 131.48%.

Moreover, comparing the results with those in Ta-
ble 2 shows that considering pth1 as the threshold
value, Trojan detectability is higher; this is expected
and is because pth1 > pth2 (see Section 5.3 for more
details).

ISeCure

January 2021, Volume 13, Number 1 (pp. 29–45) 41

Table 1. Trojan Activity in The Unpartitioned Circuit

s38417 s15850

Trojan 1 Trojan 2 Trojan 3 Trojan 1 Trojan 2 Trojan 3

1 In1 TC 1 2 3 3 4 11

2 In2 TC 3 2 1 10 5 4

3 Trigger output TC 0 3 1 3 7 3

4 TCTCR 0.236 4.125e-4 0.587 0.254 3.552e-3 0.268

5 Wrong payload
output count

9 1 2 11 3 7

6 Wrong primary
output count

7 1 0 8 2 8

7 WPOR 1.75e-5 2.5e-6 0 2e-5 5e-6 2e-5

Table 2. Trojan Activity After Partitioning with pth1

s38417 s15850

Trojan 1 Trojan 2 Trojan 3 Trojan 1 Trojan 2 Trojan 3

1 In1 TC 301 8503 15081 925 13585 8420

2 In2 TC 16024 4010 204 14551 6224 724

3 Trigger output TC 16057 12322 1005 14671 18293 6773

4 TCTCR 0.885 0.898 1.436 0.525 0.743 0.783

5 Wrong payload
output count

16241 1184 1026 10026 1535 968

6 Wrong primary
output count

16205 295 8912 8231 1386 1554

7 WPOR 0.041 7.375e-4 0.022 2.058e-2 3.465e-3 3.885e-3

Table 3. Trojan Activity After Partitioning with pth2

s38417 s15850

Trojan 1 Trojan 2 Trojan 3 Trojan 1 Trojan 2 Trojan 3

1 In1 TC 766 5661 1890 1021 7657 7346

2 In2 TC 2451 6136 613 9462 9529 632

3 Trigger output TC 4102 12215 125 10703 12358 5281

4 TCTCR 0.622 0.751 0.533 0.522 0.603 0.468

5 Wrong payload

output count

2317 94 1056 2023 843 612

6 Wrong primary

output count

2001 3 4981 4022 872 1228

7 WPOR 0.005 7.5-6 0.012 1.005e-2 2.18e-3 3.07e-3

5.3 Evaluating the Results

As the results show, the proposed method increases
Trojan activation considerably; which improves Tro-
jan detection using both functional and side channel
analysis methods. As it was mentioned in Section 3,
the methodology can be used as a platform for dif-
ferent Trojan detection methods. It should be noted

that different types of Trojans could be detected by
different detection approaches. Therefore, a combina-
tion of such approaches can be applied together, to
improve Trojan detectability even further.

To evaluate the method, Trojans are inserted inside
the partitions; clearly, the proposed method can de-
tect a Trojan in the glue logic (i.e. the logic between

ISeCure

42 A Trusted Design Platform for Trojan Detection in FPGA Bitstreams Using PR — Shekofte et al.

partitions) even easier. This is because we are using
each partition as TPG/ORA of its adjacent partitions.
Therefore, any Trojan inserted in the glue logic will
directly change the logic or have side channel effects
on the primary inputs/outputs of the partition, which
makes Trojan effect more considerable (and its de-
tection easier). It should also be considered that the
methodology determines the location of the Trojan to
some extent, according to the location of the tampered
partition.

We note that, in the studied scenarios, the inte-
grators must have detailed information about IP de-
signs [10]. Therefore, bitstream encryption could not
be useful. Furthermore, bitstream encryption methods
are mentioned as Trojan prevention method, while
our purpose in this paper is to detect Trojans.

Overheads: As mentioned earlier, TPGs and ORAs
are applied to each partition by the resources of the
other partitions. Therefore, they have theoretically
no area overhead. Moreover for applying TPG/ORA
to the primary inputs/outputs, we could use the sec-
ond method described in Section 3.3 (an additional
partition), which does not even suffer the logic area
overhead of multiplexers. Furthermore, as mentioned
in Section 4.2, transition-aware partitioning is used
to avoid the possible routing congestion. This conges-
tion may be caused by I) extra switch matrices of the
additional partitions discussed in Section 3.3, or II)
increased number of pins due to partitioning. We note
that hMetis software performs partitioning such that
the number of interface pins becomes minimized (see
Section 3.4). Our experiments, performed on a number
of circuits from ISCAS89 bechmark [32], confirmed
no routing congestion.

