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Abstract

This paper explores the algebraic matching approach for detection of
vulnerabilities in binary codes. The algebraic programming system is used for
implementing this method. It is anticipated that models of vulnerabilities and
programs to be verified are presented as behavior algebra and action language
specifications. The methods of algebraic matching are based on rewriting rules
and techniques with usage of conditional rewriting. This process is combined
with symbolic modeling that gives a possibility to provide accurate detection of
vulnerabilities. The paper provides examples of formalization of vulnerability
models and translation of binary codes to behavior algebra expressions.

c© 2019 ISC. All rights reserved.

1 Introduction

T he algebraic approach in cybersecurity was de-
manded over the past two decades with the ap-

pearance of efficient solving and deductive tools. Dif-
ferent techniques like symbolic modeling [1] and con-
colic computations [2] use this approach because it
has created more possibilities for detection in cyber-
security.

The Defense Advanced Research Projects Agency
(DARPA) launched the Cyber Grand Challenge [3] to
create defensive systems with purposes of automated,
scalable and fast detection of vulnerabilities and cyber
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threats. In 2016, there were three winners that used
the symbolic modeling technique as a detection algo-
rithms, which gives the possibility to provide more
efficient implementation of program paths traversal.

However, there are still a number of problems re-
lated to efficiency and accuracy of vulnerability detec-
tion solutions. Specially, complex symbolic modeling
algorithms require using deductive tools, like solv-
ing and proving machines that are much slower than
a heuristic search or matching for compliance with
vulnerability indicators. The other problem is the in-
accuracy of these algorithms because of insufficient
formalization of vulnerability signatures that entails
a fake detection or impossibility.

This paper considers the algebraic approach that we
apply when searching for vulnerability by combining
the rewriting rules technique and symbolic modeling.

2 Main Approach

The main idea of the method is to present the vulner-
ability description in a formal language and match it
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with binary code in the verification phase. Both the
code and vulnerability model are presented by using
behavior algebra expressions [4].

Behavior algebra is a two-sorted universal algebra.
The main sort is a set of behaviors, and the second
one is a set of actions. The algebra has two opera-
tions, three terminal constants and an approximation
relation. The operations has the prefix a.u (where a is
an action and u is a behavior) and non-deterministic
choice of behaviors u + v (associative, commutative,
and idempotent operations on the set of behaviors).
The terminal constants can be among successful ter-
mination ∆, deadlock 0 and unknown behavior ⊥.
This algebra is also enriched by two operations: par-
allel (||) and sequential (;) compositions of behaviors.
Examples of behavior expressions are given below:

1B0 = a1.a2.B1 + a3.B2 (1)

B1 = a4.∆ (2)

B2 =⊥ (3)

These imply that behavior B0 could be interpreted
as a sequence of actions a1 and a2 followed by behav-
ior B1, or as action a3 followed by unknown behavior
B2. Behavior B1 will finish after action a4.

This action language has been developed within the
scope of the Algebraic Programming System (APS)
[5] that was implemented at the Glushkov Institute of
Cybernetics. It is built over an attribute environment
that changes its state under some conditions formed
by values of attributes. Every action is defined by the
precondition and postcondition as a formula in some
basic logic language. As a basic logical language, we
consider the set of formulas of first-order logic over
polynomial arithmetic. As a whole, the semantic of
the action means that the environment can change
its state if the precondition is satisfiable and the
state will change correspondingly to the postcondition.
The postcondition can also contain an assignment
statement that defines new state of the environment.

In the proposed solution, the general scheme of
the algebraic approach implies translation of binary
code into behavior algebric expressions and sets of
actions. During the first stages, we should disassem-
ble the input binary code. Reading the instructions
of compiled and linked programs, we can process the
part of the system that contains third-party tools or
libraries that can also be the source of vulnerabilities.
In the development environment, assembler code can
be directly produced by the compiler. Having disas-
sembled the code, we can translate it into the behav-
ior algebra expressions and set of actions defining the
semantic of instructions through action language.

The next stage is to use the database of vulnera-
bility models that are created from the description of
known vulnerabilities. These models can be derived
from a standard database of vulnerability, like Com-
mon Vulnerabilities and Exposures [6]. After prepara-
tion, we use the algebraic programming system and
its component for further implementation of algebraic
matching. The translated code and database of vul-
nerabilities are the inputs of the algebraic matching.

