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Abstract

Many security protocols have the aim of authenticating one agent acting as
initiator to another agent acting as responder and vice versa. Sometimes,
the authentication fails because of executing several parallel sessions of a
protocol, and because an agent may play both the initiator and responder role
in parallel sessions. We take advantage of the notion of transition systems
to specify authentication for parallel multiple sessions execution. To model
the authentication, two main notions called 1. agent’s scope and 2. agent’s
recognizability are introduced, which consider the difference of ability of
agents due to their different roles in the protocol and different access to keys
and secrets. To formalize above notions, a process algebra provided by some
primitives for manipulating cryptographic messages is used. We formalize some
security protocols and examine our definition of authentication for them. We
just discuss the symmetric key case.

c© 2009 ISC. All rights reserved.

1 Introduction

Security protocols are hard to design, even under the
assumption of perfect cryptography. They are noto-
riously error prone, and many of the security pro-
tocols appearing in the literature have been shown
to be flawed. Security protocols have various aims,
such as distributing a key, non-repudiation, secrecy,
fairness, and achieving authentication: where each
agent becomes assured of the other’s identity. To
specify these aims, many formal methods have been
proposed: Logic approaches as BAN, and its exten-
sions [1, 2, 3, 4, 5, 6]; process algebraic approaches as
the application of CSP to security protocols pioneered
by Roscoe and Lowe [7,8,9]; and strand space [10,11]
approach. In this paper, authentication is modeled
using the syntax of the process algebra [12]. We focus
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on attaining authentication in the parallel multiple
sessions of the execution of protocols. Some systems
permit several parallel execution of a protocol, (as an
example, a server which several clients can log on); in
this situation, the attacker may use several parallel
runs of the protocol to fool one of the participants.
For example, in the mirror attack, the trick is to let
a participant answer his own question.

We model protocols by transition systems, and
specify authentication as a property for transition
systems, where parallel multiple sessions of protocols
are considered. To do this, two notions are introduced
which consider the capability of agents:

(1) agent’s scope, different agents may have differ-
ent scopes to sessions of a protocol; it is possible
that an agent assumes two sessions equal and
another agent assumes them different, (Defini-
tion 10),

(2) agent’s recognizability, due to their different ac-
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cess to keys and secrets, different agents may
have different power of recognizability of types
of messages; it is possible that an agent can dis-
tinguish two different types of messages and an-
other agent cannot (Definition 14).

In Section 2, various definitions of authentication,
appearing in the literature, and what we mean by
the term authentication are discussed. In Section 3,
we model protocols and specify authentication using
transition systems. In Section 4, the SPA, secure pro-
cess algebra, is considered to specify security proto-
cols, and to formalize two key notions: agent’s scope
and agent’s recognizability. The SPA is not novel; its
terms can be translated into the µCRL language [13].
It is not aimed to introduce a new process algebra, and
the SPA is just considered for convenience of taking
advantage of its terms to formalize the notions agent’s
recognizability and agent’s scope. In Section 5, using
the SPA, some security protocols are formalized, and
finally, in the last Section 6, some theorems are indi-
cated to show that it is decidable whether a protocol
is secure or not.

2 Authentication

Many security protocols discussed in the literature
have the aim of attaining authentication, i.e., one
participant should become sure of the identity of an
other. We consider two kinds of protocols, 1. protocols
that aim to authenticate a responderR to an initiator
I, and 2. protocols that aim to authenticate an initia-
tor I to a responderR. It is differentiated between the
two terms ‘agent’ and ‘participant’. Participants are
roles intended by a protocol designer such as initia-
tor, server and responder. Agents are principals who
execute the protocol. An agent may play more than
one role; for example, she may play both the initiator
and responder roles in parallel runs of the protocol.

