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Abstract

In this paper, we present some attacks on GAGE, InGAGE, and CiliPadi,
which are candidates of the first round of the NIST-LWC competition. GAGE
and InGAGE are lightweight sponge based hash function and Authenticated
Encryption with Associated Data (AEAD), respectively, and support different
sets of parameters. The length of hash, key, and tag are always 256, 128, and
128 bits, respectively. We show that the security bounds for some variants of its
hash and AEAD are less than the designers’ claims. For example, the designers’
security claim of the preimage attack for a hash function when the rate is 128
bits, and the capacity is 256 bits, is 2256. However, we show that the security of
preimage for this parameter set is 2128. Also, the designer claimed security of
confidentiality for an AEAD, when the rate is 8 bits, and the capacity is 224
bits, is 2116. However, we show the security of confidentiality for it is 2112. We
also investigate the structure of the permutation used in InGAGE and present
an attack to recover the key for reduced rounds of a variant of InGAGE. In
an instance of AEAD of InGAGE, when the rate is 8 bits and the capacity is
224 bits, we recover the key when the number of the composition of the main
permutation with itself, i.e., r1, is less than 8. We also show that CiliPadi is
vulnerable to the length extension attack by presenting concrete examples of
forged messages.

c© 2020 ISC. All rights reserved.

1 Introduction

A cryptographic hash function maps any message
of arbitrary length to a string of specific length,
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e.g., n bits, where the output string is known as the
message digest or hash value. More formally, we can
define a hash function as follows:

H : {0, 1}∗ → {0, 1}n

Three main criteria for a secure cryptographic hash
function are preimage resistant, second-preimage re-
sistant, and collision-resistant. Among them, preim-
age attack means that given any h ∈ {0, 1}n, which is
an image of H, the attacker should find a M ∈ {0, 1}∗
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such that we must ensure H(M) = h. Also, for an
ideal hash function, which is modeled as a random
oracle, the expected complexity of finding a preimage
for an n-bit hash function is 2n.

An AEAD scheme is an Authenticated Encryption
with Associated Data, which takes a plaintext of
arbitrary length upper-bounded to a fixed value,
a key, and a nonce and gives a ciphertext and a
tag. Its encryption function is as follows where
K, N, A, P, C, T are key, nonce, associated data,
plaintext, ciphertext, and tag, respectively:

E(K,N,A, P ) = (C, T ).

Its decryption function is as follows:

D(K,N,A,C, T ) = (P,⊥).

If the Tag is verified, then decryption function re-
turns the plaintext P, otherwise, it returns the sym-
bol ⊥. Depending on the security assumption of
the scheme, an AEAD mode may allow returning
the plaintext even before evaluating the Tag. There
are many cryptographic hash functions or AEAD
schemes(e.g., SHA1 [1], SHA2 [2], SHA3 [3], PHO-
TON [4], Quark [5], Trivia [6], Helix [7], and many
others), but the majority of them have been designed
for desktop or server environments, so most of them
are not suitable for constrained devices. Thereby
NIST has started a competition for LWC. They pub-
lished the requirements for AEAD and Hash functions
on August 27, 2018 [8]. NIST received 57 schemes
to be considered for standardization until the dead-
line for submission on February 29, 2019. They an-
nounced 56 candidates for round 1 on April 18, 2019.
The candidates for round 2 announced on Septem-
ber 9, 2019, and they accepted 32 candidates for
round 2. We considered some of the 56 schemes, and
we found some weaknesses in two of the schemes.
We analyze the security of GAGE [9](v1) and In-
GAGE [10](v1.01) [11](v1.03) and CiliPadi [12] which
are two schemes of the 56 candidates for round 1.
On the other hand, GAGE and InGAGE are inter-
esting for the size of their s-box, which is very big:
232× 232. To the best of our knowledge, our work is
the first one to analysis these two schemes. NIST did
not accept these two schemes for the second round
because of the existing third-party analysis on them
that raised security concerns during the first round
of the process [8].

