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A unified method for statistical anomaly detection in intrusion detection
systems is theoretically introduced. It is based on estimating a dispersion
measure of numerical or symbolic data on successive moving windows in
time and finding the times when a relative change of the dispersion measure
is significant. Appropriate dispersion measures, relative differences, moving
windows, as well as techniques for their efficient estimation are proposed. In
particular, the method can be used for detecting network traffic anomalies due
to network failures and network attacks such as (distributed) denial of service
attacks, scanning attacks, SPAM and SPIT attacks, and massive malicious
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1 Introduction

An intrusion detection system (IDS) aims at detect-
ing and logging malicious, abusive, or suspicious pro-
cesses, activities, or events in an information system
such as a host computer or a system of computers
communicating with each other via a communications
network. In particular, a communications network,
such as the Internet, may utilize the Internet Protocol
(IP) as a communication protocol. A host-based IDS
is running on a single host and mainly logs suspicious
and unauthorized events or activities and changes to
system files and configurations. A network-based IDS
captures network packets on relevant network seg-
ments and inspects them. An intrusion prevention
system (IPS) is in addition capable of taking an im-
mediate protective action following intrusion detec-
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tion. For example, a network-based IPS may drop ma-
licious packets, block all further traffic from a partic-
ular TP address, or perform traffic shaping in terms of
available transmission bandwidth. A network-based
IDS/IPS has to deal with large volumes of data and
hence has to be computationally very efficient. As
the business cost of network problems may be high,
especially for large networks (e.g., telephone opera-
tors, enterprises, etc.), it is practically very impor-
tant to have effective solutions for IDS/IPS in these
networks.

There are two main types of intrusion detec-
tion techniques: attack-based or attack detection
techniques and anomaly-based or anomaly detec-
tion techniques. Attack-based (i.e., signature-based,
pattern-based, or knowledge-based) techniques uti-
lize a description (signature, pattern) of a concrete
attack (e.g., virus, worm, or other malicious software)
and decide if the observed data is consistent with this
description or not; the attack is declared in the case
of detected consistency. Anomaly-based or behavior-
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based techniques utilize a description (profile) of
normal/standard traffic or activities, rather than
anomalous attack traffic or activities, and decide if
the observed data is consistent with this description
or not; an attack or anomalous traffic or activities
are declared in the case of detected inconsistency.
Both techniques have advantages and disadvantages.

Attack detection techniques require prior knowledge
of each particular attack targeted and have to be con-
tinuously updated with new signatures corresponding
to new attacks that appear. A signature can also de-
scribe a type of attacks instead of a particular attack.
These techniques are in principle incapable of detect-
ing previously unknown attacks, unless they can be
recognized by the already existing signatures. How-
ever, they have zero false negative rates with respect
to targeted attacks and typically very small false pos-
itive rates, the more so if the signatures used are more
specific and hence closer to characterizing, not just
describing the attacks. They are hence very reliable
to be used for in-line intrusion prevention and espe-
cially effective against viruses, worms, Trojan, spy-
ware, and other malicious software attacks. Of course,
since malicious codes are subject to frequent muta-
tion, the effective false negative rate will not be equal
to zero when considered with respect to mutated at-
tacks.

Anomaly detection techniques in principle do not
require prior knowledge of particular attacks and as
such are in principle capable of detecting previously
unknown attacks. However, they typically have non-
zero false negative rates, with respect to given attacks
or types of attacks, and higher false positive rates in
a sense that they can declare anomalous traffic or ac-
tivities in the absence of attacks. Therefore, they are
typically not reliable enough to be used for in-line
intrusion prevention, but are useful as complemen-
tary tools, in addition to attack-based techniques, for
detecting anomalous traffic or computer activities,
possibly due to network failures or new, previously
unknown attacks. They can essentially be classified
into two broad categories: rule-based techniques and
statistic-based or statistical techniques. In particular,
they may be useful against broad classes of network
attacks such as (distributed) denial of service attacks
((D)DoS attacks), scanning or probing attacks (e.g.,
port-scanning attacks), SPAM and SPIT (SPam over
Internet Telephony) attacks, as well as worm or virus
outbreaks and other massive malicious software at-
tacks.

There are really numerous publications, in terms of
refereed papers and patents, proposing a wide range
of various statistical methods that can be used for
modeling normal network traffic or computer activ-
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ities and for deciding if the observed data is consis-
tent with these models. For example, for data cluster-
ing, neural network, and principal component analy-
sis techniques, see [1], [2], and [3], respectively, and for
discrete wavelet transforms and waveform correlation
techniques, see [1] and [5]. As for the relevant network
data features, it is suggested in [6] that the curves
representing the packet rate, byte rate, and flow rate
(i.e., the number of packets, bytes, and flows per sec-
ond, respectively) in time can be useful for detect-
ing and classifying network traffic anomalies, possi-
bly through the wavelet transform techniques. On the
other hand, a use of mean values and variances, dy-
namically estimated by the Exponentially Weighted
Moving Average (EWMA) technique on historical or
past data, together with the outlier classification prin-
ciple, is proposed in [7], [3], [9], and [10], whereas some
methods for monitoring the variance are proposed in
[7] and [11]. A use of the Shannon entropy is proposed
in [12], [3], and [13], while lossless data compression
algorithms are employed in [14]. The chi-square statis-
tic with respect to a baseline profile distribution com-
puted on past or historical data is applied in [12].

The main objective of this paper is to provide a new
theoretical framework for statistical anomaly detec-
tion in intrusion detection systems with a relatively
low complexity suitable for applications in high-speed
and high-volume communications networks. The new
general method is based on detecting abrupt relative
changes in a dispersion measure associated with a
monitored data stream up to a current point in time.
The underlying assumption is that for many types of
network and computer attacks, the dispersion of ap-
propriately chosen data features is expected to sig-
nificantly increase or decrease in the presence of the
attack. The main contributions of this paper are sum-
marized below.

Relative changes are measured by appropriately
defined relative differences between the current and
preceding values of the dispersion measure, e.g., the
relative squared differences. For stationary data, the
differences should be relatively small and roughly in-
sensitive to data, so that possibly dynamic thresholds
should reflect only the nonstationary nature of data.

For numerical data, such as the packet or byte rate
and average packet size for network traffic, the pro-
posed dispersion measure is either the variance, which
can be regarded as the least mean squared error re-
sulting from a constant approximation of data, or,
more generally, the linear least square error (LLSE)
as the least mean squared error resulting from a linear
(more precisely, affine) approximation of data which
can be obtained by the linear regression technique.
The LLSE is less sensitive to changes in nonstation-
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ary or correlated normal data than the variance. Note
that even the proposed relative squared difference
of variances associated with successive moving win-
dows of data in time appears to be a novel statistical
anomaly detection method, since the previous work
uses the variance in different ways, e.g., for outlier
classification or for comparison with reference values.
For multidimensional, possibly correlated numerical
data, the relative squared difference of variances is
generalized in terms of the associated covariance ma-
trices.

For symbolic data, such as the IP addresses, port
numbers, email addresses, and Universal Resource
Identifiers (URIS) in network traffic, it is proposed to
use the so-called quadratic entropy associated with
the relative frequencies of symbolic values as the
main dispersion measure. Equivalently, one can use
the corresponding quadratic concentration measure
or the chi-square statistic with respect to uniformly
distributed symbolic values. The Shannon entropy,
which can be interpreted in terms of data compres-
sion coding, is less suitable as a dispersion measure,
because it is overly sensitive to changes in less fre-
quent symbolic data. If the number of observed
samples is much smaller than the number of possi-
ble symbolic values, then the number of repetitions
among the observed values is suggested as another
concentration measure applicable.

In addition, for both numerical and symbolic data,
the average conditional dispersion measures are in-
troduced and argued to be especially effective for de-
tecting certain general types of network attacks. They
are conditioned on the values of certain symbolic vari-
ables such as, e.g., the source or destination IP ad-
dresses, email addresses, or URIs.

For both numerical and symbolic data, three types
of moving windows in time are proposed for the com-
putation of dispersion measures, namely, a single slid-
ing window of a finite length, a pair of sliding win-
dows of finite lengths where a longer one is composed
of a shorter one and appended current data, and a
moving window of increasing length extending from
the initial to the current time. For the first and third
types, the dispersion measure is compared for two
consecutive moving windows, at the current and pre-
ceding times, whereas for the second type, the dis-
persion measure is compared for the two sliding win-
dows at each time. For the third type of moving win-
dows, adapted EWMA techniques are developed for
all the dispersion measures, namely, two EWMA tech-
niques for the variance, novel EWMA techniques for
the LLSE measure and the quadratic concentration
measure, as well as novel EWMA techniques for av-
erage conditional dispersion and concentration mea-

sures and for multidimensional data.

Iterative techniques for the efficient computation
of the dispersion and concentration measures are de-
rived for all types of windows considered. The EWMA
techniques are better suited to nonstationary normal
data and enable a significant reduction of the amount
of data needed to be memorized, in comparison with
the sliding window techniques.

The rest of the paper is organized as follows. Sec-
tion 2 contains a brief overview of anomaly detection
techniques and related attacks to which they may be
applicable. The basic numerical and symbolic data
features for network-based and host-based intrusion
detection are outlined in Section 3. A more detailed
discussion of previous work in view of the main lines
of the new statistical anomaly detection approach is
presented in Section 4. The three types of moving
windows utilized are described in more detail in Sec-
tion 5 and the new methods for statistical anomaly
detection are presented in Sections 6 and 7, for nu-
merical features, and in Section 8, for symbolic fea-
tures. Network-based intrusion detection applications
are discussed in more detail in Section 9. Conclusions
are presented in Section 10 and iterative update ex-
pressions for the sliding window techniques are given
in the Appendix.

