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A B S T R A C T

Elliptic Curve Cryptosystems (ECC) have recently received significant attention
by researchers due to their high performance such as low computational cost
and small key size. In this paper a novel untraceable blind signature scheme
is presented. Since the security of proposed method is based on difficulty of
solving discrete logarithm over an elliptic curve, performance of the proposed
scheme is quite commendable in comparison with the previous work in terms
of security and time complexity.

c© 2009 ISC. All rights reserved.

1 Introduction

The notion of blind signatures was introduced by
Chaum in 1982 [1]. There are two properties which
any blind signature scheme must satisfy: Blindness
and Untraceability [1–3]. Blindness means the con-
tent of a message should be blind to the signer. Un-
traceability is satisfied if, whenever a blind signature
is revealed to the public, the signer will be unable to
know who the owner of the signature is. The princi-
ple behind the blind signature can be illustrated by a
simple example. Assume we put a carbon paper along
with a letter inside an envelope. Then any signature
on the envelope will also appear on the letter inside
[4].

In this paper, a novel blind signature scheme based
on the Elliptic Curve Discrete Logarithm Problem
(ECDLP) is presented that is more efficient than
other schemes presented based on the DLP. Since
ECDLP is significantly more difficult than the inte-
ger factorization problem or the discrete logarithm
problem [5], to satisfy the security requirements, the
Elliptic Curve Cryptosystems (ECC) need a smaller
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key size compared to other cryptosystems [6]. Obvi-
ously, this means ECC has the advantages of higher
speed, lower power consumption, and code size re-
duction.

The remainder of the paper is organized as fol-
lows: Section 2 investigates the related work. Section 3
briefly reviews some background information. In Sec-
tion 4, the proposed blind signature scheme is pre-
sented. Section 5 analyzes the security of the proposed
scheme. The performance of this scheme is examined
in Section 6. Finally, conclusions are presented in Sec-
tion 7.

2 Related Work

Nowadays, the blind signatures are widely adopted for
building the infrastructures of many advanced com-
munication services, such as anonymous electronic
voting or electronic cash systems [3, 7, 8]. To guaran-
tee the quality of these cryptographic services, sev-
eral blind signature schemes are proposed in the liter-
ature. In 1995, Camenisch et al. [9] proposed a novel
blind signature scheme based on the Discrete Loga-
rithm Problem (DLP). Later, Harn [2] claimed that
the blind signature in [9] is traceable by the signer.
However, Horster et al. [10] illustrated that the signer
cannot trace back to the owner of the signature. In-
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Figure 1. Addition on Elliptic Curves

spired by cryptanalysis techniques in [2], Lee et al. [3]
illustrated that the Camenisch et al.’s scheme does
not satisfy the untraceability. To overcome this weak-
ness, they proposed a new blind signature scheme
based on the DLP. Finally, in 2005, Wu and Wang
[7] proved the untraceability of the Camenisch et al.’s
scheme. They also claimed that Lee et al.’s scheme
is untraceable; but their proof of its untraceability is
wrong. They corrected the proof of Lee et al. untrace-
ability and concluded that Camenisch et al.’s scheme
is still more efficient than Lee et al. Later, Jena et al.
[8, 11] proposed two novel blind signature schemes;
nevertheless there was no reasonable proof for cor-
rectness of their schemes. Since their work, especially
[11], includes many mistakes (not only in the pro-
posed scheme but even in the expression), it is uncom-
mon to refer to them in the blind signature context.
Recently Fan et al. [12] devised an attack on [3] and
[7] schemes such that a signature requester, by per-
forming only one round of protocol, can obtain more
than one valid signature. They conclude that, a secure
and novel blind signature scheme is urgently required
in this field. The proposed scheme in this paper is
the first work based on elliptic curve cryptosystems,
which we hope fills the gap.