1.1 Our Contribution

Our contributions in this work are as follows and are
shown in table 1:

(1) We introduce a preimage attack on some vari-
ants of GAGE, and we show that the bound of

Table 1. Our contribution.

Attack Scheme Refer to

Preimage Some variants of GAGE Sec. 2.2,Table 2

Integrity
Two variants of InGAGE

Sec. 3.2, Table 4

Confidentiality Sec. 3.3, Table 5

Key recovery A variant of InGAGE Sec. 3.4, Table 6

Length extension Cilipadi Sec. 4.2, Table 7

security for them by designers’ claim is incor-
rect.

(2) We introduce an integrity attack on two variants
of InGAGE, and we show that the bound of
real security for them is less than the designers’
claims for them.

(3) We introduce a confidentiality attack on one
variant of InGAGE, and we show that its real
security is less than the designers’ claim.

(4) We introduce an attack for key recovery of one
variant of InGAGE when the number of itera-
tion of the composition of the main permuta-
tion Q with itself is reduced, and the security
bound for it is less than the length of the key.

(5) We present practical forgery attack against Cili-
Padi, thanks to the flaw in its padding approach.

The rest of the paper is organized as follows: in
Section 2, we present a brief description of GAGE
and CiliPadi. In Section 3, we present our finding
against the security of GAGE and InGAGE. Section 4,
presents a forgery attack on CiliPadi. Finally, the
paper is concluded in Section 5

2 Preliminaries

In this section, we give some notations that are used
in the rest of the paper and then give a brief descrip-
tion of GAGE and InGAGE [9](v1) and [11](v1.03).
We will give a brief description of CiliPadi(v1) [12]
in Section 4.1.

2.1 Notations

In this paper, the logical operation XOR and the
concatenation of x and y are referred to as ⊕, and
x||y, respectively. The logical operation "and" of two
string with the same length is denoted by ∧. Also, all
0xi symbols are hexadecimal of i, and we may omit
the 0x symbol.

2.2 A Brief Description of GAGE an
INGAGE

GAGE [9](v.1) uses sponge [13] based construction
to produce a 256-bit hash value for any given mes-
sage M . The input message is padded by a string
{80‖00∗}; at first, however, it has no impact on the

ISeCure



January 2020, Volume 12, Number 1 (pp. 13–23) 15

proposed preimage attacks in this work. GAGE sup-
ports different parameter sets that provide different
levels of security. A variant of this scheme has the
rate r = 128 bits, the capacity c = 256 bits, the state
b = r + c = 384 bits and produces outputs of length
n = 256 bits. For this variant, the security claim
against preimage attack is 2256. Given the message M
is padded as Mpad = M0‖M1‖. . . ‖Ml−2‖Ml−1 and
the permutation Q : {0, 1}b → {0, 1}b, where Q32

denotes the composition of Q with itself 32 times,
a brief representation of this scheme is depicted in
Figure 1 and works as follows, where ⊥ denotes an
empty string:

(1) Mpad →M0‖M1‖. . . ‖Ml−2‖Ml−1
(2) (S = Sr‖Sc)← 0
(3) H(M)← ⊥:
(4) Absorbing Phase: for 0 ≤ i ≤ l − 1 do:

(a) (S = Sr‖Sc)← (Sr ⊕Mi)‖Sc

(b) (S = Sr‖Sc)← Q32(S)
(5) Squeezing Phase: for 0 ≤ i ≤ n

r − 1 do:
(a) (S = Sr‖Sc)← Q32(S)
(b) H(M)← H(M)‖Sr

(6) return H(M)

Given that for the target parameter set n = 2 ×
r, to produce the hash value we need to call the
permutation function 2 times in the squeezing phase.

In Table 2, the security claim for different parame-
ter sets and our bound for them are presented. In the
next section, we describe a preimage attack against
a variant of GAGE, when r = 128 and c = 256, i.e.,
the parameter set #8 in Table 2.