2 Anomaly Detection Techniques and
Related Attacks

Rule-based anomaly detection techniques describe the
normal behavior in terms of certain static rules or cer-
tain logic and can essentially be stateless or stateful.
In particular, such rules can be derived from protocol
specifications. An important class of these techniques
in fact performs stateless or stateful protocol analysis
and is useful for detecting malformed or invalid mes-
sages (packets or sequences of packets), which may
appear during the attacks such as DoS attacks. So,
if the rules are violated, then anomalous behavior is
declared. The false positive rate is thus equal to zero,
as the normal behavior has to satisfy the rules cho-
sen. Of course, if practical implementations deviate
from the specified rules, then the false positive rate
will not be zero. The false negative rate for a given
attack or a given anomalous behavior is usually non-
zero, as the rules chosen may be satisfied even if the
behavior is anomalous, and the more so if the rules
are less specific.

Statistical anomaly detection techniques describe
the normal behavior in terms of the probability distri-
butions of certain variables, called statistics, depend-
ing on the selected data features. This can possibly
be achieved by using appropriate statistical models of
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normal network traffic or computer activities on his-
torical or past data. Since the normal behavior is typ-
ically nonstationary, these models may be dynamic,
e.g., may depend on a time of the day or a day in the
week or may be adaptive. In a comparison stage, a
data portion of the current traffic or computer activ-
ities (e.g., a single packet or a sequence of packets of
network traffic) is then compared with the developed
statistical model and a decision is made whether the
deviation from the statistical model is statistically
significant or not. If yes, then the considered portion
of the current data is classified as anomalous and an
alert is issued.

A single observed value of a chosen statistic can be
compared with the statistical model of normal behav-
ior by direct checking if the value belongs to a range of
normal values, and it is declared anomalous if it falls
out of this range. More generally, for a sequence of
observed values, a measure of deviation from or cor-
relation with the statistical model can first be com-
puted and, then, it is checked if it belongs to a range
of normal values. Typical deviation measures include
the chi-square statistic and the Kullback-Leibler di-
vergence between the observed and expected proba-
bility distributions, correlation measures between se-
quences, and prediction and residual mean squared
errors.

The range of normal values is usually specified in
terms of thresholds, which are chosen according to
an acceptable false positive rate. If this rate is cho-
sen to be very small, then the false negative rate with
respect to a given attack or type of attacks may be-
come unacceptably high, so that a tradeoff between
the two rates is necessary. If a statistic inherently does
not reflect the attack behavior sufficiently accurately,
then the false negative rate will be high almost re-
gardless of the thresholds chosen and the statistic is
hence not very useful. On the other hand, if the sta-
tistical model does not reflect dynamic behavior of
normal data, then the false positive rate may be high.
Therefore, the thresholds may be chosen dynamically
or even adaptively. However, if the attacker knows the
adaptation policy, then the attack data can also be
adapted accordingly, in order to satisfy the dynamic
thresholds.

The main types of network or computer attacks
where statistical anomaly detection techniques are
useful are described in the sequel.

DoS attacks and distributed DoS (DDoS) attacks
are commonly regarded as a major threat to the In-
ternet. A DoS attack is an attack on a computer sys-
tem or network that causes a loss of service or net-
work connectivity to legitimate users, that is, unavail-
ability of services. Most common DoS attacks aim
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at exhausting the computational resources, such as
connection bandwidth, memory space, or CPU time,
for example, by flooding the target network node by
valid or invalid requests and/or messages. They can
also cause disruption of network components or dis-
ruption of configuration information, such as rout-
ing information, or can aim at disabling an applica-
tion making it unusable. In particular, the network
components (e.g., servers, proxies, gateways, routers,
switches, hubs, etc.) may be disrupted by malicious
software attacks, for example, by exploiting buffer
overflows or vulnerabilities of the underlying operat-
ing system or firmware.

A DDoS attack is a DoS attack that, instead of us-
ing a single computer as a base of attack, uses multi-
ple compromised computers simultaneously, possibly
alarge or a very large number of them (e.g., millions),
thus amplifying the effect. Altogether, they flood the
network with an overwhelming number of packets
which exhaust the network or application resources.
In particular, the packets may be targeting one par-
ticular network node causing it to crash, reboot, or
exhaust the computational resources. The compro-
mised computers, which are called zombies or bots,
are typically infected by malicious software (worm,
virus, or Trojan) in a preliminary stage of the at-
tack, which involves scanning a large number of com-
puters searching for those vulnerable. The attack it-
self is then launched at a later time, either automat-
ically or by a direct action of the attacker. (D)DoS
attacks are especially dangerous for Voice over IP
(VoIP) applications, e.g., based on the Session Ini-
tiation Protocol (SIP). In particular, the underlying
SIP network dealing only with SIP signalling pack-
ets is potentially vulnerable to request or message
flooding attacks, spoofed SIP messages, malformed
SIP messages, and reflection DDoS attacks. Reflec-
tion DDoS attacks work by generating fake SIP re-
quests with a spoofed source IP address and a spoofed
via header field, which falsely identify a victim node
as the sender, and by sending or multicasting them
to a large number of SIP network nodes, which all re-
spond to the victim node, and repeatedly so if they
do not get a reply, hence achieving an amplification
effect.

SPAM attacks consist in sending unsolicited elec-
tronic messages (e.g., through E-mail over the Inter-
net), with commercial or other content, to numerous
indiscriminate recipients. Analogously, SPIT attacks
consist in sending SPAM voice messages in VoIP net-
works. Malicious software attacks consist in sending
malicious software, such as viruses, worms, Trojan, or
spyware, to numerous indiscriminate recipients, usu-
ally in a covert manner. Scanning or probing attacks
over the Internet consist in sending request messages
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in large quantities to numerous indiscriminate recip-
ients and to collect the information from the pro-
voked response messages, particularly, in order to de-
tect vulnerabilities to be used in subsequent attacks.
For example, in port scanning attacks, the collected
information consists of the port numbers used by the
recipients. Since DDoS attacks are typically preceded
by (massive) scanning attacks, detecting the scanning
attacks may also help prevent DDoS attacks.

3 Data Features

The data features to be used for network-based in-
trusion detection are extracted from network traffic
containing data packets such as IP packets in IP-
based networks. The main IP packet header informa-
tion contained in layers 3 and 4 (the network and
transport layers, respectively) includes source IP ad-
dress, TCP/UDP source port number, destination
IP address, TCP/UDP destination port number, and
transport protocol used. A series of packets having in
common this basic information is commonly defined
as a flow. A basic feature of an IP packet is its size
in bytes, i.e., the total number of layer 3 bytes in a
packet. With respect to a reference short time interval
of length/duration AT, the basic numerical features
regarding a flow include the packet rate (i.e., the num-
ber of packets per second) Rpacket = Npacket/AT, the
byte rate (i.e., the number of layer 3 bytes per second)
Ryyte = Npyte /AT, and, if Npgerer > 0, the average
packet size, in bytes, Ps;.e = Rpyte/Rpacket- They can
be traced in time by looking at successive short time
intervals, where the length AT specifies the time res-
olution with which the traffic is monitored and can be
static or dynamic. The starting and ending times of
the first and the last packet in a flow, respectively, as
well as the total number of monitored flows can also
be reported.

These numerical features can be traced in time at
a chosen network node or a set of nodes, for each
individual flow along a communication link or for
selected flows simultaneously, e.g., chosen according
to the IP addresses or port numbers in order of de-
creasing packet rate. The numerical features for indi-
vidual flows can also be aggregated according to se-
lected packet parameters such as the symbolic packet
features including the source or destination IP ad-
dresses, the source or destination port numbers, and
the transport protocol used. For example, the flows
with the same source or destination IP address can
be grouped together. The aggregated packet features
then correspond to the outbound or inbound traffic
for a particular network node, respectively. The num-
ber of simultaneously monitored flows with the same
source/destination IP address is another numerical

feature indicating the activity of a particular node.
On the other hand, aggregation of flows according to
port numbers is indicative of the applications of the
packets transmitted. If the features are grouped for
all the flows monitored, where the direction of flows
along a communication link can possibly be distin-
guished, then anomaly detection relates to the net-
work traffic as a whole.

Other symbolic packet features of interest include
information extracted from other packet header lay-
ers such as the application layer, e.g., the source and
destination email addresses, the source and destina-
tion SIP URIs, the HTTP (Hypertext Transfer Proto-
col on the World Wide Web) URIs, or the type of SIP
packets transmitted in a VoIP network. In general,
for privacy and anonymization issues, the information
extracted from the packet headers is more interest-
ing for the network traffic analysis than the content-
related information from the packet payloads. The
symbolic packet features can be used by themselves or
in connection with the numerical packet features, as
described above. Any numerical data can also be re-
garded as symbolic, possibly after appropriate quan-
tization, but not the other way around.

