The ISC Int'l Journal of
Information Security

INVITED PAPER

January 2010, Volume 2, Number 1 (pp. 3-11)

http://www.isecure-journal.org

Stream Ciphers and the eSTREAM Project”

Vincent Rijmen **
2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC and IBBT, Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium,

and Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a,
A-8010 Graz, Austria

ARTICLE INFO. ABSTRACT

Article history:
Received: 6 October 2009

Stream ciphers are an important class of symmetric cryptographic algorithms.
The eSTREAM project contributed significantly to the recent increase of

Revised: —
Accepted: 30 November 2009
Published Online: 18 January 2010

activity in this field. In this paper, we present a survey of the eSTREAM
project. We also review recent time/memory/data and time/memory/key

Keywords:
Cryptology, Stream Ciphers,
Time-Memory Trade-offs,

trade-offs relevant for the generic attacks on stream ciphers.

© 2010 ISC. All rights reserved.

eSTREAM

1 Introduction

The design of secure stream ciphers is one of the old-
est problems in cryptography. Although there exists
a nicely developed theory that answers several of the
important questions, the question is not fully solved
(and it will probably never be). After the completion
of the Advanced Encryption Standard (AES) process,
block ciphers were firmly in the center of the crypto-
graphic community’s attention. Some people started
wondering aloud whether there was still any practical
application for stream ciphers or a reason to perform
research on them. The eSTREAM project to evaluate
stream ciphers, organized by the ECRYPT Network
of Excellence, can be seen as an answer formulated by
the part of the cryptographic community that does
care about stream ciphers. It turned out to be a large
part of the community.

In this paper, we give an overview of the eSSTREAM
project and we describe some lessons learnt on the

* Sponsored by Onderzoeksfonds K.U.Leuven / Research fund
K.U.Leuven OT/08/027.

* Corresponding author.

Email address: vincent.rijmen@esat.kuleuven.be (V.
Rijmen).

ISSN: 2008-2045 © 2010 ISC. All rights reserved.

design of secure stream ciphers. In Section 2 we start
with one of the remarkable issues in the stream ciphers
versus block ciphers debate, namely the fuzzy border
separating them from one another. In Section 3, we
describe some general results that were obtained dur-
ing the eSSTREAM competition. These generic attacks
bound the best security that can be achieved for a
given size of the secret key and the internal state. Sec-
tion 4 discusses the eSTREAM highlights and events.
We present some concluding remarks in Section 5.

2 Synchronous Stream Ciphers, Self-
Synchronizing Stream Ciphers and
Block Ciphers

Many introductory texts on symmetric cryptography
distinguish two classes of primitives for symmetric
encryption, namely block ciphers and stream ciphers.
An often-cited example of a historical block cipher is
the Caesar cipher. More modern examples include the
public algorithms Data Encryption Standard (DES)
and AES. Example stream ciphers are the historical
Enigma cipher, RC4 and various ciphers based on
Linear Feedback Shift Registers (LFSRs).

ISeﬂure@

Stream Ciphers and the eSTREAM Project —V. Rijmen

2.1 Definitions

The Handbook of Applied Cryptography gives the fol-
lowing definitions for a synchronous, respectively self-
synchronizing stream cipher.

Definition 1 (Synchronous Stream Cipher [13,
Definition 6.2]). A synchronous stream cipher
(SSC) is one in which the keystream is generated
independently of the plaintext message and of the
ciphertext.

Denoting message blocks by m;, ciphertext blocks
by ¢;, the key by x and the content of the internal
state of the stream cipher at time ¢ by o;, an SSC can
be described by the following equations:

Ui+1:f((7¢,fi), (1)
Zi =g(0¢,f€), (2)

Here og is the initial value of the internal state and
20,21, 22, . - . is the keystream. The function g is called
the output transformation.

Definition 2 (Self-Synchronizing Stream Ci-
pher [13, Definition 6.5]). A self-synchronizing
stream cipher (SSSC) is one in which the keystream
is generated as a function of the key and a fixed
number of previous ciphertext digits.