InGAGE [9](version 1) is an AEAD built on sponge-
based construction. It has some different instances,
and the sets of their parameters and security claims
are given in InGAGE [9, Subsec. 2.2], as depicted
in Table 3. The plain-text and associated data can
be empty, this means it is possible that |P |= 0 or
|A|= 0. Given plain-text P, associated data A, key K,
and nonce N, first, the associated data and plain-text
are padded. Figure 3 shows a brief representation of
how encryption and decryption of this scheme work,
where for the permutation Q : {0, 1}b → {0, 1}b we
have P r1 = Q32, P r2 = Q16.

3 Security Analysis of GAGE and
InGAGE (v1,v1.03)

In this section, we present the attacks against GAGE
and InGAGE variants.

3.1 Preimage Attack

Almost similar to the analysis already used to prove
the security of a SPONGE based hash function by

Table 2. The claimed preimage security of all instances of
GAGE [9], where for all of them |Hash|= n = 256 and the
maximum message length is expected to be less than 264 and
our bounds for the security of each variant (details will be
presented in Section 2).

# b c r Preimage security Ref.

1 232 224 8
223 [9, Sec. 1.2]

112 Sec. 2

2 240 224 16
223 [9, Sec. 1.2]

112 Sec. 2

3 256 224 32
223 [9, Sec. 1.2]

112 Sec. 2

4 288 224 64
223 [9, Sec. 1.2]

192 Sec. 2

5 272 256 16
256 [9, Sec. 1.2]

240 Sec. 2

6 288 256 32
256 [9, Sec. 1.2]

224 Sec. 2

7 320 256 64
256 [9, Sec. 1.2]

192 Sec. 2

8 384 256 128
256 [9, Sec. 1.2]

128 Sec. 2

9 544 512 32
256 [9, Sec. 1.2]

256 Sec. 2

10 576 512 64
256 [9, Sec. 1.2]

256 Sec. 2

Guo et al. in [14, 15], given a valid h = H0‖H1,
to find a preimage in GAGE, when r = 128 and
c = 256, where (Q32)−1 denotes the inverse of the
permutation Q32 and {0}t denotes a t-bit zero string
, an adversary may do as follows: choose a random
string of {0, 1}128 for Sc and compute S−1r ‖S−1c =
(Q32)−1(Sr‖Sc) until S−1r = H0. We expected there
exists such string for Sc, because the length of Sc is
equal to the length of S−1r .The attack procedure is
also represented in Figure 2. After that go backward
two steps to compute S−2r ‖S−2c = (Q32)−1(S−1r ‖S−1c )
and S−3r ‖S−3c = (Q32)−1(S−2r ‖S−2c ). Then chose a
random string m ∈ {0, 1}120 and put M3 = m‖80.
Compute S−4r ‖S−4c = (Q32)−1((S−3r ⊕ M3)‖S−3c )
and for all value i ∈ {0, 1}128 compute Si

r‖Si
c =

(Q32)−1((S−4r ⊕ i)‖S−4c ) and save the pair (Si
r‖Si

c, i)
in a table Trev. Then for all value j ∈ {0, 1}128 com-
pute Sj

r‖Si
c = Q32(({0}128 ⊕ j)‖{0}256) and save the

pair (Si
r‖Sj

c , j) in a table Tdir. Now find an i and a j
such that Si

c = Sj
c where (Si = Si

r‖Si
c, i) ∈ Trev and

(Sj = Sj
r‖Sj

c , j) ∈ Tdir. By using these conditions for
the message M = j‖(Si

r ⊕ Sj
r)‖i‖M3 the hash of M

is h. The pseudo code of the attack is as follows:
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Figure 1. The hash mode of GAGE when the rate is 128 bits and the capacity is 256 bits; here Q denotes Q32[9].

Table 3. All instances of InGAGE [9] or [11].