The data features to be used for host-based in-
trusion detection are extracted from audit trail data
capturing in time the activities on a host machine in
terms of the security-relevant events. Different types
of these events are then the basic symbolic data fea-
tures monitored in time. With respect to a reference
short time interval of length AT, the basic numer-
ical feature is then the so-called event intensity [7]
defined as the number of events of a given type that
occurred in this interval divided by AT'. The event in-
tensity can be aggregated according to specified types
of events. It corresponds to the packet rate extracted
from network traffic data.

4 Related Previous Work

In view of the nonstationary nature of network traffic
data, many previous papers or patents on statistical
anomaly detection for network-based intrusion detec-
tion propose a dynamic estimation of reference statis-
tical models and probability distributions on histor-
ical data collected from normal traffic in communi-
cations networks, usually depending on a time of the
day or a day in the week. Alternatively, the statistical
models can be derived adaptively from the past data
preceding a current portion of network traffic or com-
puter activities to be classified as normal or anoma-
lous. In both cases, the current portion of network
traffic or computer audit data under consideration is
checked for consistency with the derived statistical

model.
)
15¢0



Moving Dispersion Method for Statistical Anomaly Detection in IDSs —J. Dj. Golié

Another paradigm present in some previous work
is to look for sudden changes in certain numerical fea-
tures derived from the original data, e.g., in the traffic
volume measured by the byte or packet rate. In this
paper, the derived numerical features are related to
statistical models, so that the applied paradigm is es-
sentially to look for sudden changes in the underlying
statistical model, where the estimated statistics re-
late to various dispersion or concentration measures
associated with moving windows of traffic or audit
data and the changes are measured by appropriately
defined relative differences. The original data moni-
tored and analyzed may be of numerical or symbolic
nature. Numerical data can be expressed in terms of
integer, rational, or real numbers, so that one can
measure the distance or closeness between two data
values by the Euclidean metric. For symbolic data, the
distance or closeness between two data values cannot
be defined or is not considered to be relevant or mean-
ingful. The set of values for symbolic data is usually
finite or countably infinite. The proposed dispersion
measures are essentially based on the Euclidean met-
ric for numerical data and on the relative frequencies
for symbolic data.

The origins of the new unified method in previous
work are pointed out in more detail in the sequel. Like
in other areas of statistical anomaly detection, the
conceptual and/or technical differences among vari-
ous methods and techniques proposed are sometimes
very subtle.

In [6], it is suggested that packet rate, byte rate,
and flow rate (i.e., the number of packets, bytes, and
flows per second) curves in time can be useful for
detecting and classifying traffic anomalies, possibly
through the wavelet transform techniques.

In [9], a method is described wherein the packet and
byte rates are considered as functions of time and,
at each time, the mean values and variances of these
rates are estimated by using historical data, possibly
by the EWMA technique, and then a given sample
of traffic at a given time is classified by comparing
its packet and byte rates with a threshold being pro-
portional to the sum of the historical mean value and
the historical standard deviation (i.e., the square root
of the variance) multiplied by a positive constant.
Anomalous traffic is declared if the threshold is ex-
ceeded, i.e., if the observed sample of traffic is classi-
fied as an outlier. A similar method where the mean
value and the variance are estimated as the EWMAs,
with different, but mutually related associated con-
stants is disclosed in [8].

In [7], it is proposed to apply the EWMA tech-
niques for dynamically estimating the mean values
and variances of the event intensity process derived
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from the audit trail data describing the activities on
a host machine in a computer network. Anomaly de-
tection is based on the outlier classification principle,
where the thresholds are determined under certain
probabilistic models for the event intensity process.
Alternatively, anomaly detection is based on the es-
timated variance only, which is compared with a ref-
erence value and an alert is then declared if the ratio
of the two values is too large or too small. In [10],
a similar EWMA technique together with the outlier
classification principle is applied to the alert intensity
process in order to distinguish outstanding alerts.

A flow identification method [15] for VoIP media
traffic uses the flow statistics such as the minimal
and maximal values of the packet inter-arrival time
and some characteristics of the packet size distribu-
tion comprising the minimal, maximal, average, and
median values as well as the total number of differ-
ent packet sizes occurring in a flow. The statistics are
calculated and compared with reference patterns on
short time intervals (e.g., 1 second long) and the ver-
ification results are averaged over a longer time inter-
val in order to classify a given flow.

A method [11] relating to VoIP data traffic consists
of computing the empirical variance estimates of the
normalized byte rate on overlapping sliding windows
and comparing them with predicted variances that
are theoretically obtained under probabilistic mod-
els for the number of calls per second. At any time,
an anomaly is declared if the ratio of the empirical
and theoretical variances is greater than a threshold,
which falls in the range between one and two.

In [5], it is proposed to dynamically apply a discrete
wavelet transform to overlapping sliding windows of
the byte rate curves in time and to look for sudden
changes in the logarithms of the associated energy
distribution coefficients in order to detect DDoS at-
tacks.

A technique [16] for detecting (D)DoS attacks us-
ing randomly spoofed IP addresses consists of count-
ing the relative number of different values of hashed
IP addresses among a number of packets, which are
inspected successively in time, and of comparing this
number with a predetermined threshold. A (D)DoS
attack is declared if the threshold is exceeded. Hash-
ing serves for reducing the number of values. The
number of inspected packets is iteratively increased
if an attack is not detected.

A technique according to which DDoS attacks can
be (proactively) detected even near the sources of the
attack by checking for an increase of new source IP
addresses appearing, provided that the source IP ad-
dresses of the attack traffic are randomly spoofed, is
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proposed in [17]. It should be noticed that according
to this article the IP addresses are monitored in non-
overlapping time intervals and the increase is mea-
sured with respect to a database of legitimate IP ad-
dresses collected during off-line training.

In [12], two methods for DDoS attack detection
based on discrete packet features are proposed. One
method uses the Shannon entropy of source IP ad-
dresses estimated on sliding windows consisting of a
number (e.g., 10,000) of packets and looks for times
when the entropy exceeds a predefined threshold. The
other method applies the chi-square statistic of a cur-
rent absolute frequency distribution with respect to
a baseline profile distribution as the expected distri-
bution, where the discrete values can be grouped in
bins, and looks for times when the statistic exceeds a
threshold. The absolute frequencies are multiplied by
the exponentially decaying aging factors, where the
baseline profile half-life is much longer than the cur-
rent profile half-life. The baseline profile can be es-
timated on past data or historical data (e.g., for the
same daily period).

A technique proposed in [3] consists of estimat-
ing the Shannon entropy of discrete packet features
such as TP addresses and port numbers, in non-
overlapping, relatively short time intervals (e.g., 5
min), statistically modeling the multidimensional
entropy data collected on multiple links in a commu-
nications network by using the principal component
analysis, and then verifying if the current data is
inconsistent with the model by checking if the resid-
ual mean squared error with respect to the subspace
identified by the principal component analysis ex-
ceeds a threshold. This comparison technique is not
applicable to one-dimensional data, as in this case
there are no residual errors. It is expected that the
frequency distribution of the IP addresses or port
numbers reflected in the normalized Shannon sample
entropy should change in the case of an attack traf-
fic. A disadvantage of the Shannon entropy is that it
is very semnsitive to changes in very low frequencies
of symbolic data. Anomalies are then classified by
applying the cluster analysis to the residual entropy
vectors.

A technique applied in [13] also uses the Shannon
entropy estimates of discrete packet features obtained
at multiple nodes in a communications network (e.g.,
points of presence), and then essentially combines
them in a joint entropy estimate, where the relative
frequencies associated with the nodes correspond to
the traffic volumes expressed in terms of a number
of packets. DDoS attack detection is then performed
by applying the outlier classification principle to the
joint entropy estimates obtained on sliding windows.

A method [14] considers discrete packet features
such as IP addresses in relatively short time intervals
(e.g., b min) and compresses a concatenation of all
the TP addresses occurring in an interval by a lossless
data compression algorithm, such as the well-known
Lempel-Ziv coding algorithm. It is expected that the
compression ratio should be lower if there is a massive
worm attack traffic in the interval, due to random-
ization of destination IP addresses. However, it is not
specified how to measure if the decrease is significant
or not. Apart from the computational and memory
issues, a disadvantage of Lempel-Ziv-based compres-
sion algorithms in comparison with the Shannon en-
tropy is that they are not invariant under the order
of the symbolic data.

A number of packet statistics for the detection of
DDoS attacks are suggested in [18] and [19]. The
statistics examined in [18] include the number of
open or half-open (obtained from TCP flags) connec-
tions, the number of transmitted or received bytes
per (grouped) IP address, the number of open ports
per (grouped) IP address, and the histogram of the
average packet sizes, while the statistics examined in
[19] include the histogram of the flow sizes in bytes
over a time period and the activity of (grouped) IP
addresses.

5 Moving Windows

Let  be a generic numerical or symbolic feature ex-
tracted from network traffic or computer audit data in
elementary short time intervals of length AT, where
AT can vary in time (e.g., this occurs if symbolic
feature samples are taken from individual packets of
network traffic). Let X = (z;)$2; denote the corre-
sponding sequence of samples of the feature x taken
in time. Sections 6 and 7 deal with numerical features,
whereas Section 8 deals with symbolic features.