In an SSSC, Equation (1) is replaced by:

0i = (Cimts Cimtt1s-- -1 Ciz1)- (4)

Note that the Handbook defines both synchronous
stream ciphers and self-synchronizing stream ciphers
in terms of the more general class of stream ciphers.
Interestingly, the Handbook omits to give a general
definition of a stream cipher. Instead, the Handbook
defines block ciphers and provides guidelines to dis-
tinguish stream ciphers from block ciphers.

Although there exists a common and clear intu-
ition about the difference between a block cipher and
a stream cipher, capturing this intuition in precise
mathematical statements proves to be a challenge.
The Handbook defines a block cipher as follows:

Definition 3 ([13, Definition 7.1]). An n-bit block
cipher is a function E : V,, x K — V,, such that for
each key k € K, E,(P) is an invertible mapping from
Vi, to V,, written Ex (P).

The Handbook also points out two properties in
which block ciphers and stream ciphers tend to differ
[13, page 192]:

Block ciphers process plaintext in relatively large

18:0ured)

blocks (e.g. n > 64 bits). The same function is
used to encrypt successive blocks; thus (pure) block
ciphers are memoryless. In contract, stream ciphers
process plaintext in blocks as small as a single bit,
and the encryption function may vary as plaintext
is processed; thus stream ciphers are said to have
memory. They are sometimes called state ciphers ...
This distinction between block and stream ciphers
is not definitive (...); adding a small amount of
memory to a block cipher (as in CBC mode) results
in a stream cipher with large blocks.

The Handbook proposes hence to take the size of
the blocks processed and the presence or absence
of memory as criteria to distinguish between block
ciphers and stream ciphers.

If we consider the modern stream cipher proposals,
for example the proposals submitted to the eSTREAM
competition, then it turns out that many of the best-
performing stream ciphers work on relatively large
blocks, just like block ciphers. This is true in particular
for stream ciphers designed to have a high performance
in software; they usually process large blocks in order
to benefit from the large registers available on modern
Processors.

Secondly, it should be pointed out that for the vast
majority of practical applications, and for all appli-
cations that require some kind of provable security,
block ciphers are being used in a mode of operation
which introduces state (memory). Hence, this crite-
rion to distinguish between block ciphers and stream
ciphers turns out to be imprecise. On the other hand,
among cryptographers, there appears to be a common
intuition about which primitive should be considered
to be a stream cipher and which a block cipher. We
think that this intuition is captured by the following
working definition.

2.2 New Working Definition

Any secure encryption method contains a kind of inter-
nal state, a family {F} }, of state update transforma-
tions and a family {G,}. of mechanisms to produce
ciphertext. In mathematical notation, we can write:

oit1 = Fe(oi,m;), (5)
ci =Geloi,m;). (6)

A block cipher is a family { E }; of permutations which
can be used in a certain configuration —known as a
mode of operation— to define the transformations F,
G . Hence a block cipher based encryption method is
an example of a modular design, consisting of a block
cipher on the one hand, and a mode of operation on
the other hand.

January 2010, Volume 2, Number 1 (pp. 3—11)

A stream cipher is an encryption method which
doesn’t necessarily employ this modular approach. By
allowing more general constructions for Fj, and G,
the designers aim to achieve a better tradeoff between
performance, security and cost.

Note: In the Electronic Code Book (ECB) mode
of operation, there is no internal state. It can be
treated as a special case of the previous definition,
with state size 0. Alternatively, we can exclude it from
consideration because for the majority of applications,
the ECB mode of operation can’t be considered secure.

2.3 Constructions

Traditionally, definitely in academic research papers,
SSC’s have been constructed from Linear Feedback
Shift Registers (LFSRs). The main advantages of
LFSRs are their compactness in hardware, the well-
developed mathematical theory surrounding their de-
sign and the good randomness properties. Their main
disadvantage is of course their linearity, which needs
to be destroyed or hidden. This is typically done by
employing a nonlinear output filter, adding nonlinear
components to the feedback function or using irregular
clocking (decimation). Nonlinear output filters come
with the most developed mathematical theory, but
recent improvements in cryptanalysis methods have
rendered most of the known designs insecure [5]. Non-
linear feedback functions or, more generally nonlinear
state update transformations occur in large variety.
They typically come with very little theory and con-
sequently their security is not well understood. Many
designs have been broken by means of fast correlation
attacks [12], linear attacks [7, 8], resynchronization
attacks [0], etc.