There are various meanings of the term authen-
tication, and there exists a hierarchy of authentica-
tion; aliveness, weak agreement, non-injective agree-
ment and injective agreement spotlighted by Gavin
Lowe in [14]. Aliveness is considered to be the weak-
est reasonable definition of authentication: whenever
A (acting as initiator) completes a run of the pro-
tocol, apparently with responder B, then B has pre-
viously been running the protocol. From strengthen-
ing the aliveness to insisting that B agreed she was
running the protocol with A, arises weak agreement.
Non-injective agreement adds the condition that the
two agents A,B agree as to which roles each was tak-
ing, and that they agree upon some of the data items
used in the exchange. Injective agreement guarantees
that there is a one to one relationship between the
two agents’ runs.

Some attacks can occur due to parallel runs of a
protocol as mirror attack and multiplicity attack [15].
As it is mentioned, we study authentication for this
particular condition. To do this, a definition of au-
thentication for this case is considered. The definition
of authentication which covers weak agreement and
also guarantees that there is a one to one relation-
ship between the two agents’ runs is as follows (see
also [16]):

(1) A protocol authenticates a responder to an ini-
tiator, whenever an agent A starts j runs of the
protocol as an initiator and l runs as a respon-
der all in parallel ; and completes k ≤ j runs of
the protocol acting as initiator apparently with
responder B, then B has recently been running
k runs acting as responder in parallel, appar-
ently with A.

(2) A protocol authenticates an initiator to a re-
sponder, whenever an agent B starts j runs of
the protocol as a responder and l runs as an ini-
tiator, all in parallel ; and completes k ≤ j runs
of the protocol acting as responder, apparently
with initiator A, then A has recently been run-
ning k runs acting as initiator in parallel, ap-
parently with B.

It is assumed that the meaning of two terms ‘start-
ing a run’ and ‘completing a run’ are different. In the
next section in Definition 11, the following assertions
through transition systems are formalized.

(1) An agent starts i runs of a protocol in parallel
as an initiator (or as a responder),

(2) An agent completes i runs of a protocol in par-
allel as an initiator (or as a responder) appar-
ently with another agent.

To clarify the definition, the following examples are
stated. We use the standard notations in the litera-
ture: it is referred to the shared key between A and
B by kAB , and a nonce is denoted by N or n.

Example 1 Assume the following faulty authenti-
cation protocol:

I → R : {NI}kRI
R→ I : NI

This protocol aims to authenticate the responder
R to the initiator I. In order to verify the identity of
R, I sends a challenge NI (a nonce) to R encrypted
with the symmetric key kRI , which is only known by
I and R. If two agents A and B, with shared key kAB ,
participate in the protocol and two sessions of the
protocol are executed in parallel, andA plays both the
initiator and the responder role, the following well-
known reflection attack becomes possible.

A(I)→ E(R) : {NA}KAB
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E(I)→ A(R) : {NA}KAB
A(R)→ E(I) : NA
E(R)→ A(I) : NA

E(I) denotes the enemy (intruder) impersonating I,
and A(R) means agent A acts as a responder. In this
attack, A completes one run as initiator and one run
as responder, whereas, B does not participate in the
protocol. The protocol fails the item (i) of the defini-
tion. Agent A completes one run acting as initiator
apparently with responder B, and one run acting as
responder with B, all in parallel. Whereas, B does
not participate in the protocol.

Example 2 Consider the challenge-response proto-
col. The protocol aims both to authenticate initiator
I to responder R, and to authenticate responder R to
initiator I.

I → R : nI
R→ I : {nI}kRI .nR
I → R : {nR}kRI

Assume two agents A and B, with shared key kAB ,
participate in the protocol, and two sessions of the
protocol are executed in parallel, and B plays the
responder roles. The following well known reflection
attack becomes possible.

? E(I)→ B(R) : NA
? B(R)→ E(I) : {NA}kAB .NB
E(I)→ B(R) : NB
B(R)→ E(I) : {NB}kAB .N ′B

? E(I)→ B(R) : {NB}kAB
The protocol fails the item (ii) of the definition.