We also note that, for the first scenario, small mar-
gins among the IPs/designs are needed to assure that
they won’t have conflict with each other. Thus, some
hardware area overhead cannot be denied. It should
be mentioned that such overhead does not need to be
considered for the second scenario.

It is worth mentioning that increasing pth means
a harder constraint on the transition probability of
all nets. This makes the probability of Trojan acti-
vation, and in turn detection capability, increase. In
other words, by increasing pth, time to detect a Tro-
jan decreases. On the other hand, by increasing pth,
the number of partitions that are required to satisfy
this threshold increases. Therefore, the probability of
routing congestion increases too. In fact, increasing
pth causes increased routing congestion and decreased
Trojan detection time. Clearly, this detection time de-
pends on the time that user can spend on testing the
circuit.

6 Conclusion

In this paper, a platform for detecting Trojans in
FPGA bitstreams has been presented. This method
improves Trojan detection as a result of increased
controllability and observability of a transition aware
partitioning. Additionally, partial reconfiguration fea-
ture of FPGAs has made it possible to use partitions
other than the partition under test as controller (TPG
and ORA). This has made logic area overhead of the
method almost negligible. Experimental studies on
the mapped version of s38417 ISCAS89 benchmark
show that for the transition probability thresholds of
10−4 and 2 × 10−5, this method increases the ratio
of the number of transitions (TCTCR) in the Trojan
circuit by about 290.93% and 131.48%, respectively,
compared to the unpartitioned circuit. Similar experi-
ments on s15850 for the transition probability thresh-
olds of 10−4 and 2×10−5 show an increase of 290.26%
and 203.11% in TCTCR, respectively. Moreover, the
ratio of observing wrong results in primary outputs in-
creases significantly, which could be helpful for Trojan
detection using functional methods.

References

[1] Rajat Subhra Chakraborty, Seetharam
Narasimhan, and Swarup Bhunia. Hardware
Trojan: Threats and Emerging Solutions. in
Proceedings of the High Level Design Validation
and Test Workshop, pages 166–171. IEEE, 2009.

[2] Yu Liu, Ke Huang, and Yiorgos Makris. Hard-
ware Trojan detection through golden chip-free
statistical side-channel fingerprinting. in Pro-
ceedings of the 51st Annual Design Automation
Conference, pages 1–6. ACM, 2014.

[3] Mohammad Tehranipoor, Hassan Salmani, and
Xuehui Zhang. Integrated Circuit Authentica-
tion: Hardware Trojans and Counterfeit Detec-
tion. Springer Science & Business Media, 2013.

[4] Mohammad Tehranipoor and Farinaz Koushan-
far. A survey of hardware Trojan taxonomy
and detection. Design and Test of Computers,
27(1):pages 10–25. IEEE, 2010.

[5] Josep Balasch, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Electromagnetic circuit fingerprints
for hardware Trojan detection. in Proceedings
of the International Symposium on Electromag-
netic Compatibility (EMC), pages 246–251. IEEE,
2015.

[6] Yu Liu, Yier Jin, Aria Nosratinia, and Yiorgos
Makris. Silicon demonstration of hardware Tro-
jan design and detection in wireless cryptographic
ICs. Transactions on Very Large Scale Integration
(VLSI) Systems, 25(4): pages 1506–1519. IEEE,
2017.

[7] Hassan Salmani. COTD: Reference-Free Hard-

ISeCure

January 2021, Volume 13, Number 1 (pp. 29–45) 43

ware Trojan Detection and Recovery Based on
Controllability and Observability in Gate-Level
Netlist. Transactions on Information Forensics
and Security, 12(2): pages 338–350. IEEE, 2017.

[8] Abdullah Nazma Nowroz, Kangqiao Hu, Farinaz
Koushanfar, and Sherief Reda. Novel techniques
for high-sensitivity hardware Trojan detection
using thermal and power maps. Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 33(12): pages 1792–1805. IEEE, 2014.