# |K| |N | |T | b c r Confidentiality Integrity of P Integrity of A Nonce reuse Message size limit

(Power of 2 bytes)

1. 128 96 128 232 224 8 116 128 128 No 64

2. 128 96 128 240 224 16 120 128 128 No 64

3. 128 96 128 256 224 32 128 128 128 No 64

4. 128 128 128 320 256 64 128 128 128 No 64

5. 128 96 128 512 448 64 256 128 128 No 64

6. 256 128 128 512 448 64 256 128 128 No 64

(1) Sr ← H1

(2) S−1r ← ⊥
(3) while (S−1r 6= H0) and ((S−1r ) ∧ 0x /∈ {}):

(a) Sc
$←− {0, 1}256

(b) S−1r ‖S−1c ← (Q32)−1(Sr‖Sc)
(4) S−2r ‖S−2c ← (Q32)−1(S−1r ‖S−1c )
(5) S−3r ‖S−3c ← (Q32)−1(S−2r ‖S−2c )

(6) M3
$←− {0, 1}120‖80

(7) S−4r ‖S−4c ← (Q32)−1((S−3r ⊕M3)‖S−3c )
(8) for 0 ≤ i ≤ 2128 − 1 do:

(a) (S)← (S−4r ⊕ i)‖S−4c

(b) Trev
Stored in a Table←−−−−−−−−−−−− (Si = (Q32)−1(S), i)

(9) for 0 ≤ j ≤ 2128 − 1 do:
(a) (S)← ({0}128 ⊕ j)‖{0}256

(b) Tdir
Stored in a Table←−−−−−−−−−−−− (Sj = Q32(S), j)

(10) find a record (Si = Si
r‖Si

c, i) ∈ Trev and a
record (Sj = Sj

r‖Sj
c , j) ∈ Tdir such that Si

c =
Sj
c .

(11) return M = j‖(Si
r ⊕ Sj

r)‖i‖M3.

Given that the tables Trev and Tdir, each has the size
2128 and |Sc|= 256, we expect to find a matching
in Step 10. Finding such matching, the rest of the
attack will be straight forward. The attack complexity
is dominated by Steps 3, 9, and 8, each having the
complexity of 2128 calls to the underlying permutation
Q32 or its reverse (Q32)−1. On the other hand, given
any M 6= ⊥, calculating the hash value costs at least
three calls to Q32, for the target parameter set. Hence
the total complexity is of the order 2128 calculations

of the hash value of a message. Following this attack,
the designers have changed these security bounds
and announced it on page 4 of GAGE and InGAGE
document [10].

Remark 1. It is possible to extend the proposed
attack against other variants of GAGE also. However,
the complexity will be more than 2128, although it
could be less than the claimed security by the designer,
as it has been reported in Table 2. For instance, when
r = 64 and c = 320, i.e., parameters set number 7,
it is possible to adapt the present attack and find
preimage with the complexity of 2192. In general, the
preimage complexity of any variant is upper-bounded
by min[c, n,max( c2 , (

n
r − 1)× r)], also pointed out in

an independent work by Guo et al. [15].

3.2 Integrity Attack

From Table 3, we can see in variants number 1. and
2. of GAGE [9] we have b−|T |< |T |. In this situation,
for an arbitrary plaintext P and associated data A
(which their lengths are multiply of 8 in bits) when
|A|≥ (b − |T |−16), an adversary can obtain a valid
(C, T ). We denote the state after initializing and the
states after it by S0, · · · , Sn where S0 is the state
after XORing the key to the state after initializing
state and Sn is the final state (the state that the tag
is extracted from it) Figure 4. The attack works as
follows:

(1) Assume P ′ = ⊥ and produce a valid cipher and

ISeCure
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Figure 2. Illustration of the proposed preimage attack on GAGE when the rate is 128 bits and the capacity is 256 bits
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Figure 3. (a): Encryption and (b): Decryption of InGAGE [9] or [11].

its tag (C ′, T ′) for (K,N,A, P ′).
(2) By the padding method we have |Apad|≥ |A|+8

and |P ′pad|= 8. Notice that
|Apad|+|P ′pad|≥ |Apad|+8 + 8 ≥ b− |T |.