3 Trade-offs in Generic Attacks on
Stream Ciphers

One of the interesting effects of the eSTREAM com-
petition was a renewed interest in generic attacks on
stream ciphers. The literature describes several brute-
force generic attacks on stream ciphers. From a high-
level point of view, the attacks can be described as a
sequence of two phases:

Precomputation phase: The results of the compu-
tations performed in this phase can be reused for
several iterations of the attack. Typically, the re-
sults are some tables which are used to speed up
the last phase of the attack. We denote the binary
logarithm of the computational complexity of this
phase by P.

Online phase: The attacker collects data, which usu-
ally consists of ciphertexts and corresponding known

or chosen plaintexts. We count the amount of data
collected in units of k bits, and denote the binary
logarithm of this quantity by D. This data is com-
bined with the results of the precomputation phase
to recover the key. We denote the binary logarithm
of the computational complexity of this phase by 7.

We denote the binary logarithm of the sum of the
memory requirements of the precomputation phase
and the online phase of the attack by M.

3.1 Exhaustive Attacks

For a straightforward exhaustive key search, there is
no precomputation, the attacker collects a negligible
amount of known plaintexts, and uses a negligible
amount of memory (P = D = M = 0). The online
computational complexity is given by T' = k.

On the other hand, we can also imagine an attack
scenario where the attacker precomputes the cipher-
text for a given chosen plaintext under all possible keys,
and stores the result in a table. This gives P = M = k.
The online phase of the attack consists of obtaining
the ciphertext corresponding to the chosen plaintext
and looking up the key in the table (D ~ T = 0).

Notes:

(1) For an SSC a chosen-plaintext attack can always
be replaced by a known-plaintext attack with
the same complexities.

(2) Some authors argue that it is not realistic to say
that the time to look up data in a table doesn’t
depend on the size of the table [2]. All authors
agree that memory cost and computation cost
are very different things. Hence, when comparing
various trade-off curves or points on a given
trade-off curve, one has to be careful. A point
with a much higher T', but a slightly decreased
M compared to its alternatives, might well be
the best choice.

Between the two extreme cases formed by exhaus-
tive key search and a full table based attack, several
trade-off scenarios can be defined. They are discussed
next. We denote the key length (in bits) by k. The
classical time-memory trade-off described by Hellman
[10] has the following complexities:

T=M=2k/3, P=kand D =0,
which can be generalized to
T+2M =2k, P=Fkand D =0.

This trade-off works for any one-way function, hence
also for stream ciphers. The attack recovers the secret
key.

1S¢0ured)

3.2 Time-Memory-Data Trade-offs

For stream ciphers with an unkeyed output transfor-
mation, it is possible to define trade-off attacks target-
ing the internal state instead of the key. We denote the
size of the internal state (in bits) by s. Babbage and

Goli¢ (BG) [1, 9] describe time-memory-data trade-off
attacks with:
T+M=s, D=T and P = M. (7)

Biryukov and Shamir (BS) [1] describe time-memory-
data trade-off attacks targeting the internal state with:

T+2M+2D=2s, T>2Dand P+ D =s. (8)

In ‘practice’; one usually chooses T = 2D for the
Biryukov-Shamir trade-off. If the state size is at least
twice the key length, then both the Babbage-Goli¢
trade-offs and the Biryukov-Shamir trade-offs become
less efficient than the previously described attacks.

3.3 Time-Memory-Key Trade-offs

In [3, 11] a new type of trade-off is considered: the
time-memory-key trade-off. The attack works in a
scenario where an attacker can obtain a large number
of short key streams, produced with different keys,
but the same IV. The attack recovers one of the keys.

We denote by K the binary logarithm of the number
of keys that are attacked in parallel. The trade-offs
(7) and (8) become now:

T+M=k K=TandP=M, (9)
T+2M+2D =2k T>2Kand P+ K =k . (10)

The data complexity of the attacks equals 1 k-bit
string per key.

Figure 1 compares the Babbage-Goli¢ trade-offs
and the Biryukov-Shamir trade-offs. For increasing K,
the Biryukov-Shamir has a faster decreasing memory
complexity, but a slower decreasing computational
complexity. It follows that the Biryukov-Shamir ap-
proach is better adapted to the current state of com-
puting technology, where computations are cheaper
than memory.