The essence of the moving dispersion method is to
compute successively a chosen dispersion measure at
chosen discrete times and to look for points in time
when the values of the dispersion measure change sud-
denly, where the changes are measured by relative rat-
her than absolute differences. Three types of moving
windows in time are proposed for the computation of
dispersion measures, namely, a single sliding window
of a finite length, a pair of sliding windows of finite
lengths where a longer one is composed of a shorter
one and appended current data, and a moving win-
dow of increasing length extending from the initial to
the current time. For the first and third types, the
dispersion measure is compared for two consecutive
moving windows, at the current and preceding times,
whereas for the second type, the dispersion measure
is compared for the two sliding windows at each time.
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A single sliding window of length T is sliding in
time, starting from an initial position, each time ad-
vancing 7 units of time, where T and 7 are fixed pa-
rameters. If AT is static, i.e., fixed, then T and 7
are defined as fixed integer multiples of AT. If AT
is dynamic, i.e., variable in time, then it is assumed
that the sliding window at each time contains an inte-
ger number of elementary time intervals and approx-
imately has the same length T'. Accordingly, two con-
secutive windows of (approximately) the same length
T are shifted 7 units of time from each other and hence
overlap over 7" — 7 units of time. In a general case,
when the samples of x are taken possibly irregularly
in time, i.e., in elementary time intervals of possibly
variable length AT, the number of samples per sliding
window may vary in time, and so may the numbers of
overlapping and non-overlapping samples in two con-
secutive sliding windows. At each time, the dispersion
measure is computed and compared for two consec-
utive sliding windows, at the current and preceding
times.

The value of 7 determines the resolution of the pro-
posed statistical anomaly detection method, because
it takes 7 units of time, or a small multiple of them,
in order to detect a change from normal to anomalous
data (or vice versa). The value of T should be large
enough in order to obtain relatively stable estimates
of the chosen dispersion measure, so that the relative
changes of the dispersion measure are not too large
for normal data. For the same reason, in view of the
nonstationary nature of normal data, T" should not
be too large. The ratio T'/7 should not be too large
so that the change of data from normal to anoma-
lous would not require a very small threshold to be
detected. For example, one may take 1 < T'/7 < 10.

For the second type of moving windows, apart from
a longer sliding window of length T described above,
another, shortened sliding window of length T' — 7 is
also defined. Both windows are sliding in time, each
time advancing 7 units of time. At each time, the dis-
persion measure is computed and compared for the
two sliding windows, i.e., the longer one at the cur-
rent time and the shorter one at the preceding time.
Accordingly, unlike the single sliding window tech-
nique, the past data leaving the current sliding win-
dow of length T are thus excluded from the compar-
ison. This way the sensitivity to a change of the dis-
persion measure is much higher when the change oc-
curs near the ending points than around the starting
points of the windows, which is not the case with the
single sliding window technique, where there is a sym-
metry between the two sensitivities. Therefore, the
sliding window pair technique may be more suitable
for very nonstationary normal data or for detecting
anomalous data of very short duration, especially if
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the window size T is relatively large.

The third type of moving windows having increas-
ing length extend from a fixed initial time up to
the current time. Their starting point is thus fixed,
whereas the ending point each time advances 7 units
of time. They are suited for estimating the dispersion
measure by appropriately defined EWMASs, so that
the influence of the past data on the current disper-
sion measure diminishes with time, in order to ensure
the sensitivity to anomalous behavior of the current
data. This is especially important if the normal data
is not stationary. At each time, the dispersion mea-
sure is computed and compared for two consecutive
moving windows, at the current and preceding times.

Let X7, o1 = (xz-);ijmj_nﬁl denote the seg-
ment of samples corresponding to a generic j-th slid-
ing window of length T, for j > 1, where, initially,
m1 = nq. If AT varies in time, then the number of
samples n; in a segment is in general variable and
so is mj — m;_1. If AT is fixed, then both n; and
m; —m;_ are fixed. For the second type of moving
windows, the segment of samples corresponding to a
shortened (j — 1)-th sliding window of length T' — 7
is then Xﬂj:;jﬂ = (xi);zr;;—nﬁr Finally, for the
third type of moving windows, the segment of sam-
ples corresponding to a generic j-th moving window

is then X" = (2;);7,.

Let X (j) and X (j — 1) denote segments of samples
that are compared with each other at the j-th discrete
time ¢t = m;. Acordingly, we have X (j) = XZZJ’;”J_H
and X(j—1) = X( = 1) = X770 XG) =
X2 and XG = 1) = XG—1) = X205 L
and X(j) = X" and X(j—1) = X(j—1) = X, ",
for the three considered types of moving windows,
respectively.

6 Moving Variance Method for Nu-
merical Features

For numerical features, the first dispersion measure
proposed is the variance of numerical samples in a
considered moving window. Let 02(j) and 62(j — 1)
denote the respective estimates of variance associated
with the segments of samples X (j) and X (j—1) to be
compared with each other at the j-th discrete time t =
m;. A relative difference of variances is then defined
as the relative squared difference

s _ () =8~ 1))
TR - 1)
) L G-
TRG-1 o0

—2. (1)
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The singularities are formally treated as follows. If
both the values 0%(j) and 6%(j — 1) are equal to 0,
then ¢; = 0, and if only one of them is equal to zero,
then §; = co. The relative squared difference is then
compared with a fixed or dynamic threshold #; and if
the threshold is exceeded once or a specified number
of times in a row, then an alert for anomalous data
is generated. An interesting feature of (1) is that the
relative squared difference only depends on the ratio
of the two variances and has the same value regardless
of whether the variance increases or decreases.

Since the threshold relates to relative instead of ab-
solute changes in variance, it may even be fixed and
independent of the variance of normal data, provided
that the data is stationary. More precisely, if the sam-
ples are drawn independently according to the same
probability distribution, then, even if the two seg-
ments X (j) and X(j — 1) are not overlapping (i.e.,
if 7 = T for the single sliding window technique),
the relative squared difference of variances is gener-
ally a small random variable inversely proportional
to the (effective) number of samples per segment and
does not depend on the variance of the samples. For
nonstationary normal data, a fixed threshold may be
empirically determined depending on the false posi-
tive rate to be achieved. For the sliding window tech-
niques, the threshold may generally increase as T/
decreases, because the sensitivity to changes in vari-
ance is then increased.

Alternatively, to account for possibly considerable
changes in variance of nonstationary normal data, the
threshold could be dynamic and empirically deter-
mined from historical data or from past data adap-
tively, in order to keep the false positive rate reason-
ably low. In particular, it may depend on the time of
the day for network traffic. Note that, by definition,
the method is much more sensitive to changes in the
variance than in the mean value, which may be con-
siderable for typical normal data.

6.1 Sliding Window Techniques

For the sliding window techniques, the variance esti-
mate can be computed as

my

SOEEDY

i=mj—n;+1

(l‘i _M(j))27 (2)

where p(j) = (Z;’:mj_nﬁl :cl) /n; is the mean
value estimate. For unbiased estimates of variance,
one may divide by n; —1 instead of n;, but the numer-
ical impact on the method would be negligible. For a
single sliding window, 6%(j — 1) = ¢2(j — 1). For a
pair of sliding windows, 62(j — 1) = 62(j — 1), where

o 1 & »
G2(j—1) = — > (wi—aG-1)%  (3)
n]—l .
i=mj—n;+1
where ’ﬁj_l = n; + mj_1 — my is the num-

ber of samples in X(j — 1) and A(j — 1) =
(Zjﬁ;;_nﬁl l’z) /7j—1 is the corresponding mean
value estimate. Instead of computing (2) and (3)
for each j, which is not efficient if the underlying
segments contain a lot of samples in common, one
may use iterative update expressions given in the
Appendix.

6.2 EWMA Techniques

For the third type of moving windows, the variance
can be estimated iteratively by the standard EWMA
technique, used in [7]. Let px and of denote the esti-
mated mean value and variance for a generic segment
of samples X¥ = (2;)%_,, k > 1. Given two constants
« and 8 such that 0 < o, < 1, and starting from
o%(z) = (z — )%, pp and o3 are iteratively computed
as

e = P+ (1 — B) -1 (4)

o = azp — p)* + (1 — a)oi_, (5)

with the inital values y; = x1 and o7 = 0. In partic-
ular, we may have o = . Explicit solutions are then
given as

k
e = (1= B)F o+ 8> (1 B) (6)
1=2

k
ot = (1-a) i - ), (7)

Accordingly, at time ¢ = k, this variance estimate

measures the exponentially weighted average devi-

ation of the initial k¥ data samples from the corre-

sponding mean values at the same times. The relative

squared difference at time ¢ = m; is then computed

by (1) with o2(j) = 07%1], and 6%2(j—1)=02(j—1) =
2

Ty

Alternatively, starting from o2(z) = 22 — (%)?, o}

can be iteratively computed by another technique,
used in [10], in which the EWMA recursion is pro-
posed to be applied to the mean squared values, i.e.,
by

& = alz)’ + (1 - )&, (8)
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o = & — (1)? 9)

with the inital values y; = z; and & = (11)2. If
a = (3, then the corresponding explicit solution for
the variance is then given as

k

of =y (1—a)"(z; — ), (10)
i=2

which, at time ¢ = k, measures the exponentially

weighted average deviation of the initial k data sam-
ples from the overall mean value up to the time ¢t = k.
The alternative technique is hence more sensitive for
detecting anomalous changes in data, at the expense
of somewhat larger variations of variance estimates
in normal data.