Agent B starts two runs as a responder, and com-
pletes one run (? lines) of the protocol acting as re-
sponder, apparently with initiator A (because of the
shared key kAB), whereas, A does not participate in
the protocol. Note that B starts two runs as a respon-
der in the protocol, while she completes just one run.

Example 3 Assume the Wide Mouthed Frog proto-
col.

I → S : I, {tI , R, kRI}kIS
S → R : {tS , I, kRI}kRS

Initiator, I, sends its name and a generated key to R
via a trusted server, in this way, initiator is authen-
ticated to responder [15]. Assume three agents A, B
and D (trusted party), with shared keys kAD, kBD
participate in the protocol. The following multiplic-
ity attack is possible, whereby an enemy makes B to
believe initiator, A, has established two sessions with
her, when A only wanted a single session.

A(I)→ D(S) : A, {tA, B, k}kAD
D(S)→ B(R) : {tD, A, k}kBD
E(S)→ B(R) : {tD, A, k}kBD

The protocol fails the item (ii) of the definition.
Agent B completes two runs of the protocol acting as
a responder, apparently with initiator A, whereas A
completes only one run.

3 Transition Systems

The notion of transition system can be considered as
a fundamental notion for the description of process
behavior [17]. In this section, some abstract formal
definitions via transition systems are stated, and then
the notion of authentication using these definitions is
specified.

3.1 Preliminaries

Definition 1 A transition system T is a quintuple
(S,A,→, ↓, s0) where

• S is a set of states,
• A is a set of actions containing an internal action
τ ,

• →⊆ S ×A× S is a set of transitions,
• ↓⊆ S is a set of successfully terminating states,
• s0 ∈ S is the initial state.

The set �⊆ S × A∗ × S shows generalized tran-
sitions of T . A state s ∈ S is called reachable state
of T if there is σ ∈ A∗ such that s0

σ
� s. The set

of all reachable states of a transition system T is
denoted by reach(T ). We let act(T ) = {a ∈ A |
∃s, s′ ∈ reach(T ) (s, a, s′) ∈→}. In the sequel, it is
assumed that every transition system T is connected,
i.e., reach(T ) = S, and act(T ) = A. If S and A are
finite, T is called a finite transition system.

For every s ∈ S, we let Trace = {σ ∈ A∗ | ∃s′ ∈
S s0

σ
� s′}. If there exists n ∈ N such that ∀σ ∈

Trace (|σ| ≤ n), where |σ| is the length of the se-
quence σ, then T is called a finite-depth transition
system. If for every s ∈ S, {(s, a, s′) ∈→| a ∈ A, s′ ∈
S} is finite, then T is called a finite-branching transi-
tion system. The notation τ refers to the silent action.

Notation 1 The notation s a→ s′ denotes (s, a, s′) ∈→.

Proposition 1 If a transition system T is both finite-
depth and finite-branching then it is finite.

Proof. It is straightforward. �

Definition 2 Let T = (S,A,→, ↓, s0) be a transition
system. Then T is deterministic if the following condi-
tion holds. Whenever s0

σ
� s and s0

σ
� s′, then s = s′.

Definition 3 Let A be a set of actions. A communi-
cation function on A is a partial function γ : A×A→
A such that for any a, b ∈ A: γ(τ, a) is not defined,
and if γ(a, b) is defined, then γ(b, a) is defined and
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γ(a, b) = γ(b, a). The image of γ is shown by Cγ , and
we define Hγ = A − Cγ . It is assumed that if γ(a, b)
is defined then both a, b ∈ Hγ .

See the opening part of section 4, where the above
definition is used.