(3) Guess the remaining (b− |T |) bits of the final
state Sn and with padded plaintext P ′pad, asso-
ciated data Apad, calling (pr1)−1, and (pr2)−1

go backward and omit wrong guesses to recover
the final state Sn.

(4) Calculate (pr1)−1(Sn) to recover the state Sn−1
and then calculate (pr2)−1(Sn−1) to recover the
state Sn−2.

(5) Start with Sn−2 and after padding an arbitrary
plaintext P go forward to produce a valid cipher
and its tag (C, T ) for (K,N,A, P ).

(6) The complexity of the attack is 2b−|T | which
for the variant number 1 of InGAGE, the com-
plexity is 2104 and for the variant number 2 of
InGAGE it will be 2112.

Thereby, the security bounds of integrity for these two
instances are less than what the designers claimed.
They have represented them in Table 3. The results
are shown in Table 4. It should be noted that, fol-
lowing this attack, the designers have changed this
security bound and announced it on page 4 of GAGE
and InGAGE document [10].

Remark 2. Notice that in the above attack, we do
not query from encryption oracle with a fixed nonce
more than once, so we followed the nonce respecting
assumption by the designers.

Remark 3. We can use this attack to produce a
ciphertext and its tag for two arbitrary associated
data and plaintext A1, P1. For this purpose, we start
from known Sn in the encryption of (N,K,A, P ) and
by calling (pr1)−1 and (pr2)−1 go backward to recover
S0 then by stating from S0 and going forward we
can produce the ciphertext and its tag (C1, T1) for
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Figure 4. The position of states S0, · · · , Sn in InGAGE.

Table 4. Our bounds for integrity in variants number 1. and 2.

# |K| |N | |T | b c r Our bound Designers’ bounds

P - A P - A

1. 128 96 128 232 224 8 104 - 104 128 - 128

2. 128 96 128 240 224 16 112 - 112 128 - 128

Table 5. Our bounds for confidentiality in variants number 1.
and 2.

# |K| |N | |T | b c r Our bound of P Designers’ bound

1. 128 96 128 232 224 8 112 116

(N,K,A1, P1).

3.3 Confidentiality Attack

In this section, we introduce an attack to recover the
plaintext in instance number 1 of InGAGE version
(v1.03) [11], whose parameters are presented in Ta-
ble 3. The attack works as follows:

(1) Assume A, |A|≥ (b− |T |−24), is an associated
data and P is a plaintext with only one byte,
that is |P |= 8. For a nonce N and a key K,
suppose E(K,N,A, P ) = (C, T ).

(2) BY the padding method we have Ppad =
P‖80. Therefore |Ppad|= 16, |Apad|≥ |A|+8 so
|Apad|+|Ppad|≥ |Apad|+8 + 16 ≥ b− |T |.

(3) We have the tag T. Guess the remaining bits
of the final state Sn Figure 4 and the eight bits
of the plaintext P. By calling (pr1)−1, (pr2)−1

and padded plaintext Ppad and associated data
Apad in the backward side, omit wrong guesses
to recover the plaintext P .

(4) The complexity of the attack is 2(232−128)+8 =
2112.

Therefore, the designer’s claimed bound in In-
GAGE [11] for the confidentiality of this variant of
InGAGE must be modified. The result is shown in
Table 5.

Remark 4. The above attack can be developed for
the instance 1 of InGAGE version (v1.03). Suppose

A, |A|≥ (b− |T |−24), is an associated data and P =
P0‖P1 is a plaintext such that the P1 is only one byte
and both of A,P0 are some bytes. By using a method
like the above attack we can find the suffix P1 of
plaintext with complexity 2112. Like the above attack
we do:

(1) Ppad = P0‖P1‖80 so |P1‖80|= 16, |Apad|≥
|A|+8 and then
|Apad|+|P1‖80|≥ |Apad|+8 + 16 ≥ b− |T |.