[9] Chongxi Bao, Domenic Forte, and Ankur Srivas-
tava. On application of one-class SVM to reverse
engineering-based hardware Trojan detection. in
Proceedings of the 15th International Symposium
on Quality Electronic Design (ISQED), pages 47–
54. IEEE, 2014.

[10] Shantanu Dutt and Li Li. Trust-Based Design and
Check of FPGA Circuits Using Two-Level Ran-
domized ECC Structures. Transactions on Re-
configurable Technology and Systems, 2(1): pages
1-6. ACM, 2009.

[11] Hassan Salmani, Mohammad Tehranipoor, and
Jim Plusquellic. New Design Strategy for Improv-
ing Hardware Trojan Detection and Reducing
Trojan Activation Time. in Hardware-Oriented
Security and Trust (HOST), pages 66–73. ACM,
2009.

[12] Atieh Amelian and Shahram Etemadi Borujeni.
A side-channel analysis for hardware trojan de-
tection based on path delay measurement. Jour-
nal of Circuits, Systems and Computers, 27(09):
pages 1–13, 2018.

[13] Dakshi Agrawal, Selcuk Baktir, Deniz
Karakoyunlu, Pankaj Rohatgi, and Berk Sunar.
Trojan Detection Using IC Fingerprinting. in
Proceedings of the Symposium on Security and
Privacy, pages 296–310. IEEE, 2007.

[14] Reza M Rad, Xiaoxiao Wang, Mohammad Tehra-
nipoor, and Jim Plusquellic. Power Supply Signal
Calibration Techniques for Improving Detection
Resolution to Hardware Trojans. in Proceedings
of the International Conference on Computer-
Aided Design, pages 632–639. IEEE/ACM, 2008.

[15] Xiaoxiao Wang, Hassan Salmani, Mohammad
Tehranipoor, and Jim Plusquellic. Hardware
Trojan Detection and Isolation Using Current
Integration and Localized Current Analysis. in
Proceedings of the Defect and Fault Tolerance
of VLSI Systems (DFTVS), pages 87–95. IEEE,
2008.

[16] Yuanwen Huang, Swarup Bhunia, and Prabhat
Mishra. Scalable test generation for trojan de-
tection using side channel analysis. Transactions
on Information Forensics and Security, 13(11):
pages 2746–2760. IEEE, 2018.

[17] Behnam Khaleghi, Ali Ahari, Hossein Asadi, and

Siavash Bayat-Sarmadi. FPGA-Based Protection
Scheme against Hardware Trojan Horse Insertion
Using Dummy Logic. Embedded Systems Letters,
7(2): pages 46–50. IEEE, 2015.

[18] Xuehui Zhang and Mohammad Tehranipoor.
RON: An On-Chip Ring Oscillator Network for
Hardware Trojan Detection. in Proceedings of
the Conference on Design, Automation and Test
in Europe and Exhibition, pages 1–6. IEEE, 2011.

[19] Youngok Pino, Vinayaka Jyothi, and Matthew
French. Intra-die process variation aware anomaly
detection in FPGAs. in Proceedings of the Inter-
national Test Conference, pages 1–6. IEEE, 2014.

[20] Seyed Mohammad Hossein Shekarian, Morteza
Saheb Zamani, and Shirin Alami. Neutralizing
a design-for-hardware-trust technique. in Pro-
ceedings of the 17th CSI International Sympo-
sium on Computer Architecture & Digital Systems
(CADS), pages 73–78. IEEE, 2013.

[21] Xue Mingfu, Hu Aiqun, and Li Guyue. Detect-
ing hardware Trojan through heuristic partition
and activity driven test pattern generation. in
Proceedings of the Communications Security Con-
ference (CSC), pages 1–6. IET, 2014.

[22] Hossain Fakir Sharif, Mohammed Abdul Kader,
and Tomokazu Yoneda. EqSA: A Golden-IC Free
Equal Power Self-Authentication for Hardware
Trojan Detection. in Proceedings of the Interna-
tional Conference on Innovations in Science, En-
gineering and Technology (ICISET), pages 86–91.
IEEE, 2018.

[23] Steve, Trimberger. Trusted design in FPGAs. in
Proceedings of the 44th annual Design Automation
Conference, pages 5–8. ACM, 2007.