4 eSTREAM

The eSTREAM competition was a project in the Net-
work of Excellence (NoE) ECRYPT, which was funded
by the EU in the Framework 6 Information Society
Technologies (IST) programme, under the strategic
objective 2.3.1.5 “Towards a global dependability and
security framework.” ECRYPT ran from February
2004 until July 2008. In August 2008, it was succeeded
by ECRYPT II.

18:0ured)

Stream Ciphers and the eSTREAM Project —V. Rijmen

AT, M, P
T(BS) T(BG)
kA ,,,,,,,,,,,,,,,,,,,,
:MB$:P:MBQ K
k/2 k

Figure 1. Time-Memory-Key trade-offs for the Babbage-Goli¢
(BG) and for the Biryukov-Shamir (BS) curves. The precom-
putation (P) curve is the same for both cases, and equal to
the BG memory M curve.

4.1 ECRYPT

ECRYPT counted five wirtual labs grouping re-
searchers from each of the partners around 5 different
themes in cryptology and information security:

STVL stood for Symmetric Techniques Virtual Lab
and dealt with themes in symmetric cryptography,

Aztec stood for Asymmetric Techniques Virtual Lab
and dealt with themes in asymmetric cryptography,

Provilab stood for Protocols Virtual Lab and coor-
dinated research in cryptographic protocols,

Vampire stood for Virtual Applications and Imple-
mentations Research Lab and researched new tech-
niques related to efficient and secure implementa-
tions (of cryptographic algorithms),

Wavila stood for Watermarking Virtual Lab and has
goal to bring watermarking and perceptual hashing
to a higher degree of maturity.

Note that in ECRYPT II, there are only three virtual
labs remaining. STVL has been renamed into Symlab,
Aztec and Provilab have merged into a new virtual
lab called Maya, Vampire has not changed, and the
activities of Wavila are not continued within ECRYPT
II.

4.2 eSTREAM Goals

The eSTREAM competition was administrated by
members of STVL. The goals of the competition were
twofold: firstly, to advance our understanding of the
design and analysis of secure stream ciphers, and sec-
ondly, to identify a portfolio of promising stream ci-
phers. In contrast to the Advanced Encrypotion Stan-

January 2010, Volume 2, Number 1 (pp. 3—11)

dard (AES) process organized by NIST, eSTREAM
was strictly speaking not a standardization effort. In
reality however, several standardization bodies, e.g.
ISO, ETSI, paid close attention to the outcomes of
the eSTREAM evaluation process. Indeed, several re-
searchers participating in the eSTREAM evaluation,
who were at the same time experts in standardization
bodies, ensured an informal exchange of information.
An important advantage of the lack of formal status
was the increased freedom with respect to procedures.
For instance, during the evaluation process, submit-
ters were allowed to significantly modify their designs
in order to counter newly-developed cryptanalytic at-
tacks. This was done in order to give designers of in-
teresting algorithms the opportunity to fix flaws that
were identified early in the process.

Also an earlier EU-sponsored research project,
NESSIE, which ran from 2000 until 2003, included a
competition for cryptographic algorithms. The scope
of NESSIE was much wider then eSTREAM, and
fewer stream ciphers were submitted. All submissions
were broken during or shortly after the NESSIE
competition. This illustrated once more the apparent
lack of knowledge about the design of fast and secure
stream ciphers. It was also one of the reasons to allow
the submitters in eSTREAM to fix the flaws in their
designs.

Figure 2 shows the time line of eSTREAM. After
the initial Call for Primitives, which was published in
November 2004, there were 3 evaluation phases, each
followed by a narrowing-down of the submissions. The
final selection, or portfolio, was presented in April 2008
(updated in September 2009). Three State of the Art
of Stream Cliphers (SASC) conferences were organized,
one near the end of each of the three evaluation phases
and almost exclusively dedicated to the eSSTREAM
project. Additionally, one Symmetric Key Encryption
Workshop (SKEW) was organized at the start of the
evaluation process.