(2) We have the tag T. Guess the remaining bits
of the final state Sn and the eight bits of the
plaintext P1. By calling (pr1)−1, (pr2)−1 and
the end part of plaintext P1‖80 and associated
data Apad in the backward side, omit wrong
guesses to recover the plaintext P1. Notice in
the backward side, when we reach a state whit
a byte of P0 XOR with it, we ignore that state
and by calling (pr2)−1 we go to the state before
it. We continue this way until we reach the
states which the bytes of Apad XOR with them,
and after that we use these states to omit the
wrong guesses.

(3) The complexity of this attack is 2(232−128)+8 =
2112.

3.4 Key Recovery Attack for Reduced
Rounds of Iteration

From table 3 in InGAGE [11] for variants number 1.
and 2., it can be seen that we have b− |T |< |K|. We
introduce an attack to recover the key in these two
variants of InGAGE when the number of iteration r1
is less than 9 instead of its real value which is 32. It
works as follows:

(1) Suppose A is an associated data which |A|≥
b− |T |−16, P = ⊥, therefore, Ppad = 80. So by
the method of padding |Apad|≥ |A|+8, |Ppad|=
8 and then |Apad|+|Ppad|≥ b− |T |.

(2) Guess the remaining b−|T | bits of the final state
Sn Figure 4 and by using padded associated
data and plaintext and calling (pr1)−1, (pr2)−1,
in backwards side omit the wrong guesses to find
the final state Sn. It is possible because of the
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length of padded associated data and plaintext
is greater than or equal to the number of guess-
ing bits. Then again by calling (pr1)−1, (pr2)−1,
go backward to find the state S0.

(3) By knowing S0 solve next equation

pr1(N‖K‖08)⊕ (0|N |+r‖K) = S0 (1)

to find the key K. The number of iteration for
composition of the permutation Q with itself is
r1 = 32 in InGAGE [11]. We cannot solve this
equation for real value of r1 = 32 yet. Therefore
we solve it for the reduced number of r1 < 8.

(4) We obtained an MILP (Mixed Integer Linear
Programing) model [16], for solving equation 1
by using Gurobi software [17], (some details of
our MILP model has come in Appendix). To
check our program we choose a random nonce
N and key K, then calculate the state S0 for
these N,K and a r1 ≤ 9, and after that we solve
equation 1 with this S0 to find the key K again.
In our experiments all the time, we got the key
K only and we didn’t find any other keys which
satisfy equation 1 with a fixed S0. We used a
personal computer (Intel Core (TM)i-7, 8 Gig
RAM, Windows 10, x64) and the results are
shown in Table 6.

(5) The complexity of this attack is related to guess-
ing 104 bits of state Sn and omitting the wrong
guesses. To omit every wrong guess we call
(pr1)−1 one time and (pr2)−1 several times. The
cost of these calling is less than the cost of en-
cryption of the plaintext with its associated
data. Therefore, the total cost of the attack is
of the order 2104 calculation of the encryption
of a message with its associated data. 2104 is
less than the length of the key in both variants
1. and 2. of InGAGE.

4 Length Extension Attack on
CiliPadi

4.1 A Brief Description of CiliPadi

In this section, we describe a family of lightweight
authenticated encryption with associated data called
CiliPadi (v.1) [12].

The CiliPadi[n, r, a, b] mode of operation is based
on the MonkeyDuplex construction and it consists of
four phases: initialization, associated data authentica-
tion, message encryption/decryption, and finalization
that is shown in Figure 5.

The key K and nonce N construct an n−bit value
which is used to initialize the mode of operation. The
bit-rate of this scheme is r bits and the capacity is
c = n− r bits. The permutation for the initialization
and finalization phases has a rounds while the permu-

tation for the associated data and message encryption
and decryption phases has b rounds, where b < a.