3 Mathematical Background of the El-
liptic Curve Cryptosystems

Utilizing elliptic curves in cryptography was first sug-
gested by Miller [13] and Koblitz [14]. Let GF (2m)
be a finite field of 2m elements, where m is an integer.
An elliptic curve over GF (2m) is defined as [15]:

Figure 2. Doubling a Point

y2 + xy = x3 + a1x
2 + a2 (1)

with a1, a2 ∈ GF (2m) , a2 6= 0

An elliptic curve over GF (2m) consists of all points
(x, y) where x, y ∈ GF (2m) such that it satisfies
Equation (1) together with the point at infinity O.
The addition of two points and doubling a point on
this elliptic curve in a geometrical space, are illus-
trated in figures 1 and 2, respectively.

Considering an elliptic curve C on GF (2m), the
addition of points follows specific rules indicated be-
low [15]:

(1) O + O = O
(2) P + O = P for all values of P = (x, y) ∈ C.

Namely, C has O as its identity element.
(3) P + Q = O for all values of P = (x, y) ∈ C

and Q = (x, −x− y) ∈ C. In other words, the
inverse of (x, y) is simply (x, −x− y).

(4) Adding two distinct points:
For all P = (x1, y1) ∈ C and Q = (x2, y2) ∈

C with x1 6= x2, P + Q = (x3, y3) is defined as:

x3 = λ2 + λ+ x1 + x2 + a
where λ =

y2 + y1
x2 + x1y3 = λ(x1 + x3) + x3 + y1

(5) Doubling a point:
For any P = (x1, y1) ∈ C with y1 6= 0, 2P =

(x2, y2) is defined as:

x2 = λ2 + λ+ a
where λ = x1 +

x1

y1y2 = λ(x1 + x2) + x2 + y1

The scalar multiplication is a fundamental opera-
tion in ECCs. The operation is simply the addition
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of a point P to itself for k times (k is an m-bit long
scalar) [15, 16]:

Q = kP = P + P + · · ·+ P︸ ︷︷ ︸
k

(2)

Regarding the algorithm in [17] for the calculation
of scalar multiplication, it does not require k to be
less than n (i.e. 1 ≤ k ≤ n − 1) where n is the order
of P. Even if k > n, the value of k is replaced by k
(mod n) at the initial stage of the algorithm.

Let P and Q be two points on an elliptic curve,
whose order is a prime number n. Consider the equa-
tion Q = kP. Given the points P and Q, determining
the value of k is computationally infeasible. This is
called the Elliptic Curve Discrete Logarithm Problem
(ECDLP) [16].

4 The Proposed Scheme

In the proposed blind signature scheme there are two
kinds of participants: a signer, and a group of users
called, requesters. A user requests signatures from
the signer, and the signer computes and issues blind
signatures to the user. The proposed scheme consists
of five steps: (1) initialization, (2) request, (3) signa-
ture generation, (4) extraction, and (5) verification.
The signer publishes the necessary information in the
initialization step. To obtain the signature of a mes-
sage, the user submits a blinded version of the mes-
sage to the signer in the request phase. In the sig-
nature generation phase, the signer signs the blinded
message, and sends the result back to the user. After-
wards, the user extracts the signature in the extrac-
tion phase. During the verification phase, the valid-
ity of the declared signature is verified. The details of
these phases are described below.

(1) Initialization: The signer determines a field
size q which defines the underlying finite field
Fq, where either q = p in case that p is an odd
prime, or q = 2m when q is a prime power.
Regarding the proposed scheme, q = 2m is
chosen as the underlying finite field in all calcu-
lations and also to the equations. The elements
of GF (2m) are represented by bit strings of
length m. Therefore, elements of GF (2m)
can be represented by non-negative integers
0, 1, 2, . . . , 2m − 1.

The signer specifies an appropriate elliptic
curve (E) by selecting two parameters a1 and
a2 of the elliptic curve of Equation 1 over Fq.
Then, the base point G is determined, that is a
finite point on elliptic curve having the largest
order n such that nG = O, where O indicates

the point at infinity. He makes the valuesE(Fq),
G and n public. Moreover, the signer selects a
random integer d that should be an element of
GF (2m) as the private key and computes Q =
dG. The point Q is declared as a public key.
Note that as it is mentioned previously, it is not
necessary for d to be in {1, 2, . . . , n− 1}.