The constants « and (3 determine the effective num-
ber of past samples influencing the variance and mean
value estimates, respectively. An equivalent number
of samples corresponding to av is given asn = 2/a—1
and hence relates to an equivalent size T of the cor-
responding sliding window. In standard applications
of the EWMA technique, e.g., for detecting data out-
liers or for reducing the noise in data by smoothing,
the used constants are typically close to 1 or at least
moderately large. In the moving variance method,
they should be relatively small and, like T/AT in
the sliding window techniques, empirically adapted
to the statistical properties of normal data. In gen-
eral, bigger constants or, equivalently, smaller values
of T'/AT should correspond to faster variance varia-
tions in normal data.

6.3 Average Conditional Variance

Let a numerical feature x be associated with a sym-
bolic feature s, i.e., let us consider a two-dimensional
feature (z, s). For example, for network traffic data,
x can be the byte rate, packet rate, or average packet
size and s can be the IP address or port number. In-
stead of considering the variance associated with the
aggregated numerical feature x, as described above,
it may be advantageous to consider the conditional
variance of x, conditioned on s, and then averaged
over s. Let 0?(x|s) denote the variance of z condi-
tioned on a concrete value of s and let o2(z|s) denote
the corresponding average over s which is called the
average conditional variance. Let z|s denote the mean
value of x conditioned on s. We then have

- —\2 . 2
o?(x|s) = (Jc - x|s) =22 — (x|s> . (11)
The method then goes along the same lines as above,

but with the average conditional variance instead of
the variance.
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The sequence of samples is now (X,S) =
(@i, 8:)52; . For the sliding window techniques, let n; s
denote the number of samples in the segment X ()
such that s; = s and let

NS(j)an Z

my
i=mgj—nj +1
i=s

denote the estimated mean value conditioned on s.
The average conditional variance estimate can then
be computed as

mj

nj (Ii — Hs; (]))27 (13)

i=mj—n;+1

and 62(j — 1) is computed analogously.

The two EWMA techniques from Section 6.2 can be
adapted to deal with average conditional variances,
by using the two equivalent expressions from (11) and
by applying the EWMA recursions to the involved
mean values, respectively. For both the techniques,
we thus need to compute recursively the conditional
mean values z|s for each value of s. Since each par-
ticular value of s comes irregularly in time, the corre-
sponding EWMA recursion of the type (4) is updated
at irregular times, so that at time t = k, only the
mean value conditioned on s = s, denoted as p s, ,
is updated. The EWMA recursion corresponding to

2
the left-hand expression in (11), (x - x|s> , is then

Eﬁ = afx, — uk,sk)2 +(1- a)ﬁi_l. (14)

On the other hand, to the right-hand expression in

2
(11), z2 — <x|s> , there correspond two recursions,
ie., (8) and

Hi, = alpik,s)” + (1= @)@y, (15)
along with
o = & — - (16)

6.4 Multidimensional Variance

The moving variance method can be adapted to deal
with multidimensional numerical features, i.e., with
a plurality of numerical features simultaneously. For
network traffic data, these features may correspond
to different nodes or links in a network or to differ-
ent values of the underlying symbolic packet features
such as, e.g., the IP addresses of port numbers. Under
the assumption that the chosen numerical features
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are roughly statistically independent, the proposed
aggregated statistical anomaly detection criterion is
then the sum of relative squared differences of vari-
ances associated with individual numerical features.
More generally, the sum can be weighted.

If the numerical features are strongly correlated,
then instead of considering the variances only, it is
more appropriate to take into account the whole co-
variance matrices associated with multidimensional
data. Accordingly, let C; and Cj_l denote the esti-
mates of the covariance matrices associated with mul-
tidimensional data on the segments of samples X (j)
and X (j—1) to be compared with each other, respec-
tively. Recall that a generic entry of the covariance
matrix of an ordered set of random variables is the
covariance between two random variables, where the
covariance between a and b is defined as cov(a,b) =
ab — @b. Instead of the sum of relative squared differ-
ences of variances, the criterion proposed is then

§; =tr(C; — C;1)(C;h, - €7 ),

; (17)

where tr(-) denotes the usual trace operator, i.e., the
sum of elements on the main diagonal of a quadratic
matrix. If the features are not correlated, then (17)
reduces to the sum of relative squared differences of
variances, as desired. For correlated data, (17) may
be more effective, but is more complex to compute.
The criterion (17) is derived from the symmetrized
Kullback-Leibler divergence between two multidi-
mensional Gaussian probability distributions, associ-
ated with X (j) and X(] — 1), by discarding the part
involving the mean values.

It is interesting that the two EWMA techniques de-
scribed in Section 6.2 can be adapted to deal with co-
variance matrices and (17). More precisely, in analogy
with the variance, they should be applied to the equiv-

alent expressions for the covariance (a —@)(b — b) and
ab—ab, respectively, and comprise the EWMA recur-
sions for the involved mean values.

Note that another option would be to treat multi-
dimensional numerical data as vectors and use as a
dispersion measure the mean squared Euclidean dis-
tance between the data vectors and the mean data
vector. However, this generalization of variance does
not appear to be sufficiently sensitive to changes in
individual features.

7 Moving Linear Least Square Error
Method for Numerical Features

For numerical features, the second dispersion mea-
sure proposed is the least mean squared error result-
ing from a linear (more precisely, affine) approxima-

tion of data. This error, which is here called the lin-
ear least square error (LLSE), together with the opti-
mum affine approximation minimizing the error, can
be obtained by the standard linear regression tech-
nique. Note that the variance can be regarded as the
least mean squared error resulting from a constant
approximation of data, where the optimum constant
minimizing this error is the mean value of data. The
LLSE is less sensitive to changes in nonstationary or
correlated normal data than the variance, as it tends
to remove linear trends in time which may occur in
real data.

Let €2(j) and é2(j — 1) denote the respective LLSE
estimates associated with the segments of samples
X(j) and X (j—1) to be compared with each other at
the j-th discrete time ¢ = m;. The relative squared
difference of the LLSEs is then defined as

() — €3G —1))°
(@G - 1)
The LLSE estimates depend on the timings of indi-
vidual samples which may be regular or irregular. Let

t; denote the time associated with the sample z;, for
each ¢ > 1. For the sliding window techniques, let

pe(j) = (Zﬁmj,njﬂ ti) /n; and

5;=

(18)

my

=0 Y

i=mj—n;+1

(ti — () (19)

denote the mean value and the variance of the sample
timings on the segment X (j), respectively. Further,
let

1 /IYL]'
covg +(j) = - xit;
J .

i=mj;—n;+1

—u(m(s)  (20)

denote the covariance between z and ¢ on X (j). Ac-
cording to the standard linear regression technique,
we then obtain

- 2, Covg4(f)?
e(j)=o - —
G)=0) ~ 5t
which, in the case of regular data sampling, reduces

to

(21)

1 ni . N nj+1 2
(yTJ Zzél in+mj—nj - ,U(J)JT) 99
a (n? —1)/12 - 22)

Analogous expressions hold for é*(j — 1), associated
with X (5 — 1). Iterative update expressions corre-
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sponding to (22) are given in the Appendix.

In view of (21), it follows that the LLSE dispersion
measure will be close to the variance if the covari-
ance between x and t on X (j) is relatively small. In
turn, it can be shown that this will hold if the data
samples are statistically independent or, more gener-
ally, uncorrelated (i.e., if the covariance between dif-
ferent data samples is relatively close to zero) and
stationary. In the opposite case, if the data samples
are nonstationary (e.g., if the probability distribution
of samples changes in time) or correlated, then the
LLSE may be considerably smaller than the variance,
as the linear trends in data are removed. Therefore,
the LLSE is more robust as a dispersion measure than
the variance, i.e., less sensitive to changes in nonsta-
tionary or correlated normal data, which may be de-
sirable. In particular, normal data may become non-
stationary if AT is relatively large and correlated if
AT is relatively small.

It is interesting that the LLSE can also be esti-
mated by the adapted EWMA techniques. To this
end, let us put (21) in the following general, self-
explanatory form

2, N 2 cov(z,t)?
e(z) =0"(x) - T2t
xt — 7t)?

:02@) — (;Qf)t) (23)

Now, expressions for £ and 02 (t) are deterministic and
depend on the data sampling used. The EWMA re-
cursion can be applied to the mean value 7, as de-
scribed above, and to the mean value xt. More pre-
cisely, an EWMA estimate 7 of the mean value xt
on a generic segment of samples X¥ = (xi)le taken
at times (¢;)¥_, can be iteratively computed as

me = B(xrtr) + (1 — B)nr—1 (24)

with the initial value 71 = x1t;. Then, by apply-
ing the two EWMA techniques from Section 6.2 for
estimating the variance we respectively obtain two
corresponding EWMA techniques for estimating the
LLSE. Depending on the constants used, one may
thus obtain even more robust dispersion measures.

8 Moving Concentration Method for
Symbolic Features

A symbolic feature x takes values in a set in which
a distance or closeness between two elements is not
defined or is not considered to be relevant. Typically,
such a set is discrete, i.e., finite or countably infinite,
and is here denoted as A = {ax|l < k < m} and
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called an alphabet, where the number of elements m is
finite or possibly infinite. Multidimensional symbolic
features can be treated in essentially the same way
and, if m is very large, then the number of elements
can be effectively reduced by grouping the discrete
values, e.g., by applying a hash function. Any numer-
ical feature can be treated as symbolic, possibly after
quantization, by disregarding the Euclidean metric.