Definition 4 (Parallel composition). Let T =
(S,A,→, ↓, s0) and T ′ = (S′, A′,→′, ↓′, s′0) be two
transition systems, and γ a communication function
on a set of actions that includes A ∪ A′. The parallel
composition of T and T ′ under γ, written T ‖ T ′, is
the transition system (S′′, A′′,→′′, ↓′′, s′′0) where

• S′′ = S × S′,
• A′′ = A ∪A′ ∪ {γ(a, a′) | a ∈ A, a′ ∈ A′}
• →′′ is the smallest subset of S′′ × A′′ × S′′ such

that:
◦ if s1

a→ s2 and s′ ∈ S′, then (s1, s′)
a→ ′′(s2, s′),

◦ if s′1
b→ s′2 and s ∈ S, then (s, s′1) b→ ′′(s, s′2),

◦ if s1
a→ s2, s′1

b→ s′2, and γ(a, b) is defined, then

(s1, s′1)
γ(a,b)→ ′′(s2, s′2),

• ↓′′=↓ × ↓′,
• s′′0 = (s0, s′0).

Definition 5 (Encapsulation). Let T = (S,A,→
, ↓, s0) be a transition system. Let H be a set of ac-
tions. The encapsulation of T with respect to H, writ-
ten as δH(T ) is the transition system (S′, A′,→′, ↓′
, s′0), where:

• S′ = S, A′ = A, ↓′=↓, s′0 = s0 and
• →′=→ ∩(S × (A−H)× S).

If we assume two processes T1 and T2, and execute
them in parallel, then for H = A− Cγ , the encapsu-
lation of the process T1 ‖ T2 causes the processes to
communicate. That is, the difference between T1 ‖ T2

and δH(T1 ‖ T2) is that in the second process, there
are only communication actions.

Definition 6 (Abstraction). Let T = (S,A,→, ↓
, s0) be a transition system. Let I be a set of actions.
The abstraction of T with respect to I, written τI(T )
is the transition system (S′, A′,→′, ↓′, s′0) where

• S′ = S, A′ = A, ↓′=↓, s′0 = s0 and
• →′ is the smallest subset of S×A′×S such that:
◦ if s1

a→ s2 and a ∈ I, then s1
τ→ ′s2,

◦ if s1
a→ s2 and a 6∈ I, then s1

a→ ′s2.

Proposition 2 If T and T ′ are two transition sys-
tems, and T is finite-depth, then δHγ (T ‖ T ′) is finite-
depth.

Proof. It is straightforward. �

Definition 7 Assume two transition systems T =
(S,A,→, ↓, s0) and T ′ = (S′, A′,→′, ↓′, s′0), and for
s ∈ S, let l(s) = {(s, a, t) ∈→| a ∈ A, t ∈ S}, and
for every s′ ∈ S′, l′(s′) = {(s′, b, t′) ∈→′| b ∈ A′, t′ ∈

S′}. The transition systems T, T ′ are called commu-
nication finite-branching with respect to communica-
tion function γ, if for any (s, s′) ∈ S × S′ the set
{((s a→ t), (s′ b→ ′t)) ∈ l(s)× l(s′) | γ(a, b) is defined}
is finite.

Proposition 3 If two transition systems T =
(S,A,→, ↓, s0) and T ′ = (S′, A′,→′, ↓′, s′0) are com-
munication finite-branching with respect to a com-
munication function γ, then δHγ (T ‖ T ′) is finite-
branching.

Proof. It is straightforward. �

In the following, a behavioral semantics is defined.
It used in order to formalize the notion of authenti-
cation.

Definition 8 A rooted branching similarity � be-
tween two transition systems T1, T2, is a subset of
S1 × S2, with the following conditions:

• Transfer conditions:

(1) if s� t and s a→ s′, then either
◦ a = τ and s′ � t,

or,
◦ there exist t′, t′′ and a sequence of (zero or

more) τ -transitions t
τ→ · · · τ→ t′ such that

s� t′ and t′ a→ t′′ with s′ � t′′.
(2) whenever s � t and s ↓, then there exists t′

and a sequence of (zero or more) τ -transitions
t
τ→ · · · τ→ t′ such that t′ ↓, and s� t′,

(3) (s0)1 � (s0)2,

• Rooted conditions:

(4) the pair ((s0)1, (s0)2) satisfies the rooted con-
ditions, that is,
◦ whenever (s0)1

a→ s, then there exists t such
that (s0)2

a→ t and s� t,
◦ whenever (s0)1 ↓ then (s0)2 ↓.