[24] Amir Moradi, Barenghi Alessandro, Kasper Timo,
and Paar Christof . On the vulnerability of FPGA
bitstream encryption against power analysis at-
tacks: extracting keys from xilinx Virtex-II FP-
GAs. in Proceedings of the 18th conference on
Computer and communications security, pages
111–124. ACM, 2011.

[25] Rajat Subhra Chakraborty, Saha Indrasish,
Palchaudhuri Ayan, and Kumar Naik Gowtham.
Hardware Trojan insertion by direct modifica-
tion of FPGA configuration bitstream. Design &
Test, 30(2): pages 45–54. IEEE, 2014.

[26] Navneet Kaur Brar, Dhindsa Anaahat, and
Agrawal Sunil. Impact of Dummy Logic Insertion
on Xilinx Family for Hardware Trojan Prevention.
in Proceedings of the International Conference on
Advanced Informatics for Computing Research,
pages 64–74. Springer, 2019.

[27] Kan Xiao, Forte Domenic , and Mark Mohammed
Tehranipoor. Efficient and secure split manufac-
turing via obfuscated built-in self-authentication.
in Proceedings of the International symposium

ISeCure

44 A Trusted Design Platform for Trojan Detection in FPGA Bitstreams Using PR — Shekofte et al.

on hardware oriented security and trust (HOST),
pages 14–19. IEEE, 2015.

[28] Kan Xiao, Forte Domenic , and Mark Mohammed
Tehranipoor. A novel built-in self-authentication
technique to prevent inserting hardware trojans.
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 33(12): pages 1778–
1791. IEEE, 2014.

[29] Yuanwen Huang, Swarup Bhunia, and Prabhat
Mishra. Scalable test generation for trojan de-
tection using side channel analysis. Transactions
on Information Forensics and Security, 13(11):
pages 2746–2760. IEEE, 2018.

[30] Rana Elnaggar, Krishnendu Chakrabarty, and
Mehdi B Tahoori. Hardware trojan detection
using changepoint-based anomaly detection tech-
niques. Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 27(12): pages 2706–2719.
IEEE, 2019.

[31] Apostolos P Fournaris, Lampros Pyrgas, and
Paris Kitsos. An efficient multi-parameter ap-
proach for FPGA hardware Trojan detection. Mi-
croprocessors andMicrosystems, 71: pages 102863–
102878. Elsevier, 2019.

[32] ISCAS89 Benchmarks. http://www.pld.ttu.

ee/~maksim/ benchmarks/iscas89/verilog/.
[Online].

[33] Francis Wolff, Chris Papachristou, Swarup Bhu-
nia, and Rajat S Chakraborty. Towards Trojan-
Free Trusted ICs: Problem Analysis and Detec-
tion Scheme. in Proceedings of the conference
on Design,Automation and Test in Europe, pages
1362–1365. ACM, 2008.

[34] Shivam Bhasin and Francesco Regazzoni. A sur-
vey on hardware trojan detection techniques. in
International Symposium on Circuits and Sys-
tems (ISCAS), pages 2021–2024. IEEE, 2015.

[35] Faiq Khalid, Syed Rafay Hasan, Osman Hasan,
and F Awwad. Behavior Profiling of Power Dis-
tribution Networks for Runtime Hardware Tro-
jan Detection. in Proceedings of the International
Midwest Symposium on Circuits and Systems
(MWSCAS-2017), pages 1316–1319. IEEE, 2017.

[36] Xiaotong Cui, Kun Ma, Liang Shi, and Kaijie
Wu. High-level synthesis for run-time hardware
Trojan detection and recovery. in Proceedings of
the 51st Annual Design Automation Conference,
pages 1–6. ACM, 2014.

[37] Richard Neil Pittman. Partial Reconfiguration:
A Simple Tutorial. Technical report, Technical
Report, 2012.

[38] Partial Reconfiguration User Guide. UG702 (v12.
3), Xilinx. Inc., October, 5, 2010.

[39] Xilinx. http://www.xilinx.com. [Online].
[40] Jeyavijayan Rajendran, Vinayaka Jyothi, Ozgur

Sinanoglu, and Ramesh Karri. Design and analy-

sis of ring oscillator based Design-for-Trust tech-
nique. in Proceedings of the 29th VLSI Test Sym-
posium, pages 105–110. IEEE, 2011.