3 Formal Model of Code

We consider the low-level code as the set of instruc-
tions of the Intel 64 and IA-32 processors. It shall
also be considered as the interaction between the pro-
cessor and memory in an algebraic environment. The
architecture is composed of the attribute environ-
ment, where attributes are the set of general-purpose
registers (AH, AL, AX, EAX, RAX, etc.) of different
types (byte, word, double word, etc.) and different bit
capacities. Moreover, we consider as attributes the set
of flags that is contained in the EFLAGS/RFLAGS
register. In a large amount of instructions, we distin-
guish:

• control flow instructions (e.g. JCC, JMP, CALL,
etc.)
• instructions that change the attribute environ-
ment. These instructions change the values of
registers or memory, can provide calculation,
and compare values in registers with settings of
corresponding flags.

We transform the sequence of instructions into be-
havior algebraic expressions with actions with pre-
conditions containing predicates and postconditions
that define changing attributes. For example, branch
instruction 60c984 : jne 60cb50 can be converted to
a behavior algebra expression, covering possible out-
comes based on the state of the ZF flag in EFLAGS:

B_60c984 = a_jne1.B_60cb50+a_jne2.B_60c98a

where the actions are given as follows:

ajne1 = (ZF = 0)→ 1 (4)

ajne2 =∼ (ZF = 0)→ 1 (5)

We denote behavior identifiers together with the
hexadecimal address of instructions in a program seg-
ment for traceability to the assembly code. The ex-
pression above means that the instruction at the ad-
dress 60c984 will pass the control to the instruction
at the address 60cb50 if flag ZF is equal to 0; other-
wise the next instruction at the address 60c98a will
be performed. The preconditions of action are equali-
ties (ZF = 0) and ∼ (ZF = 0). The postcondition is
absent, so it is equal to 1. This means that the envi-
ronment state is not changed after the instruction is
performed.
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The instructions that change the environment and
its attributes can be presented as actions with a
postcondition containing this change. For example,
the instruction:

60c99d : add DWORD PTR[r13 + 0x15c], r8d

will be transformed to

B_60c99d = a_add_3480.B_60c9a4

where
a_add_3480 = 1→ (6)

Memory(r13 + 348) := Memory(r13 + 348) + r8d;
(7)

ZF := (Memory(r13 + 348) + r8d = 0); (8)
SF := (Memory(r13 + 348) + r8d < 0) (9)

This instruction performs the addition of a memory
element that is available at the given address in reg-
ister r13 to the content of double word register r8d.
The given flags will be set to bit 1 or 0 corresponding
to the truth of the given equality or inequality. There
are other flags (e.g., CF, OF, AF, PF, etc.) that are
affected, but these are not illustrated for simplicity.

All the semantics of instructions have been defined
directly following specification in the data sheet, and
we see that formalization of executable code is not
that complicated for representation with formal logic
language. Consider the following code fragment:

Figure 1. Example of code.

which can be translated to algebra behavior expres-
sions:

Figure 2. Behavior expressions.

The actions in behavior can be presented as the
following in specialized syntax:

Figure 3. Actions of behaviors.

Therefore, the behavior expressions present the
control flow of the program, and the actions define
the changing of the attributes by means of the basic
language. Further, they will be considered as the
input of algebraic matching.

4 Formal Model of Vulnerability

Vulnerability implies undesired behavior of a program
that an attacker can exploit for malicious actions. It
can be caused by development errors, developerâĂŹs
backdoors, or bad design. Algebraic matching per-
forms a smart search of vulnerability into the binary
code, so together with an algebraic model of binary
code we shall develop a model of vulnerability.

We consider the example of model creation study-
ing the buffer overflow vulnerability. It is a known
vulnerability described by [7]. Considering the pro-
gram behavior, we can see that access to addresses of
bytes that are larger than the declared buffer length
can offer access to automatic memory - especially the
stack that leads to execution of code. An attacker
can copy the address of malicious code to this part
of the stack and launch it.