We say the transition system T2 simulates T1, T1 ≪
T2, if there exists a rooted branching similarity �
between T1 and T2.

Proposition 4 If two transition systems T1 and T2

are finite, then T1 ≪ T2 is decidable.

Proof. It is straightforward. �

3.2 Authentication via Transition Systems

In this part, the notion of authentication is spec-
ified using transition systems. A finite set P =
{I,R, p1, p2, · · · , pn} ∪ {e} of agents is assumed con-
sisting of initiator (I), responder (R), honest third
parties (p1, p2, · · · , pn), and enemy (e).

Definition 9 A P -transition system T is a quintuple
(S,AP ,→, ↓, s0) where
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• S is a set of states,
• AP is a set of actions with an ownership function
O : AP → P(P ), such that O(a) is the set of
participants who can perform a,

• →⊆ S ×AP × S is a set of transitions,
• ↓⊆ S is a set of successfully terminating states,
• s0 ∈ S is the initial state.

For each participant p ∈ P , the set O−1(p) = {a ∈
AP | p ∈ O(a)} is the set of actions performed by
participant p in the P -transition system T .

Definition 10 (Agent’s Scope). The scope of a
participant p ∈ P (agent’s scope) to a P -transition
system T is the P -transition system Sc(p)T =
τA−O−1(p)T . That is, all actions which do not belong
to O−1(p) are hidden.

The scope of a participant p to a P -transition sys-
tem T is just those actions that p performs, and occur-
rence of other’s action is unknown and hidden for the
participant p. So if for twoP -transition systems T and
T ′, Sc(p)T ′ simulates Sc(p)T , Sc(p)T ′ ≪ Sc(p)T ,
then p is persuaded that T ′ simulates T . The notion
of agent’s scope plays an essential part in defining au-
thentication in the next definition.

Definition 11 (Authentication).

(1) A P -protocol PR consists of two things:
(a) P -transition systems TI , TR, Tp1 , Tp2 , · · · ,

Tpn ; where I is initiator, R is responder
and p1, p2, · · · , pn are honest third parties
in the protocol,

(b) A partial communication function γ :
AP ×AP → AP satisfying Definition 3.

(2) Assume E is a transition system that for any
action a occurred in it e ∈ O(a), the enemy
model. Assume alsoA andB are two agents who
use the protocol. The transition system:

T =
iA(I)∏

TA(I) ‖
iA(R)∏

TA(R) ‖
iB(R)∏

TB(R) ‖
iB(I)∏

TB(I) ‖
ip1∏

Tp1 ‖
ip2∏

Tp2 ‖ · · · ‖
ipn∏

Tpn ‖ E ,

is called a parallel-instance of PR in the pres-
ence of the enemy E, where

∏i
T is an abbre-

viation for T ‖ T ‖ · · · ‖ T , i times, and A(I)
means agentA is impersonating initiator I. Let:

length(T) = max{iA(I), iA(R), iB(R), iB(I), ip1 ,

. . . , ipn}.

Then:

(1) Agent A starts iA(I) runs as an initiator and
iA(R) runs as a responder in T.

(2) Agent B starts iB(I) runs as an initiator and
iB(R) runs as a responder in T.