A dispersion or concentration measure associated
with a multiset of observed symbolic values is a mea-
sure of how these values are dispersed or concentrated
in a given alphabet, respectively. A dispersion (resp.
concentration) measure is a real-valued function that
achieves its minimum (resp. maximum) value if all the
data values are identical, generally increases (resp. de-
creases) as the data values become dispersed among
a larger subset of values, and achieves its maximum
(resp. minimum) value if the data values are uni-
formly distributed over the whole alphabet. Accord-
ingly, it is natural to associate a dispersion or concen-
tration measure with relative frequencies of observed
symbolic values. If these frequencies are interpreted
as estimated probabilities, then a sample estimate of
any entropy, as a measure of statistical uncertainty,
can be taken as a dispersion measure and, in partic-
ular, the well-known Shannon entropy.

A relative difference of consecutive estimates of en-
tropy should then be adapted to the chosen entropy
and possibly defined according to the statistical prop-
erties of entropy estimates derived in [20]. More pre-
cisely, a general criterion to be respected in this re-
gard is that, if the samples are drawn independently
according to the same probability distribution, then
the relative difference should generally be a small ran-
dom variable that should decrease as the (effective)
number of samples per segment increases and should
be roughly independent of the underlying probability
distribution.

For the quadratic entropy or quadratic concen-
tration measure to be defined below, three relative
squared differences are proposed in view of [20]. In
a concrete application, the one whose variation over
normal data is close to minimal could preferably be
chosen. Let C(5) and C(j — 1) denote the respective
estimates of the quadratic concentration measure
associated with the segments of samples X (j) and
X(j — 1) to be compared with each other at the
j-th discrete time ¢ = m;. Note that the values of
the quadratic concentration measure belong to (0, 1].
The relative squared differences proposed are then

5 = () - ,C‘('j — 1)) (25)
C(HICG—-1)
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5, = | i (26)

(CH) - CG 1) '
VOG- (1 - ) - CG - 1)

In addition, some other concentration measures are
also proposed in the sequel.

5; =

(27)

8.1 Sliding Window Techniques

For a segment of samples X (j), let Fi(j) denote the
number of times a value ay, is achieved, i.e., the abso-
lute frequency of this value and let

fi(d) = (28)

denote the relative frequency of the value ax on X (7).
The relative frequencies constitute the observed prob-
ability distribution of the considered symbolic fea-
ture z on X (j). Note that the absolute frequencies
can as well be computed if the observed samples do
not correspond to individual symbolic values, but to
their absolute frequencies on elementary time inter-
vals used for data monitoring (e.g., AT).

The quadratic concentration measure is then de-
fined as

CG) =Y fuli)*. (29)
k=1

The related concentration measure

m m S\ m 2
my  fu(i)?—1= Z’“—l(f’“l(/jzl L) (30)

is the chi-square statistic of the observed probability
distribution with respect to the uniform probabil-
ity distribution. This statistic follows the chi-square
probability distribution if the observed values are
drawn from the uniform probability distribution, pro-
vided that the number of samples is sufficiently large.
The corresponding quadratic dispersion measure

D(j) =Y fili)1 — fr(4)) =1 - C() (31)

k=1
is the quadratic entropy [21] of the observed proba-
bility distribution.

Consequently, the essence of the proposed mov-
ing quadratic concentration method is thus to com-
pare the observed probability distributions for two

consecutive moving windows by comparing the corre-
sponding chi-square statistics with respect to the uni-
form probability distribution, instead of comparing
them directly by the (two-sample) chi-square statis-
tic. Namely, the direct comparison is in general overly
sensitive for normal data, where the observed proba-
bility distributions may change rapidly and consider-
ably.

It follows that

1
~<c@y<t (32)
The maximum value C(j) = 1 is achieved if and only
if the observed probability distribution is maximally
concentrated, i.e., there exists exactly one relative
frequency equal to 1 and all the others are equal
to 0. The minimum value C(j) = 1/m is achieved
if and only if the observed probability distribution
is uniform over all m values, i.e., fx(j) = 1/m, for
all 1 < k < m. Note that the Shannon entropy
—> v fi(4) log fr(j) possesses analogous proper-
ties, but is much more sensitive to changes in small
relative frequencies than the quadratic entropy, and
this may not be desirable.

The quadratic concentration measure is particu-
larly interesting if the number of samples n; is larger
than the total number of achievable values m. How-
ever, if n; < m, then some or many discrete val-
ues cannot effectively appear and it may be advanta-
geous to use alternative measures. One option would
be to look at a subset of m’ highest relative frequen-
cies only, where m’ < m. More precisely, let f; ., (j),
1 < k < m/, denote the normalized m’ highes’t rela-
tive frequencies on the segment X (j). Then, given a
parameter m’ < m, the proposed quadratic concen-
tration measure is defined as

[1]=

C'(G) =) fhwm (4)* (33)

=
I

1

It follows that

% <C'(j) <1, (34)
where the maximum value C’(j) = 1is achieved if and
only if the observed probability distribution is maxi-
mally concentrated and the minimum value C’(j) =
1/m/ is achieved if and only if the observed probabil-
ity distribution is uniform over a subset of m’ values.

Another, less sensitive option, which is particularly
interesting if n; is much smaller than m, would be to
define a concentration measure as the total number
of repetitions among all n; samples, i.e., as

1S:Gured)




84

Moving Dispersion Method for Statistical Anomaly Detection in IDSs —J. Dj. Golié

C"(j) = n; — meg(§), (35)

where meg(j) is the total number of discrete values
that effectively appear in X (j), i.e., the total number
of nonzero relative frequencies. It follows that

0<C() <ny -1, (36)

where the maximum value C”(j) = n; — 1 is achieved
if and only if the observed probability distribution
is maximally concentrated, i.e., meg(j) = 1 and the
minimum value C”(j) = 0 is achieved if and only if
there are no repetitions, i.e., meg(j) = m, for which
it is necessary that n; < m. Note that if the samples
are drawn from the uniform probability distribution,
then the expected number of repetitions is approxi-
mately n; —m(1—e~"/™) and, in particular, if n; ~
\/m, then it is approximately equal to n?/(2m). The
relative squared difference (25) can be used for com-
parison.

Unlike the quadratic concentration measures,
the repetition concentration measure is sensitive to
changes in the number of samples in the two seg-
ments to be compared with each other. Note that
for the sliding window pair technique, this number
necessarily changes as one segment is a subset of
the other. One can then perform a normalization of
(35) by dividing it by an appropriate normalization
factor, e.g., by n?/(2m).

For the sliding window pair technique, the concen-
tration measures C'(j—1), C’(j—1), and C”(j —1), in
terms of the frequencies Fj,(j — 1) and f,(j —1) on a
sample segment X (j —1), are defined analogously. It-
erative update expressions for the concentration mea-
sures are given in the Appendix.

8.2 EWMA Techniques

It is interesting to see if the EWMA technique can
be adapted to provide iterative estimates of the
quadratic concentration measures (29) and (33) in-
troduced in Section 8.1. A novel observation is that
this can be achieved by applying the EWMA re-
cursion to appropriately defined elementary relative
frequencies and, then, by computing the concen-
tration measures by using the EWMA estimates of
relative frequencies. This holds for any concentration
or dispersion measure based on relative frequencies.

Firstly, assume that the exponential weights are
associated with individual samples in the sample se-
quence X = (x;)52;. Let f(t) = (fx(t))5, denote
a vector of estimated relative frequencies on the seg-
ment X! = (x;)!_,, to be computed iteratively for
any discrete time ¢ > 1. Let A(t) = (Ax(t))}, de-
note the value-indicator vector at time ¢ defined by
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A (t) = [x¢ = ag], which contains exactly one com-
ponent equal to 1, i.e., the one corresponding to the
index of the discrete value taken by x;, and all the
others equal to 0.

The estimated relative frequencies are then com-
puted iteratively as

f(t) =aA(t) + (1 —a)f(t 1) (37)

with the initial value f(1) = A(1) or, in scalar nota-
tion, as

fe(®) = ali(t) + (1 — a) fi(t = 1), (38)

for each 1 < k < m. The explicit solution is then
given as

t

FO)=(1-a) 7AW +a) (1-a) 7A@  (39)

=2

or, in scalar notation, as

t

fet) = (1= )7 Xe(1) + @D (1= a) " Ak (d). (40)

=2

The constant « should be sufficiently small so that the
equivalent number of samples 2/« — 1 is sufficiently
large for obtaining meaningful estimates of relative
frequencies.

Alternatively, the exponential weights can be asso-
ciated not with individual samples, but with groups
of successive samples, in which case the constant « is
not required to be very small. The discrete times are
then associated with these groups of samples instead
of individual samples. In particular, groups of sam-
ples may correspond to elementary time intervals of
equal lengths (e.g., AT). For individual samples, the
value-indicator vector for an individual sample can be
regarded as the vector of elementary relative frequen-
cies corresponding to this sample, which are hence
equal to 0 or 1. For groups of samples, at a discrete
time ¢ corresponding to the t-th group of samples, we
can thus define X(t) = (A\x(t))7, as the vector of el-
ementary relative frequencies of values occurring in
this group, which is equal to the arithmetic mean of
the value-indicator vectors corresponding to individ-
ual samples in this group. The EWMA recursion for
the estimated relative frequencies then becomes

flt) =aX(t) +(1-a)f(t-1) (41)
with the initial value £(1) = X(1).