4.3 Preparation Phase

During the preparation phase, several players in the
field, both from industry and academia, were con-
tacted and brought together to discuss the require-
ments to put forward in the evaluation and selection.
The central theme was to define one or more environ-
ments in which stream ciphers could offer substantial
advantages over other cryptographic primitives.

The Call for Primitives was published in November
2004. It specified two types of environments, for which
it was believed that stream ciphers could offer the
largest advantage over block ciphers, in particular over
the Advanced Encryption Standard (AES).

Profile 1, also known as the software profile aimed
for stream ciphers with an extremely high through-
put in software implementations. Ciphers in this
category needed to support key lengths of at least
128 bits and IV lengths of 64 and 128 bits.

Profile 2, also known as the hardware profile aimed
for stream ciphers suited to implementations in re-
stricted hardware environments (small area, small
power /energy consumption). Ciphers in this cate-
gory needed to support key length of at least 80
bits and IV lengths of 32 and 64 bits.

The Call mentioned also that associated authentica-
tion mechanisms could be proposed and would be
evaluated. At the end of the competition, it turned
out that no authentication mechanism was deemed to
be secure enough and at the same time running with
a sufficiently high performance.

The official evaluation criteria were:

(1) Security,

(2) Performance, when compared to AES and when
compared to other submissions,

(3) Justification and supporting analysis,

(4) Simplicity and flexibility of the design,

(5) Completeness and clarity of the submission.

The most important criterion was of course security,
but apart from the Boolean variable broken/unbroken
it is difficult to distinguish different designs based on
their security alone. Performance comparisons, on the
other hand, lead automatically to rankings, which are
more convenient when comparing several designs. In
order to make these rankings as fair as possible, an
extensive software performance comparison tool was
developed, which tested out various platforms and
compiler options.

The three remaining criteria were used mostly as
a filter. For example, designs that were completely
lacking supporting analysis or had ambiguous docu-
mentation, had a larger chance of being rejected early
on in the evaluation process.

eSTREAM received in total, 34 submissions. The
majority of the submissions came from European
teams, but Australia, China, USA, Canada, ... were
represented, too.

Nine designers submitted their algorithm to Profile
1 and twelve to Profile 2. Thirteen of the designers
submitted their algorithm to both profiles. There was
no punishment for submitting an algorithm to both
profiles, so this was probably the most sensible choice
from the designers’ point of view. Only two of the
submissions were SSSC. Seven submissions included a
method to authenticate data. The designs were based
on LFSRs, NLFSRs, T-functions, SP-networks or a

1S¢0ured)

Stream Ciphers and the eSTREAM Project —V. Rijmen

Phase Date

Event

Preparation (10/°04-4/°05)
14-15/10/°04

SASC 2004

11/°04 Publication of the First Call for Primitives
29/4/°05 Deadline Submission of Primitives

Phase 1 (5/°05-3/°06)
26-27/5/°05 SKEW 2005: Presentation of Submissions
2-3/2/°06 SASC 2006

Phase 2 (8/°06-3/°07)
31/1-1/2/°07
26/3/°07

SASC 2007
Publication of Phase 2 Report

Phase 3 (4/°07-4/°08)
12-13/11,/°07

STVL Stream Cipher Retreat

13-14/2/°08 SASC 2008
15/4/°08 Publication of the eSTREAM Portfolio
8/9/°08 Publication of the eSTREAM Portfolio Revl

Figure 2. Main eSTREAM events.

combination of several of them. The majority of the
submissions were presented at the Symmetric Key
Encryption Workshop (SKEW 2005) organized by
Ecrypt/STVL on May 26-27, 2005, which marked the
start of Evaluation Phase 1.

4.4 Phasel

Phase 1 ran from May 4th, 2005 until February 2006.
It was characterized by a large number of cryptana-
lytic results on the submissions. Security issues were
identified in no less than 22 candidates. This relatively
large number of weaknesses can again be seen as a
proof of the fact that stream cipher design was (is)
not a fully understood discipline (yet).

During Phase 1, the eSTREAM framework for soft-
ware performance testing was finalized and made avail-
able to the public. The framework made it possible to
measure the software performance of algorithms on a
variety of platforms and compilers. The typical stream
cipher encryption process consists of three parts: key
setup, IV setup and raw keystream production. In or-
der to get a balanced view on the performance of the
submissions in practical applications, the performance
was measured for keystreams of 40 bytes, 576 bytes,
1500 bytes and for stream encryption, i.e. without
taking into account the setup phases.