(3) Agent A completes k ≤ iA(I) runs as an initia-
tor, apparently with B, in T, whenever
Sc(A(I))δHγ (

∏k
TA(I) ‖

∏k
TB(R)

∏k
Tp1 ‖∏k

Tp2 ‖ · · · ‖
∏k

Tpn)≪ Sc(A(I))δHγ (T)
where δ, encapsulation, forces the processes to
communicate. In the above formula, the left
part of the simulation, Sc(A(I))δHγ (

∏k
TA(I) ‖∏k

TB(R)

∏k
Tp1 ‖

∏k
Tp2 ‖ · · · ‖

∏k
Tpn),

shows the scope of the agent A, when she partic-
ipates k times in the protocol as initiator, all in
parallel, and the protocol is completed correctly
as the designer desired, where the agent B com-
pletes k runs as a responder with A. The right
part shows the scope of the agent A of T , where
she participates as an initiator in the presence
of the enemy E. Now, if the left part simulates
the right part, the agent A is persuaded that at
least she could complete k runs as an initiator,
apparently with B in T.

(4) Agent B completes k ≤ iB(R) runs as a respon-
der, apparently with A, in T, whenever
Sc(B(R))δHγ (

∏k
TA(I) ‖

∏k
TB(R)

∏k
Tp1 ‖∏k

Tp2 ‖ · · · ‖
∏k

Tpn)≪ Sc(B(R))δHγ (T).

The protocol PR fails to authenticate initiator A
to responder B; if there exists a parallel-instance T,
j, l, k ∈ N, k ≤ j, such that A starts j runs as an
initiator and l runs as a responder, in T, and com-
pletes k runs as an initiator apparently with B, in T,
whereas, B does not complete k runs as a responder
apparently with A, in T. Then the parallel-instance
T is called an initiator-fail. The enemy E persuades
A to believe that she has completed k runs with B.

The protocol PR fails to authenticate responder B
to initiator A; if there exists a parallel-instance T,
j, l, k ∈ N, k ≤ j, such that B starts j runs as a re-
sponder and l runs as an initiator, in T, and com-
pletes k runs as a responder apparently with A, in T,
whereas, A does not complete k runs as an initiator
apparently with B, in T. Then the parallel-instance
T is called a responder-fail. The enemy E persuades
B to believe that she has completed k runs with A.

The protocol PR is called secure, if it has no
initiator-fail and no responder-fail. It is t-secure, if
it has no initiator-fail and no responder-fail with
length less than t.

In the next section, it is explained how to express
security protocol by transition systems. We use pro-
cess algebra [12], where it is provided with some prim-
itives for manipulating messages.
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4 The Model

In this section, we describe a language which is ap-
plied for the specification of security protocols. For
convenience, we refer to the model as SPA standing
for secure process algebra. It is not claimed that the
SPA is a new process algebra; it can be translated
into the µCRL [13], a process algebra which can han-
dle data. We take advantage of the terms of SPA to
formalize the notion of agent’s recognizability.

4.1 The Syntax

SPA syntax is based on the following elements.

• A finite set M of basic messages containing par-
ticipants’ ID, Nonce, cryptographic keys and
primitive messages. The set M of all messages
is defined as the least set such that M ⊆ M,
and for each m,m′, k ∈ M, we let (m,m′) (con-
catenation) and {m}k (encryption) also belong
toM.
• Actions: Id.snd(Id, d) (sending action), Id.rcv(Id, d)

(receiving action), comm(Id, Id, d) (communi-
cation action), and τ (internal action), where
Id ∈ ID, d ∈M.

• A set Var-m = x, y, z, .. of variables for messages,
a set of Var-i = i, j, · · · of variables for ID.
• A communication function γ,

γ(Id1.snd(Id2, d), Id2.rcv(Id1, d))

= comm(Id1, Id2, d).

• An ownership function O : A → P(ID) as fol-
lows.

O(Id1.snd(Id2, d)) = {Id1},

O(Id1.rcv(Id2, d)) = {Id1},

O(comm(Id1, Id2, d)) = {Id1, Id2}

O(τ) = ID.

In the sequel, we consider two projection maps
Π1,Π2 : M → M as follows: for any pair m =
(m1,m2), Π1(m) = m1 and Π2(m) = m2. We also
consider for each key k, a decryption map .{−}k−1 :
M → M which for any encrypted message m =
{m1}k, {m}k−1 = m1.