[41] hMetis Hypergraph and Circuit Partition-
ing. http://glaros.dtc.umn.edu/gkhome/

metis/hmetis/download. [Online].
[42] George Karypis and Vipin Kumar. A Hypergraph

Partitioning Package, 1998.
[43] Sayandeep Saha, Rajat Subhra Chakraborty,

Srinivasa Shashank Nuthakki, Debdeep
Mukhopadhyay, et al. Improved test pattern
generation for hardware trojan detection using
genetic algorithm and boolean satisfiability. in
Proceedings of the International Workshop on
Cryptographic Hardware and Embedded Systems,
pages 577–596. Springer, 2015.

[44] Yuanwen Huang, Swarup Bhunia, and Prabhat
Mishra. MERS: statistical test generation for
side-channel analysis based Trojan detection. in
Proceedings of ACMSIGSACConference on Com-
puter and Communications Security, pages 130–
141. ACM, 2016.

[45] Hassan Salmani and Mark M Tehranipoor. Vul-
nerability analysis of a circuit layout to hardware
trojan insertion. Transactions on Information
Forensics and Security, 11(6): pages 1214–1225,
2016.

[46] Rajat Subhra Chakraborty, Francis Wolff, Som-
nath Paul, Christos Papachristou, and Swarup
Bhunia. MERO: A Statistical Approach for Hard-
ware Trojan Detection. in Proceedings of the
Cryptographic Hardware and Embedded Systems
(CHES) Conference , pages 396–410. Springer,
2009.

[47] Trust-Hub Website. https://www.trust-hub.

org/. [Online].

Nastaran Shekofte received her
B.Sc. degree from Sharif University
of Technology, Tehran, Iran, in 2014,
in computer engineering (hardware).
Currently, she is an M.Sc. student in
Sharif University of Technology. Her
research interests include hardware

security and trust and cryptographic computations.

Siavash Bayat-Sarmadi received
the B.Sc. degree from the University
of Tehran, Iran, in 2000, the M.Sc.
degree from Sharif University of Tech-
nology, Tehran, Iran, in 2002, and the
Ph.D. degree from the University of
Waterloo in 2007, all in computer en-

ISeCure

http://www.pld.ttu.ee/~maksim/ benchmarks/iscas89/verilog/
http://www.pld.ttu.ee/~maksim/ benchmarks/iscas89/verilog/
http://www.xilinx.com
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
https://www.trust-hub.org/
https://www.trust-hub.org/

January 2021, Volume 13, Number 1 (pp. 29–45) 45

gineering (hardware). He was with Advanced Micro
Devices, Inc. for about 6 years. Since September 2013,
he has been a faculty member in the Department of
Computer Engineering, Sharif University of Technol-
ogy. He has served on the executive committees of sev-
eral conferences. His research interests include hard-
ware security and trust, cryptographic computations,
and secure, efficient, and dependable computing and
architectures. He is a member of the IEEE.

Hatameh Mosanaei-Boorani re-
ceived her B.Sc. and M.Sc. degrees
in computer engineering from Isfa-
han University of Technology (IUT),
Isfahan, Iran, and Sharif University
of Technology (SUT), Tehran, Iran,
in 2014 and 2017, respectively. Cur-

rently, she is a graduate research assistant at Sharif
University of Technology. Her research interests in-
clude digital circuit design, VLSI, image processing,
cryptographic computations, hardware security, and
hardware trust.

ISeCure

	1 Introduction
	2 Preliminaries
	2.1 Hardware Trojan Structure and Taxonomy
	2.2 Partial Reconfiguration

	3 Proposed Trusted Design Platform
	3.1 Secure Test Patterns/ORA Signatures Transfer
	3.2 Platform Based Detection Method
	3.3 Analyzing a Special Case
	3.4 Automated Partitioning

	4 Authentication Time Analysis
	4.1 Calculating Transition Probability
	4.2 Transition-aware Partitioning

	5 Results and Evaluations
	5.1 Unpartitioned (Original) Circuit
	5.2 Partitioned Circuit
	5.3 Evaluating the Results

	6 Conclusion