The CiliPadi[n, r, a, b] has four versions as CiliPadi-
Mild, CiliPadi-Medium, CiliPadi-Hot, and CiliPadi-
ExtraHot which are listed in Table 7, based on the
increasing level of security.

The components of CiliPadi are given in [12].

4.2 The Attack on CiliPadi

Note that, the designers of [12] for padding the asso-
ciated data and message blocks wrote that "Both the
associated data and message blocks are individually
padded only if its length is not a multiple of r bits.
Padding is performed by adding a bit 1, and then as
many zero bits as necessary until the padded data is
in multiple of r bits. If the length of the last block is
(r − 1) bits, then only bit 1 is added."

Based on this padding approach, the CiliPadi
is vulnerable against length extension attack, e.g.,
E(M,K) = E(M ||80), when M ∈ {0, 1}r−8. Table 8
shows an example of such a collision/forgery with
empty plaintext for the "Mild" version, based on
their reference source code.

Also, Table 9 shows a forgery example with non-
emphy plaintext. Note that the proposed attack works
against all variants of CiliPadi, i.e., Mild, Medium,
Hot, and ExtraHot. It should be noted, following this
attack, the designers have tweaked their proposal [12]

5 Conclusion

GAGE and InGAGE are candidates of the first round
of the NIST competition for lightweight cryptography.
In this work, we presented a preimage attack against
some variants of hash function GAGE (version 1) and
an integrity attack against two variants of InGAGE
(version 1) and a confidentiality attack against a vari-
ant of InGAGE (version 1.03) and an attack for the
recovery of the key against the reduced composition
of permutation for two variants of InGAGE (version
1.03). The proposed attacks are some structural at-
tack, which can be summarized as follows:

(1) The exact security for preimage of the variant
of GAGE for which the rate is 128 bits and
the capacity is 256 bits is upper-bounded by
2128, much below the designers’ claim, which is
2256. This attack decreases the security bound
of some other variants of GAGE.

(2) The exact security for the integrity of the vari-
ant of InGAGE, for which the rate is 16 bits
and the capacity is 240 bits, is upper-bounded
by 2112, and the exact security for the integrity
of plaintext and the associated data of the vari-
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Table 6. Our time for running the MILP model to solve the equation 1 for finding the key, t is the time (second) and r1 is the
number of composition of permutation Q with itself.

# nonce key r1 t

N K seconds

1. FE1FADD3BF068066306F5BDB 5B2A479228606D12D56844BBA862987E 1 .01

2. FE1FADD3BF068066306F5BDB 5B2A479228606D12D56844BBA862987E 2 .01

3. FE1FADD3BF068066306F5BDB 5B2A479228606D12D56844BBA862987E 3 .04

4. FE1FADD3BF068066306F5BDB 5B2A479228606D12D56844BBA862987E 4 141.88

5. FE1FADD3BF068066306F5BDB 5B2A479228606D12D56844BBA862987E 5 5.12

6. 1E1FADD3BF068066306F5BDB DB2A479228606D12D56844BBA862987E 5 18.35

7. 1E1FADD3BF068066306F5BDB DB2A479228606D12D56844BBA8629875 5 4.80

8. 1E1FADD3BF068066306F5BDB DB2A479228606D12D56844BBA8629875 6 110.44

9. 1E1FADD3BF068066306F5BDB DB2A479228606D12D56844BBA8629875 7 215.05
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Figure 5. CiliPadi mode of operation [12].

Table 7. All instances of Cilipadi, # r′ denotes number of rounds.

CiliPadi- [n, r, a, b] |K| |N | |T | |Block|# r′ of Pa
n # r′ of P b

n

Mild [256,64,18,16] 128 128 64 64 18 16

Medium [256,96,20,18] 128 128 96 96 20 18

Hot [384,96,18,16] 256 128 96 96 18 16

ExtraHot [384,128,20,18] 256 128 128 128 20 18

Table 8. An example for a collision/forgery with empty plaintext for the "Mild" version of CiliPadi.