The two described EWMA techniques can be called
the sample-based and the interval-based EWMA
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techniques for relative frequencies. For both of them,
the quadratic concentration measures C(j) and
C’(j), at a discrete time ¢ = m;, are then computed
by applying (29) and (33) to f(m;), respectively.

Concentration

8.3 Average Conditional

Measures

Let a symbolic feature x be associated with another
symbolic feature s, i.e., let us consider a two-dimensi-
onal symbolic feature (z,s). For example, for net-
work traffic data, the two symbolic features may re-
late to the source and destination variables such as the
IP addresses, port numbers, email addresses, HT' TP
URIs, and SIP URIs. In this case, one can define the
quadratic or repetition concentration measures for
the joint variable (z, s) and for individual variables x
and s, in the same way as above.

However, it may be advantageous to define the con-
ditional concentration measure of x, conditioned on
s, and then averaged over s. Of course, x and s may
switch places. To this end, we need to compute the
conditional relative frequencies

Jrr k2 (J)
sz (])

for the values ay, of s that effectively appear, i.e., such
that sz( ) > 0, where fkg( ) Zﬁ:l fk1,k2(j)'F0r
the sliding window technique, the average quadratic
concentration measure of x conditioned on s, on the
segment X (j), is then given as

Tk (9) = (42)

m

CH = fral) D frara(4)? (43)

ka=1 k1=1
Z fk17k2 (44)
iy Tl

and C(j — 1) is computed similarly. Analogous ex-
pressions hold for the average conditional quadratic
measure based on (33) instead of (29). The average
conditional repetition concentration measure can be
defined similarly.

The EWMA techniques proposed in Section 8.2
can be adapted to deal with the average conditional
quadratic concentration measures. One option is to
apply the EWMA recursions to the relative frequen-
cies fi, ko (t) and fi,(t), where the constant used
for the joint relative frequency should roughly be m
times smaller, because of the m times larger num-
ber of two-dimensional values. Another, more direct
option is to apply the EWMA recursions to f, ()
and the individual conditional relative frequencies
Jr1|ks(t), where the constants can be the same or

similar. For each value of ka, fi, |, (t) is then itera-
tively updated irregularly in time, whenever a partic-
ular value of ko appears. The corresponding average
conditional quadratic concentration measures are
computed by (44) and (43), respectively. For each
option, the EWMA recursions can be sample based
or interval based, as described in Section 8.2.

9 Network Traffic Applications

For network traffic data, as discussed in Section 3, the
main numerical features are extracted from layers 3
and 4 of IP packet headers in elementary time inter-
vals of length AT and include the packet rate Rpqcket,
the byte rate Rpyy¢e, and the average packet size Pi;e.
The main symbolic features extracted from layers 3
and 4 of individual IP packet headers include the
source and destination IP addresses and port numbers
and the transport protocol used, whereas the sym-
bolic features extracted from other layers such as the
application layer may include the source and destina-
tion HTTP URIs, SIP URIs, and email addresses, as
well as the type of SIP packets transmitted in a VoIP
network. These features can be traced in time at a
chosen network node or a set of nodes (e.g., routers or
points of presence), possibly distinguishing the direc-
tion of packets along communication links. Typically,
AT can range from being relatively small (on the or-
der of seconds or less) to relatively large (on the other
of minutes, e.g., 5 min).

Numerical features can be aggregated or separated
according to various classes of symbolic features, thus
resulting in various combined or multidimensional
features containing both numerical and symbolic
data. Numerical features can also be regarded as
symbolic, possibly after quantization. On the other
hand, one may only consider the symbolic features,
discarding the numerical ones. Note that, in a given
elementary time interval, Npqcrer associated with dif-
ferent values of a symbolic feature (e.g., destination
port number) in fact represents, after normaliza-
tion, the elementary relative frequency distribution
of this feature in this time interval. It can as well be
used for the computation of relative frequencies and
concentration measures as explained in Section 8§,
either by sliding window techniques or the interval-
based EWMA technique, with the time resolution
corresponding to AT instead of individual samples.

Let dPN and sPN stand for destination and source
port numbers and dIPA and sIPA for destination
and source IP addresses, respectively. Some examples
of numerical features to be considered include overall
numerical features Rpqcket, Royte, and Pgi.e aggre-
gated over all port numbers and IP addresses, condi-
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tional numerical features Rpqcket|dPN, Rpyie|dPN,
and Ps;.e|dPN conditioned on dPN and aggre-
gated over sPN and IP addresses, Rpacket|dIPA,
Ryyte|dIPA, and Pi;..|dIPA conditioned on dIPA
and aggregated over port numbers and sIPA, and
Rpacket|SIPA, Rpyie|sSIPA, and Ps;..|sIPA condi-
tioned on sIPA and aggregated over port numbers
and dI PA. Other examples are obtained analogously.
If in a conditional numerical feature the value of the
conditioning variable is not fixed, then we obtain a
combined feature for which one may compute average
conditional dispersion measures. If AT is relatively
small or relatively large, then it may be more appro-
priate to use the LLSE rather than the variance as a
dispersion measure.

Some examples of symbolic features include dPN
aggregated over sPN and IP addresses, sPN aggre-
gated over dPN and IP addresses, dI PA aggregated
over port numbers and sIPA, and sIPA aggre-
gated over port numbers and dIPA. Conditional
symbolic features include dPN|sPN, sPN|dPN,
dIPA|sIPA, and sIPA|dIPA, for which, if the
value of the conditioning variable is not fixed, one
may then compute average conditional concentration
measures. Other examples with these features are
obtained analogously (e.g., (dIPA, sIPA)|dPN and
dIPA|dPN). In addition, instead of port numbers
and IP addresses, one can analogously consider other
symbolic features like email addresses, HTTP URIs,
or SIP URIs.

The proposed moving dispersion or moving con-
centration method is potentially useful for detecting
network failures and broad classes of network attacks
such as (D)DoS attacks, scanning or probing attacks
(e.g., port-scanning attacks), SPAM and SPIT at-
tacks, as well as worm or virus outbreaks and other
massive malicious software attacks. The underlying
expectation is that the relative change in time of the
dispersion or concentration measure between two con-
secutive moving windows may be much smaller in
normal traffic than when there is a transition of nor-
mal traffic into anomalous. The rationale for this ex-
pectation which is not intended to be exhaustive is
emphasized in the sequel.

Firstly, in a message or request flooding (D)DoS at-
tack, the anomalous traffic may consist of a repeated
transmission of essentially the same or similar packets
(payload included), if the same piece of data or code
is distributed over the network. For example, in a SIP
network, a particular type of SIP messages/packets
(e.g., INVITE, RE-INVITE, BYE, or REGISTER)
may become much more frequent than the others in
case of such an attack. This may also happen in case
of network failures (e.g., in case of failure of a REG-
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ISTER server in a SIP network, the network may
become flooded by REGISTER messages). Then the
variance or LLSE of Py;,. for SIP packets, possibly
conditioned on dIPA or the destination SIP URI, is
expected to decrease considerably and, similarly, the
quadratic concentration measure of (possibly quan-
tized) Ps;.. is expected to increase.

Secondly, in a DDoS attack, the source IP addresses
tend to become randomized, especially near the tar-
get(s). In particular, this occurs if the source IP ad-
dresses are randomly spoofed. As a consequence, the
quadratic or repetition concentration measure of the
symbolic feature sI P A tends to decrease significantly.
Moreover, if the number of targeted network nodes is
small, like in a reflection DDoS attack in a SIP net-
work, then the quadratic concentration measure of
the symbolic feature dIPA tends to increase, espe-
cially near the target(s). Moreover, the average condi-
tional quadratic concentration measure of the condi-
tional symbolic feature sT P A|dI P A tends to decrease
with even higher sensitivity. A similar situation oc-
curs in a DDoS attack with randomized source email
addresses or source SIP URIs.

Thirdly, in a port scanning attack, which usually
precedes a DDoS attack, the destination port num-
bers in the corresponding network packets may be-
come randomly dispersed. The quadratic concentra-
tion measure of the symbolic feature dPN and the
average conditional quadratic concentration measure
of the symbolic feature dPN|sPN then tend to de-
crease significantly.

Fourthly, in a massive malicious software attack
targeting random or random-like destination IP ad-
dresses, the quadratic concentration measure of the
symbolic feature dIPA and the average conditional
quadratic concentration measure of the conditional
symbolic feature dIPA|sIPA tend to decrease sig-
nificantly. If such an attack targets specific destina-
tion port numbers, then the quadratic concentration
measure of dPN tends to increase. In addition, the
variance or LLSE of Pg;,. or Rpyie, possibly condi-
tioned on dPN, may then change considerably. If the
source IP addresses are randomly spoofed, then the
joint feature (dIPA,sIPA) can be used similarly.

Fifthly, in a SPAM or SPIT attack using ran-
dom destination email addresses or SIP URIs, the
quadratic concentration measure of these addresses
or URIs tends to decrease considerably, respectively.
The same is the case with the average conditional
quadratic concentration measure of these addresses
or URIs, when conditioned on source email addresses
or SIP URIs, respectively, and the sensitivity to such
attacks is expected to be even higher.
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For network traffic data, one can distinguish be-
tween two directions of traffic along a communication
link, e.g., inbound and outbound with respect to a
given network. Instead of looking for sudden relative
changes in time of a chosen dispersion measure asso-
ciated with a chosen data feature, one may as well
apply another paradigm, namely, that of looking for
points in time when the relative difference between
the two values of the chosen dispersion measure corre-
sponding to two directions of traffic is large. Namely,
if in a normal traffic there is a symmetry between the
two directions so that the considered relative differ-
ences are likely to be small, then in a case of an at-
tack such a symmetry may be broken, due to func-
tional disruptions or protective countermeasures tak-
ing place, which in turn may result in larger values of
the relative differences.