The model of vulnerability will be created in a
behavior algebra expression model and derived from
the assembler (x86) code. Our solution is applicable
for C-language with the corresponding assembler set
of instructions:

In the above rectangles, there is the assembler in-
structions that correspond to the C-code and present
the given vulnerability. The process of creating the
model begins with the first stage which is the cre-
ation of the behavior algebra expression. The given
example is simple and we can define the sequence of
actions that corresponds to the sequence of instruc-
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Figure 4. Code of vulnerability “buffer overflow”.

tions such as:

mov.movzx.mov.mov.add.add.mov.movzx.test.jne

The sequence expresses copying a buffer in any
memory cell. The features of the example are that
the buffer is declared as a parameter of function and
it shall be allocated in the stack. Also, in the set of
instructions, we have the cycle that checks the end of
the byte sequence as the end of the string (0). These
two features are the sources of vulnerability.

Thus, we have the behavior algebra expression that
implies the cycle:

B1 = a1.a2.a3.a4.a5.a6.a7.a8.a9.(a10.B1+! a10.B2)

with the following actions, that contain the following
preconditions:

a1 : (mnem(a1) = mov)&(arg1(a1) = rax)&

(arg2(ptr) = rbp− 16)&

(arg2(format) = QWORD)

a2 : (mnem(a2) = movzx)&(arg1(a1) = edx)&

(arg2(ptr) = rax)&(arg2(format) = BY TE)

. . .

where mnem(x), arg1(x), arg2(x) are the predicate
that define the semantic of every instruction and state
of environment before its being performed.

This expression shows the very concrete situa-
tion that was performed in corresponding C-code.
To create the general algebraic model, we should
parametrize the model. For example, the call of pa-
rameters can be arbitrary so arg2(ptr) = rbp−PP ∗8,
where PP shall be calculated correspondingly to

the stack reserved automatic memory. The other
situation is that the rax-register can be occupied
and the other general-purpose registers can be used.
In this case we should define arg2(ptr) = XX
where XX = rax||XX = rbx||. . . or define predicate
regType(arg2(ptr)).

In addition, there can be the situation when the
vulnerability code is hidden inside the other code,
or it can alternate with the independent sequence of
statements in C-code or instructions in the assembler
code. We can denote the average behavior and obtain
the following sequence:

B1 = a1.X1.a2.X2.a3.X3.a4.X4.a5.X5.a6.X6.

a7.X7.a8.X8.a9.X9.a10.X10.B1

where Xi âĂŞ is a behavior. This behavior also can
be restricted by environment state. For example, the
value of rax-register between a1 and a2 shall not be
changed. We can define a precondition for behavior
that we will use for algebraic matching. For example,
for X1:

(var = rax),

where var is a special variable for the storing of our
rax value. Then, in the precondition of a2 we will use
(rax = var).

The process of model creation can be automated
fully or particularly after correct preparation of
the source and assembler code. The more we can
parametrize the algebraic model of vulnerability, the
more effectively we can detect additional varieties of
the given vulnerability in a code.

5 Algebraic Matching

Algebraic matching is based on the non-deterministic
system of rewriting that was implemented within the
scope of the algebraic programming system. This sys-
tem has been implemented in the Glushkov Institute
of Cybernetics of the National Academy of Science
of Ukraine in 1987. Historically, APS is the first sys-
tem that has started to use the technology of term
rewriting in combination with user-defined strategies
of rewriting.

Algebraic programming is based on rewriting. It
extends functional programming and has applications
in solving algebraic compute problems (word prob-
lems in finite algebras, or completion algorithms like
Knuth-Bendix or Buchberger) and in operational se-
mantics of programming languages (executable alge-
braic specifications of software components, defini-
tions of operational semantics of programming lan-
guages, or developing interpreters and prototypes of
software components).
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The rewriting system contains the set of rewriting
rules. We specialized the rewriting rule that can be
presented as the following equality:

A(x, y, . . .) = B(x, y, . . .)

where A(x, y, . . .) and B(x, y, . . .) are algebraic ex-
pressions over the variables x, y, . . . that are behaviors
and actions.

The algebraic system matches two expressions and
rewrites A correspondingly to B, performing the sub-
stitution of matched attributes. Rewriting rules can
be also conditional such as:

C(a, b, . . .)→ A(x, y, . . .) = B(x, y, . . .)

where a, b, . . . are the attributes of environment. This
means that rewriting can be performed if condition
C(a, b, . . .) over attributes is true.

Strategy is a function that defines the strategy of
rewriting; for example, left-side or right-side rewriting.
There also can be user-defined rewriting defining the
coverage of states of environment.