Key 000102030405068008090A0B0C0D0E80 000102030405068008090A0B0C0D0E80

Nonce 000102030405068008090A0B0C0D0E80 000102030405068008090A0B0C0D0E80

Plaintext - -

AD 00010203040506 0001020304050680

Ciphertext - -

Tag 158244EEA881F6C9 158244EEA881F6C9
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Table 9. An example for a collision/forgery with non-empty plaintext for the "Mild" version of CiliPadi.

Count 529 496

Key 000102030405060708090A0B0C0D0E80 000102030405060708090A0B0C0D0E80

Nonce 000102030405060708090A0B0C0D0E80 000102030405060708090A0B0C0D0E80

Plaintext 000102030405060708090A0B0C0D0E80 000102030405060708090A0B0C0D0E

AD - -

Ciphertext 4A1EAAD2F68E41B3891A5632EC092000 4A1EAAD2F68E41B3891A5632EC0920

Tag CA7773AC3434B7 CECA7773AC3434B7

ant of InGAGE, for which the rate is 8 bits and
the capacity is 232 bits, is upper-bounded by
2104, below the designers’ claim which is 2128

for both variants.
(3) The exact security for the confidentiality of

plaintext of the variant of InGAGE, for which
the rate is 8 bits and the capacity is 232 bits,
is upper bounded by 2112, a little below the
designers claim which is 2116.

(4) The exact security for the recovery of the key
of two variants of InGAGE, for which the rate
is 8(or 16) bits and the capacity is 232(or 240)
bits with reduced number of compositions r1 <
8 are 2b−|T |, less than the length of the key 128.

(5) Also, In this paper, we applied a length exten-
sion attack on CiliPadi variants.
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6 Appendix: MILP model

In this section we describe some details of our model
for finding the key K by given Sn. The main nonlin-
ear substitution s-box in InGAGE is a 4× 2 boolean
function Q whose algebraic normal form (ANF) is
Q(x1, x2, x3, x4) = (x1 ⊕ x3 ⊕ x2x3 ⊕ x2x4, 1⊕ x1 ⊕
x2 ⊕ x2x3 ⊕ x4 ⊕ x2x4), page 7 of InGAGE (version
v1.03) [11]. We did like the method sugeted in Ab-
delkhalek et.al.’s paper [18]. We define a 6×1 boolean
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function f(x1, x2, x3, x4, y1, y2) = 1 if and only if
Q(x1, x2, x3, x4) = (y1, y2) and by using free program
"Logic Friday" we took the product of sum of f and
by using them, we obtained 16 linear inequalities for
four inputs and two outputs of this s-box as follows:

x1+x2+x3−y1 >= 0 , −x1−x2−x4−y1 >= −3

x1−x2+x4− y1 >= −1 , x1+x2−x3+ y1 >= 0

x1−x2−x4+y1 >= −1 , −x1−x2+x4+y1 >= −1
−x1−x2−x3−y2 >= −3 , x1−x2+x3−y2 >= −1
−x1+x2+x4−y2 >= −1 , x1−x2−x3+y2 >= −1
−x1−x2+x3+y2 >= −1 , −x1+x2−x4+y2 >= −1
x2−x3−x4−y1−y2 >= −3 , x2+x3−x4+y1−y2 >= −1
x2−x3+x4−y1+y2 >= −1 , x2+x3+x4+y1+y2 >= 1

Then in a similar way, we obtained four inequalities
for every XOR x⊕ y = z as follows:

−x+ y + z >= 0 , x− y + z >= 0

x+ y − z >= 0 , x+ y + z <= 2

We defined for every round states, b unknown input
and b unknown output variables. There are some
relations between these variables in the InGAGE
algorithm; by using the above inequalities and these
relation, we obtained all linear inequalities of our
MILP model.
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