The set of message-formulas is simply defined in-
ductively as follows:

(1) all m ∈ M and all variables x, y, · · · for mes-
sages are message-formulas,

(2) If c, d are message formulas, and k ∈ KEY then
(c, d) and {c}k are message-formulas.

Action formulas, like Id.snd(Id, C[x, y, .., z]),
Id.rcv(Id, C[x, y, .., z]), comm(Id, Id, C[x, y, .., z]),
where Id ∈ ID and C[x, y, .., z] is a message formula,
are called open actions due to variables x, y, · · · , z.

Definition 12 Types of messages are defined induc-
tively as follows:

(1) The sets ID (names of participants), NC
(nonce), KEY (cryptographic keys), PM (prim-
itive messages) and {m}, m ∈ M, are (finite)
types.

(2) The sets M and EM = {{d}k | d ∈ M, k ∈
KEY }, the set of all encrypted messages, are
infinite types.

(3) If W,V are types and k ∈ KEY , (W,V ) and
{W}k are types.

(4) If W,V are finite types then (W,V ) and {W}k
are finite types.

(5) All types are defined through the above items.

Note that finite types have many finite elements.

Definition 13 Let S be a subset of M. A message
d is derivable form S, denoted by S ` d, if d can be
deduced from S by the following inference rules.

m m′

(m,m′)
(m,m′)
m

(m,m′)
m′

.

The set L of SPA’s terms (processes) contains the
process terms in [12]:

a constant 0, denoting inaction,
for each action a, a unary operator a.−, denoting
action prefix. If P is a term, a.P executes action
a and then proceeds as P ,
binary operators + , . , ‖ respectively denot-
ing alternative, sequential, and parallel compo-
sitions,
unary operators δH and τI , for I,H ⊆ A.

In addition to these syntaxes, in order to model mes-
sage handling, the SPA also has the following three
extra new terms.

(1) a(x).P , where P is a term, a an action, and x
is variable.

(2) [x : W ]P (x), where P is a term with free vari-
able x, W is a type and x is a variable.

(3) 〈S ` x〉P (x), where P is a term with free vari-
able x, and S a subset ofM.

Variable x is free in term a(x).P , If x is free in
term Q, then it is free in all terms obtained by the
signature, i.e., x is free in Q.P , P.Q, Q + P , Q ‖ P ,
τ(Q) (abstraction), and δ(Q) (encapsulation). Terms
[x : W ]P (x) and 〈S ` x〉P (x) bound x, and x is not
free in them. A process is a term with no free variable.
Informally, the process [x : W ]P (x) behaves as the
possible choice between P (d) for any message d ∈W ,
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and the process 〈S ` x〉P (x) behaves as the possible
choice between P (d) for any message S ` d.

4.2 The Operational Semantics

In order to model message handling, we added some
new terms as above. Besides the following familiar
operational semantics of process algebra [12],

P
a→P ′

P +Q
a→P ′

Q
a→Q′

P +Q
a→Q′

P ↓
P +Q ↓

Q ↓
P +Q ↓

P ↓ Q ↓
P.Q ↓

P
a→P ′

P.Q
a→P ′.Q

P ↓ Q
a→Q′

P.Q
a→Q′

P ↓
δHP ↓

P
a→P ′ a 6∈ H
δHP

a→ δHP
′

P ↓ Q ↓
P ‖ Q ↓

P
a→P ′

P ‖ Q a→P ′ ‖ Q
Q

a→Q′

P ‖ Q a→P ‖ Q′

P ↓
τIP ↓

P
a→P ′ a 6∈ I
τIP

a→ τIP
′

P
a→P ′ a ∈ I
τIP

τ→ τIP
′ a.P

a→P

P
a→P ′ Q

b→Q′ γ(a, b) = c

P ‖ Q c→P ′ ‖ Q′
1 ↓

The SPA’s operational semantics contains two ex-
tra new rules shown below.