(2) Request: For each user request, the signer se-
lects a random integer k ∈ GF (2m). It then
keeps the value of k secret and computes the
point R = kG. The signer then sends back the
point R to the user. Afterwards, the requester
randomly selects three blinding factors a, b and
c all of which are GF (2m) elements. As demon-
strated previously, we emphasize that it is not
required for the elements to be in {1, 2, . . . , n−
1}. Finally, the requester computes the point F
having coordinates (x0, y0) as follows (the un-
derlying finite field is GF (2m)):

F = b−1R + ab−1Q + cG

= b−1(kG) + ab−1(dG) + cG (3)

= (b−1k + ab−1d+ c)G

Note that b−1 indicates the inversion in the
finite field, which is one of the required oper-
ations in elliptic curve digital signature algo-
rithm [17]. An efficient execution procedure of
this operation is presented in [17]. If F is equal
to O, the requester has to reselect the blinding
factors a, b and c, and then recalculate F from
Equation (3) above.

Assuming r = x0 (mod n), the requester de-
termines the blinded message, m̂, from the orig-
inal message, m, on GF (2m) as m̂ = br(m)+a,
and transmits m̂ to the signer.

(3) Signature generation: The signer computes
the blind signature ŝ as, ŝ = d(m̂) + k on
GF (2m) and forwards it to the requester.

(4) Extraction: After receiving ŝ the requester
computes s = b−1(ŝ) + c on GF (2m). Finally,
the requester declares the tuple (s,F) as the
signature of the message m.

(5) Verification: The validity of the signature
(s,F) for a message m is verified by examining
the correctness of the equation sG = rmQ + F
on GF (2m) using Equation (4).
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User Signer

Selects k randomly and computes R=kG

Declares Q=dG as his public key 

Selects his private key, d, randomly
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R + ab-1
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m̂
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Figure 3. The Proposed Blind Signature Scheme

sG =
(
b−1(ŝ) + c

)
G

=
(
b−1 (d (m̂) + k) + c

)
G

=
(
b−1 (d (brm+ a) + k) + c

)
G

= (drm+ b−1da+ b−1k + c)G (4)

= (drm)G + (b−1da+ b−1k + c)G

= rm(dG) + (b−1(kG) + ab−1(dG) + cG)

= rmQ + (b−1R + ab−1Q + cG)
= rmQ + F

The various phases of the proposed scheme are sum-
marized in Figure 3.

5 TheSecurityof theProposedScheme

The security of the proposed method is based on the
difficulty of solving the discrete logarithm problem
over an elliptic curve, and the security resulted from
such problems is still sufficient under reasonable com-
putational complexity [5, 18]. No one can forge a valid
signature pair (s,F) on the messagem in order to sat-
isfy sG = rmQ+F for the verification. The unforge-
ability proof demonstrated below is similar to proxy
blind signature proof presented in [19].

Proof of Security: Assume a forged signature for
an altered message m∗ is (s∗,F∗). The attacker must
choose s∗ and F∗ in order to satisfy Equation (5) for
the verification, where r∗ is the x-coordinate of F∗.

s∗G = r∗m∗Q + F∗ (5)

If the attacker chooses the point F∗ in Equation (5)
first, and then tries to calculate s∗, as r∗, m∗, F∗ and
Q are all available to the forger, then, the forger has
the value of the point s∗G. However, to obtain s∗,
he is faced with an instance of the ECDLP and this
makes determining s∗ value infeasible.

On the other hand, if the attacker chooses s∗ and
tries to calculate F∗, he must solve Equation (6),
which is another form of Equation (5). There is no fea-
sible solution to this equation. Since F∗ is unknown,
its x-coordinate r∗ is unknown as well, resulting in the
r∗m∗Q point to be unavailable to the forger. There-
fore, the left-hand side of Equation (6) cannot be com-
puted and stays unknown.

s∗G− r∗m∗Q = F∗ (6)

From the above discussion, determining the value
of F∗ is not feasible. �

In addition, our scheme prevents the signer from
tracing the blind signature, which is demonstrated as
follows. The outline is similar to untraceability proof
of blind signature schemes presented in [7].