Finally, in addition to dispersion or concentration
measures, one may also consider standard volume-
based techniques aiming at detecting sudden in-
creases in the mean values of Rpqcker and Rpyie, which
accompany the flooding attacks and then apply com-
bined decision criteria for anomaly detection. These
combined criteria should also reflect a plurality of
dispersion and concentration measures possibly used
simultaneously for statistical anomaly detection.

The volume-based techniques are not sufficient by
themselves since a significant traffic volume increase
may also be caused by normal traffic such as flash
crowds and since the flooding attacks need to be de-
tected earlier, before the traffic volume becomes ex-
cessively large. For example, in case of DDoS attacks,
the traffic volume becomes high near the target, but
is low near the distributed sources of the attack. Since
the techniques based on dispersion or concentration
measures are less sensitive to traffic load increases
and more sensitive to other traffic anomalies, namely,
those featuring a relative change in the dispersion of
data, they will issue less alerts in the case of normal
traffic volume increases and may be able to detect
anomalous traffic even when the traffic volume is rel-
atively low, respectively.

10 Conclusions

The moving dispersion method is proposed as a novel
general framework for statistical anomaly detection
in intrusion detection systems. It essentially consists
in computing a chosen dispersion or concentration
measure of numerical or symbolic data at successive
discrete times and finding the times when its values
change significantly, with respect to appropriately de-
fined relative differences. For stationary data, the rel-
ative differences should be small and roughly insen-

sitive to data, so that the corresponding thresholds,
possibly dynamic, should reflect only the nonstation-
ary nature of data. The proposed dispersion or con-
centration measures include the variance and the least
square error resulting from the linear regression tech-
nique (LLSE), for numerical data, and the quadratic
and repetition concentration measures, for symbolic
data. They are proposed to be iteratively estimated
in time on three types of moving windows including
the standard sliding window technique, a novel sliding
window pair technique, and a number of new EWMA
techniques adapted to the dispersion or concentration
measures considered.

While its origins can be found in previous work,
e.g., dealing with the variance of byte or packet rates
in network traffic and the Shannon entropies or com-
pression ratios for IP addresses and port numbers,
apart from the relative change criterion, the new
method and the corresponding techniques contain
many new elements and generalizations and arguably
provide a number of advantages in terms of reduced
costs and potentially increased effectiveness. This re-
mains to be experimentally tested on simulated and
real data and is out of the scope of this paper. The
experiments to be conducted may also relate to the
scenario where the attack parameters are adapted to
the statistical anomaly detection techniques applied.

For numerical data, new elements include the rel-
ative squared difference of variances and its general-
ization to multidimensional data in terms of covari-
ance matrices, the LLSE as a dispersion measure for
nonstationary or correlated normal data, the aver-
age conditional variance as a dispersion measure of
numerical data conditioned on symbolic data, and
the EWMA techniques for the estimation of the pro-
posed dispersion measures. For symbolic data, new el-
ements include the quadratic concentration measure
and the corresponding relative differences, the repe-
tition concentration measure, the average conditional
quadratic and repetition concentration measures of
symbolic data conditioned on symbolic data, and the
EWMA techniques for the estimation of the proposed
concentration measures.

The average conditional dispersion and concentra-
tion measures have a higher sensitivity to massive net-
work attacks that follow the connection strategies of
the types many-to-few or few-to-many. The EWMA
techniques are better suited to nonstationary normal
data and enable a significant reduction of the amount
of data needed to be memorized, in comparison with
the sliding window techniques.

The proposed method is not computationally
demanding and enables in-line statistical anomaly
detection in real time, even in high-speed and high-
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volume communications networks. In principle, it
does not require prior complex training on historical
data for deriving the underlying statistical models,
but only for determining the corresponding static or
dynamic thresholds.

Appendix A: Iterative Update Expres-
sions

A1 Single Sliding Window and Variance

If two consecutive segments X (j) and X (j — 1) have
a lot of samples in common, then ¢2(j) can be com-
puted by updating 02(j — 1) on the basis of (2). Let
Aj = max(m; —m;_y,m; —mjq —n; + nj1),
where m; — mj_; is the number of samples in
X(j) not in X(j — 1) and mj —m;_1 —nj +n;j_
is the number of samples in X(j — 1) not in
X(j). Let S1) = X0 prws and Sa() =
ST a1 — 1)) Note that () = S1(j)/n,
and o7 = S3(j)/n;. Further, define p/(j — 1) =
S1(j —1)/n;.

Initially, first compute Si(1), p(1), S2(1), and
02(1). Then, for any j > 2, iteratively update pu(j—1)
into u(j) and o%(j — 1) into o(j), by using the fol-
lowing update expressions for the sums S;(j) and

S2(4)

mj

Z ("E; - mgfnj)

i=m;—Aj+1

S1(7) =510 - 1)+ (45)

Sy () =820 — 1) + pu(j — ' (j — 1) (nj—1 —ny)

m;

D>

i=m;—Aj+1

(=}, )@t —p()+ai_, —n'(i-1)) (46)

where z} = x; if x; is not contained in X (j — 1) (i.e.,
ifti>mj_1+1), 37;711]. = Zi_p, if 2;_p, is contained
in X(j—1) (ie,ifi >mj_1 —nj—1 +n; +1), and

x =0orx,_, =0 otherwise.
J

If the numbers of samples in X (5) and X (j —1) are
equal, i.e., nj =mnj_1 ,then A; = m; —m;_; and the
update expressions simplify into

mj

> (@wi—wiin)

i:m]‘_1+1

S1() =51 - 1) + (47)

S2(j) =520 — 1)

m;

DY

’L‘:m]’71+1
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(@i=in ) (@i —p()Foin; —p(i—1)). (48)

A2 Sliding Window Pair and Variance

Since the shortened segment X (j — 1) is contained in
X (4), it is not efficient to compute o2(5) and 62(j —1)
by (2) and (3), respectively, for each j. Instead, it
is efficient to compute iteratively 62(j — 1) by using
the update expressions from Section 10, applied to
the shortened sliding window, and then, for each 7,
to update i(j — 1) into u(j) and 62(j — 1) into o2(3)
by using

p(j) = (i — 1)+ — (zi— (G —1))  (49)
nJ i=mj_1+1
Sa(j) =S8a2(j — 1)
+ Y @A) @G, (50)

7;:7TLj71+1

where $5(j — 1) = X750, 4w — lj — 1) and
5%(5 —1) = Sy(j — 1)/n;_1. Note that (49) and (50)
generalize the well-known update expressions [22],
which hold for m; = m;_1 + 1.

A3 Sliding Windows and LLSE

An iterative update expression for €2(j) given by (22)
can be obtained by using the iterative update expres-
sions for p(j) and ¢2(j) from Section 10 and an up-
date expression for the sum S7(j) = >/ i%iym;—n,

S1() =510 -1

My —mj—1+n;-1

DY

i=n;_1+1

lw'i«#nzj_lfnj_l

mji—mj _1—An;
- iigm, g —nj_y
=1

—(mj —mj_1 —nj +n;_1)51(J), (51)

where An; =nj; —nj_;1.

For the sliding window pair technique, one can pro-
ceed along similar lines as in Section 10 by using the
iterative update expressions for p(5) and 02(j), along
with

"

Si(G) =81 —1)+ >

i:nj —mj+m;_1+1

ixi‘i"’”«j*”]‘? (52)

A . nj—m;+m;_i .
where S1(j —1) =32, 7 T i%igm, -
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A4 Sliding Windows and Concentration Mea-
sures

For the sample segments X (j) and X(j — 1) to be
compared with each other, let F*¥(5) and Fo'(j —
1) denote the absolute frequencies of a; among the
samples in X () not in X(j — 1) and the samples
in X(] — 1) not in X(j), respectively. For a single
sliding window, if T" is an integer multiple of 7, then
FP(j — 1) need not be recomputed as it is equal to a
previously computed and memorized value F*V (j —
T/7). For two sliding windows, Fo14(j—1) = F24(j—
1) = 0. The update expressions for the concentration
measures are then based on the update expression for
the absolute frequencies

Fi(j) = Fr(j — 1) + FPoV (j) — FPM(G - 1), (53)

together with fi(j) = Fx(j)/n; as well as meg(j) =
ket [Fr(F) > 0].

More precisely, one can then compute

s

ClHi)=CG-1)
) Rl AG-D G+ feG-1) (54)
k=1

C'(j)=C"(j—1)

’

+ > s D G- )+ G-1) (55)
k=1

C"(j)=C"(G = 1)
+ (nj - ﬁjfl) - (meﬁ(]) — thet(j — 1)), (56)

where 7;_1 is the number of samples in X(j—1). For
the single sliding window technique, if n; = n;_1,
then (54) reduces to

CH=Ccl-1+

2Fy, (—1)+Fp" (§)—FR' (i-1)

NE

(FRe™ (j)—Fgl(j—1)) - ,(57)

1 M

~
Il

where the summation is only over the values of k£ such
that F2ev(j) # FP4(j — 1). The update expressions
are effective if the number of discrete values m is large.
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