Producing a good hardware implementation of a

18:0ured)

cipher takes more time, and is much less an automated
process than software compilation. During Phase 1, it
became clear that it is difficult to compare hardware
implementations made by different teams because of
the many different hardware libraries. There appeared
also to be a shortage of teams with good background
in both cryptology and hardware implementations.
This led to suboptimal implementations. As a result,
the outcome of hardware implementation efforts was
not decisive in the early phases of eSTREAM.

At the end of Phase 1, a panel of experts read all re-
ports and evaluated the 34 submissions. Seven submis-
sions were not advanced to Phase 2, or were archived.
A submission was archived only when security weak-
nesses had been identified or a very bad software per-
formance had been reported, and the submitters had
failed to propose a fix or didn’t submit updated code
and documentation.

4.5 Phase 2

Phase 2 ran from August 2006 until March 2007. Many
of the submissions that had been fixed after Phase 1
also changed names slightly in this phase. For exam-
ple, the new version of the cipher Mosquito was called
Moustique. The cipher Mickey continued as two dif-
ferent ciphers, namely Mickey v2 and Mickey-128 v2.
This made for a total of 28 submissions at the start of

January 2010, Volume 2, Number 1 (pp. 3—11)

Phase 2.

This large number of survivors, despite the large
amount of cryptanalytic results in Phase 1, was a con-
sequence of the liberal policy towards algorithm fixes.
From the start of Phase two on, no more algorithm
fixes would be allowed.

In order to focus the attention of the evaluators on
a smaller group of promising ciphers, the surviving
submissions were divided into two categories: Phase 2
algorithms and Focus phase 2 algorithms. New results
of cryptanalysis could move a submission from the
Focus phase 2 category to the Phase 2 category, and
this could lead to the ‘promotion’ of new algorithms
into the Focus category. From the submitters’ point of
view, being in the Focus category was a dubious honor,
because the increased attention from cryptanalysts
could be expected to result in the sooner discovery of
weaknesses in the submission, and hence its elimina-
tion from the competition. Furthermore, it remained
unclear until the end of Phase 2 whether a submis-
sion needed to be in the Focus category in order to
be selectable for Phase 3 at all or not. Although it is
difficult to find out whether the introduction of the
Focus category contributed much to the evaluation
process, it remains a fact that also in the second phase
of the eSTREAM evaluation there was a multitude of
cryptanalytic results and performance comparisons.

4.6 Phase 3

Phase 3 ran from April 2007 until April 2008. This
phase started with the publication of the end report
on Phase 2 [15]. The 16 ciphers selected for Phase 3,
8 for each profile, are listed in Table 1.

Seven of these ciphers were not Focus phase 2 ci-
phers. It is remarkable that at the start of Phase 3,
there were no authentication methods left, because
they were either broken or too slow. Even in this ad-
vanced stage of the evaluation process there were still
cryptanalytic results on some of the ciphers.

In the Escargot project (European Stream Ciphers
are Ready to Go), the eight surviving Profile 2 ciphers
were implemented together on an ASIC and fabricated
on 0.18 pum CMOS [17]. The chips were available free
of charge to groups with a recognized capability for
side-channel analysis.

4.7 The eSTREAM Portfolio

The eSTREAM project did not end with the selection
of one ‘winner.’ Instead, a portfolio of algorithms was
selected. There are several motivations for selecting a
portfolio. Firstly, since the stream ciphers are mainly
intended for use in ‘extreme’ environments, it makes

Table 1. The Phase 3 ciphers. Ciphers with * were Focus
phase 2 ciphers.

Profile 1 Profile 2
CryptMT Decim v2
Dragon* Edon-80
HC-128* F-FCSR-H
LEX* Grain v1*
NLS* Mickey v2*
Rabbit Moustique
Salsa20* Pomaranch
Sosemanuk* Trivium*

Table 2. The eSTREAM portfolio, Revl, Sept. 2008. Only
Rabbit was not in the Focus phase 2 category.