With the above descrition, we can present the
model for detecting vulnerabilities with the following
system of rewriting rules:

precond(a1)→ a1.y = 1, y,

precond(X1)→ 1, X1.y = 2, y,

precond(a2)→ 1, a2.y = 2, y,

precond(X2)→ 2, X2.y = 3, y,

. . .

precond(a7)→ 10, a10.y = Delta

In thid model, we have the conditional rewriting
rules that are defined by preconditions of correspond-
ing actions and average behaviors (X1, X2, . . .). The
rewriting starts in a program to be verified from the
first occurrence of action a1 where its precondition
is satisfiable. If such a case exists, then we start the
rewriting from this point and it means that the first
rule a1.y is matched. The variable y indicates that the
rest of the program must be verified and we rewrite
a1.y as 1, y. The numbering means the order of the
matched behaviors. The rewriting process will be per-
formed if the corresponding number is matched also.

The next step is to match y, the tail of the pro-
gram, with other left parts of rewriting systems that
contain number 1. It can bean arbitrary behavior X1
that satisfied precondition precond(X1) or action a2
that satisfied precondition precond(a2). We continue
matching before we match a10.y and rewrite it as
Delta. This means that the vulnerability has been
detected.

We can continue algebraic matching due to the
different strategies and with selection of different
coverage of code. For example, we can find all the
shortest behaviors Xi or get only the first matched
sequence of actions leading to vulnerability.

When providing algebraic matching, it is necessary
to mention that checking of preconditions is the most
expensive procedure. With parameters of the program
we have the algebraic expression with unknown vari-
ables where we should detect the satisfiability with
usage of proving or solving tools. For efficiency rea-
sons we can separate the algebraic matching proce-
dure into two stages. The first stage is the algebraic
matching where the precondition contains only con-
crete values and is easy to calculate. The second stage
is to provide symbolic modeling of the obtained trace.

Symbolic modeling starts from the initial action
of the vulnerability sequences that can be presented
by an initial formula. Then, we can apply the action
corresponding to the behavior algebra expression. The
action is applicable if its precondition is satisfiable
and consistent with the current state. With the initial
state S0 and from the behavior B0, we select the next
action. In the first step we check the satisfiability of
the conjunction

S0 ∧ Pa1

where B0 = a1.B1, and Pa1 is a precondition of a1.
The next state of the environment will be obtained by
means of the predicate transformer [? ]; that is, the
function over the current agent state, precondition,
and postcondition:

PT (Si, Qai) = Si+1

where Qai is a postcondition of a1. By applying the
predicate transformer function to different environ-
ment states, we obtain the sequence S0, S1, . . . of for-
mulas that express the environment states changing
from the initial state.

The second stage of the algebraic matching is im-
plemented by comparing the environment state of the
program to be verified with the preconditions of every
action from the vulnerability model. If their intersec-
tion is satisfiable then it is matched. The criterion of
vulnerability detection is the matching of the whole
trace on both levels.

6 Discussion and Conclusions

The first experiments with algebraic matching have
been performed within the scope of APS and the
Garuda AI platform. It covered 15 known vulnerabili-
ties from the Common Vulnerabilities and Exposures
(CVE) database.
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The main benefit of an algebraic approach is that
we have more accurate detection of vulnerability. The
description of the vulnerability covers a set of its
possible varieties. One of the advantages is that the
faster procedure of detection (algebraic matching)
shall be implemented first and the more expensive
stage (symbolic modeling) afterwards.

The main problem or shortcoming of the approach
is that the problem of reachability is undecidable in a
general way. There can be exponentially resulting to
explosion of the state space and possible program sce-
narios during algebraic matching. These are typical
problems in the model-checking community. These
challenges shall be resolved by using alternative sym-
bolic methods like invariant generation, approxima-
tion, or backward symbolic modeling. The different
settings of searching can reduce the state space; for
example, we can provide some coverage of code lines.
However, this reduction can cause us to miss vulner-
abilities.

The other problem is insufficient formalization of
vulnerabilities and lack of generalization in the sim-
ilar work. Different compilers in different operation
environments can use other registers and differ or-
ders of instructions. In this case, the automation of a
vulnerability model and generation of its varieties in
different environment shall be provided.
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