Proof of Untraceability: The signer will keep a
set of records (k,R, m̂, ŝ) for each blind signature re-
quested. When the messagem and its signature (s,F)
are revealed to the public, the signer searches through
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Table 1. Definition of Given Notations

Notation Definition

TMUL Time complexity for the execution of a multiplication

TEXP Time complexity for the execution of a exponentiation

TADD Time complexity for the execution of an addition

TEC MUL Time complexity for the execution of a multiplication in an elliptic curve point

TEC ADD Time complexity for the execution of an addition of two points in an elliptic curve

Tinv Time complexity for the execution of a inversion

all sets of records. By employing these records and the
revealed message-signature pair (m, s,F), the signer
tries to check the correctness of Equation (7) in order
to trace the blind signature.

F = b−1R + ab−1Q + cG (7)

For this purpose, the signer needs to have the blind-
ing factors (a, b, c) in addition to the values of points
F, R, G and Q. However, he only has the following
information for calculation.

(s,F,m,Q,G, d, k,R, m̂, ŝ)

And there are only two equations including the
blinding factors:

m̂ = br(m) + a

s = b−1(ŝ) + c

It is considered that Equation (7) could not reveal
any information about the blind factors since find-
ing each of the blinding factors in this equation leads
to solving ECDLP and this is infeasible. Obviously,
finding three unknown factors from the two equations
above is impossible; hence there is no way for the
signer to trace the blind signature by checking the
correctness of Equation (7). Therefore our scheme is
untraceable even if the signer has recorded informa-
tion on the entire requested blind signature. There-
fore, the privacy of the user is correctly protected and
the signer is not able to derive the link between a
signature and the corresponding instance of signing
protocol which produced that signature. �

Furthermore, we use a and b in order to blind mes-
sage as m̂ = br(m) +a in the request phase, since the
signer can never find a and b, hence blindness prop-
erty is correctly achieved.

6 The Performance of the Proposed
Scheme

As mentioned previously, Wu and Wang [7] de-
clared that the blind signature scheme proposed by
Camenisch et al. has a superior performance com-
pared to other schemes based on the DLP. Therefore,
we shall compare the proposed scheme to that of
Camenisch et al. for the purpose of performance
evaluation.

Table 1 defines the notations used in this paper.
The time complexity of various operation units in
terms of time complexity of a modular multiplication
is illustrated in Table 2 as extracted from [18, 20]. The
values in the first column of Table 2 are in GF (2m)
with 160-bit m, while the operations in the second
column are in GF(q) with a 1024-bit prime q.

The time complexities of the proposed scheme and
that of Camenisch et al. are illustrated in Table 3.
The required computational cost for both schemes has
been estimated by accumulating execution times of
all the required operations. Later, based on the infor-
mation in Table 2, all the estimated times have been
exhibited in terms of required execution time for a
modular multiplication, that is called the rough esti-
mation. By comparing the results, the performance of

Table 2. Unit Conversion of Various Operations in Terms of

TMUL

Time Complexity of
an Operation Unit

Time Complexity in
Terms of Multiplication

TEXP 240 · TMUL

TEC MUL 29 · TMUL

TEC ADD 0.12 · TMUL

TADD Negligible

TINV 0.073 · TMUL
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Table 3. Required Time Complexity in Unit of TMUL

Required Computation Cost

Time complexity Rough Estimation

Camenisch et al.
scheme [7, 9]

10 · TMUL + 7 · TEXP + 2 · TINV + 2 · TADD 1696 · TMUL

Proposed scheme 6 · TMUL + 7 · TEC MUL + 3 · TEC ADD + TINV + 3 · TADD 203.57TMUL

our scheme exceeds the performance of Camenisch et
al. method significantly [7, 9], in terms of time com-
plexity.

7 Conclusion

In this paper, an efficient untraceable blind signature
scheme is presented. The security of the proposed
method is obtained by utilizing the elliptic curve dis-
crete logarithm problem. The time complexity of the
proposed scheme is compared to a well known scheme
and the results indicated that the time complexity of
the proposed scheme is significantly reduced. There-
fore, the proposed scheme is suitable for applications
where the computational resources of requesters are
limited, e.g. mobile clients and smart cards.
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