Profile 1 Profile 2
HC-128 Grain v1
Rabbit Mickey v2
Salsa20/12 Trivium
Sosemanuk

sense to offer a selection with varying characteristics,
suitable for different applications: fast stream encryp-
tion, short packet encryption, large security margin,
novel design or based on classical components, etc.
Secondly, because of the immature nature of the area,
it was expected from the start that some of the ciphers
would drop out after new cryptanalytic results would
have become available.

The first eSTREAM portfolio was announced in
April 2008, together with a report on the findings of
Phase 3 [16]. The portfolio contained eight algorithms,
four in each profile. Shortly after the announcement
of the portfolio, results were announced on the stream
cipher F-FCSR-H. This cipher was hence removed
from the September 2008 revision of the portfolio,
which is listed in Table 2. Since then, no changes have
been made to the portfolio. Rabbit is the only stream
cipher in the portfolio that was never in the Focus
phase 2 category.

5 Concluding Remarks

The eSTREAM project resulted in a portfolio of 8
(now 7) stream ciphers that are recommended for
further study. Although the most visible, the portfolio

1S¢0ured)

Stream Ciphers and the eSTREAM Project —V. Rijmen

is definitely not the only, and probably not the most
important result of eSSTREAM.

The eSTREAM project succeeded in enlivening the
research area of stream ciphers. The eSTREAM web
site attracted several hundreds of thousands of visits.
The online discussion forum attracted high-quality
postings. It appears that the competitive aspect of
the evaluation effort increased the attractiveness to
designers, implementors and evaluators, driving many
researchers all over the world to spend time and effort
on this project. The research performed during this
project resulted in papers presented at the dedicated
series of SASC workshops, but also at international
top conferences like FSE, SAC and Eurocrypt. The
question is of course whether the level of activity in
the field will remain at this increased level or not.

During the evaluation of the submissions, it also
became clear that some tough stream cipher related
research questions remain open. For example, all of
the submitted self-synchronizing stream ciphers were
broken, so the design of a secure and efficient SSSC re-
mains an open problem. Secondly, almost all practical
applications of encryption need in fact authenticated
encryption. Few authentication mechanisms were sub-
mitted to eSTREAM, and all of them were broken or
an order of magnitude slower than the encryption pro-
cess. Also this remains an area where further research
is welcomed.

A survey of the eSTREAM submissions and survey
papers of their software and hardware performance as
recorded by eSTREAM, can be found in [14].

Acknowledgements

This article is based on a talk I gave at ICISC 2008;
I would like to thank its organizers for inviting me
to talk on this topic. Secondly, I want to thank Bart
Preneel, the coordinator of ECRYPT and ECRYPT?2
for providing me with supporting material.

References

[1] Steve Babbage, A Space/Time Tradeoff in Ex-
haustive Search Attacks on Stream Ciphers, Fu-
ropean Convention on Security and Detection,
Volume 408, 1995.

[2] Dan J. Bernstein, Understanding Brute Force,
Workshop on Symmetric Key Encryption (SKEW

2005), Arhus, May 27th, 2005. http://cr.yp.

to/talks/2005.05.27/slides.pdf

[3] Alex Biryukov, Sourav Mukhopadhyay, Palash
Sarkar, Improved Time-Memory Trade-offs with
Multiple Data, Selected Areas in Cryptography

18:0ured)

[10

11

16

[17]

(SAC 2005), LNCS 3897, pages 110-127, Springer-
Verlag, 2006.

Alex Biryukov, Adi Shamir, Cryptanalytic
Time/Memory/Data Tradeoffs for Stream Ci-
phers, ASTACRYPT 2000, LNCS 1976, pages 1—
13, Springer-Verlag, 2000.

Nicolas Courtois, Fast Algebraic Attacks on
Stream Ciphers with Linear Feedback, CRYPTO
2008, LNCS 2729, pages 176-194, Springer-
Verlag, 2003.

Joan Daemen, René Govaerts, Joos Vandewalle,
Resynchronization Weaknesses in Synchronous
Stream Ciphers, FUROCRYPT 1993, LNCS 765,
pages 159-167, Springer-Verlag, 1994.

Jovan Dj. Goli¢, Correlation via Linear Sequential
Circuit Approximation of Combiners with Mem-
ory, EUROCRYPT 1992, LNCS 658, pages 113—
123, Springer-Verlag, 1993.

Jovan Dj. Goli¢, Linear Cryptanalysis of Stream
Ciphers, Fast Software Encryption (FSE 1994),
LNCS 1008, pages 154-169, Springer-Verlag,
1995.

Jovan Dj. Goli¢, Cryptanalysis of Alleged A5
Stream Cipher, EUROCRYPT 1997, LNCS 1233,
pages 239-255, Springer-Verlag, 1997.

Martin Hellman, A Cryptanalytic Time-Memory
Trade-off, IEEE Transactions on Information
Theory, Volume 26, pages 401-406, 1980.

Jin Hong, Palash Sarkar, New Applications of
Time Memory Data Trade-offs, ASTACRYPT
2005, LNCS 3788, pages 353-372, Springer-
Verlag, 2005.

Willi Meier, Othmar Staffelbach, Fast Correla-
tion Attacks on Certain Stream Ciphers, J. Cryp-
tology Vol. 1, No. 3, pages 159-176, 1989.
Alfred J. Menezes, Paul C. van Oorschot, Scott
A. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

Matthew Robshaw, Olivier Billet, New Stream
Clipher Designs, LNCS 4986, 2008.

Steve Babbage, Christophe de Canniére, Anne
Canteaut, Carlos Cid, Henri Gilbert, Thomas
Johansson, Christof Paar, Matthew Parker,
Bart Preneel, Vincent Rijmen, Matt Robshaw,
Hongjun Wu, eSTREAM, Short Report on the
End of the Second Phase, http://www.ecrypt.
eu.org/stream/PhaselIreport.pdf

Steve Babbage, Christophe De Canniere, Anne
Canteaut, Carlos Cid, Henri Gilbert, Thomas
Johansson, Matthew Parker, Bart Preneel,
Vincent Rijmen, Matthew Robshaw, The
eSTREAM Portfolio, http://wuw.ecrypt.eu.
org/stream/portfolio.pdf

Tim Good, Escargot, http://www.shef.ac.uk/
eee/escargot/

http://cr.yp.to/talks/2005.05.27/slides.pdf
http://cr.yp.to/talks/2005.05.27/slides.pdf
http://www.ecrypt.eu.org/stream/PhaseIIreport.pdf
http://www.ecrypt.eu.org/stream/PhaseIIreport.pdf
http://www.ecrypt.eu.org/stream/portfolio.pdf
http://www.ecrypt.eu.org/stream/portfolio.pdf
http://www.shef.ac.uk/eee/escargot/
http://www.shef.ac.uk/eee/escargot/

January 2010, Volume 2, Number 1 (pp. 3—11)

Vincent Rijmen graduated in 1993 as elec-
tronics engineer from the University of Leu-
ven, Belgium (KU Leuven) and finished in
1993 his doctoral dissertation on the design
and analysis of block ciphers in 1997.

He is co-designer of the algorithm Rijndael,
which in October 2000 was selected by the
National Institute for Standards and Tech-
nology (NIST) to become the Advanced En-
cryption Standard (AES) the successor to the existing Data
Encryption Standard (DES).

In 2001, Rijmen became Chief Cryptographer of Cryp-
tomathic, a European company developing software for cryp-
tographic applications. In 2004, he became full professor at
the Graz University of Technology, where he heads the re-
search unit ”Krypto” of the institute of applied information
processing and communications (IAIK). Since September 2007,
Rijmen is full professor at the KU Leuven and part time full
professor at the Graz University of Technology.

	1 Introduction
	2 Synchronous Stream Ciphers, Self-Synchronizing Stream Ciphers and Block Ciphers
	2.1 Definitions
	2.2 New Working Definition
	2.3 Constructions

	3 Trade-offs in Generic Attacks on Stream Ciphers
	3.1 Exhaustive Attacks
	3.2 Time-Memory-Data Trade-offs
	3.3 Time-Memory-Key Trade-offs

	4 eSTREAM
	4.1 ECRYPT
	4.2 eSTREAM Goals
	4.3 Preparation Phase
	4.4 Phase 1
	4.5 Phase 2
	4.6 Phase 3
	4.7 The eSTREAM Portfolio

	5 Concluding Remarks
	Acknowledgements