R′1 :
P (d) a→Q d ∈W

[x : W ]P (x) a→Q

R′2 :
P (d) a→Q S ` d
〈S ` d〉P (x) a→Q

In this way, the meaning of the terms is clarified.
The behavior of a term is formally described by means
of the transition system induced by the inference rules
of the operational semantics. One may observe that

the similarity relation≪ is congruence with respect
to functions ., +, ‖, τI , and δH .

Theorem 1 The similarity relation ≪ is congru-
ence in SPA.

Proof. The proof is straightforward. Proving the con-
gruence for the functions a. (for a ∈ A), + , . , ‖ , τI ,
and δH is the same as it is for the rooted branching
bisimilarity in the literature. For the SPA’s new oper-
ators, assume p(d)≪ p′(d) for all d ∈W (or S ` d),
where W is a type (S is a subset of M). Then one
may easily verify that [x : W ]p(x) ≪ [x : w]p′(x)
(〈S ` d〉p(x)≪ 〈S ` d〉p′(x)). �

The following examples show how security proto-
cols can be specified via SPA.

Example 4 We give a simple example of SPA proto-
col specification. Assume the protocol in the Exam-
ple 1:

I → R : {N}k
R→ I : N

it can be specified as the following SPA process. T =
TI ‖ TR,

TI = [x : NC]I.snd(R, {x}k).[y : {x}]I.rcv(R, y).0

TR = [x : {NC}k]R.rcv(I, x).R.snd(I, {x}k−1).0

According to the protocol, the initiator I chooses
a nonce x, sends encrypt of x to R, and expects to
receive a message y from R if y is equal to x. Also, the
responder R expects to receive an encrypted nonce x
from I, and sends the decryption of x to I. Note that,
since R has the key k (k is shared between I and R
according to the assumptions of the protocol), she can
detect if a message is an encrypted nonce or not; thus,
she just receives messages from the type {NC}k.

Example 5 Assume

S → I : {(N1, {N2}kSR)}kSI
it can be specified as follows:

T = TS ‖ TI
TS = [x : NC][y : NC]S.snd(I, {(x, {y}kSR)}kSI ).0

TI = [x : {(NC,EM)}kSI ]I.rcv(S, x).0

The server S pairs a nonce x and an encrypted nonce
{y}kSR . Then, she sends the encrypted form of the
pair with key kSI to the participant I. The initiator
I receives x which she expects x to be an encrypted
(with key kSI) pair of a nonce and an encrypted mes-
sage. Since I does not have access to kSR, she cannot
distinguish between an encrypted message with kSR
and other messages in EM. Thus, I admits reception
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of any message of type {(NC,EM)}kSI .

Definition 14 (Agent’s Recognizability power).
For a participant p, the collection of p-recognizable
types is defined as follows:

(1) ID, NC, KEY, PM, EM and {m} (m ∈ M)
are p-recognizable.

(2) If W,V are p-recognizable then (W,V ) is p-
recognizable.

(3) IfW,V are p-recognizable and p has access to key
k, e.g., k is a shared key between p and another
participant, then {W}k is p-recognizable.

(4) All p-recognizable types are defined through 1, 2
and 3.

Note that, we assume a participant is able to recognize
that whether a message is an encrypted one or not,
i.e., she is able to decide membership of EM, though
she is not able to recognize the key that the encrypted
message has been encrypted with, except she knows
the key. The notion of agent’s recognizability plays a
significant part in verifying the authentication for a
protocol.

Example 6 Assume two types {(NC,EM)}kSI ,
{(NC, {NC}kSR)}kSI . The first one is I-recognizable,
i.e., if I receives a message, she is able to detect
whether the message belongs to {(NC,EM)}kSI or
not. Whereas, the second one is not I-recognizable,
since I does not have access to the key kSR. The mem-
bership status of elements of {(NC, {NC}kSR)}kSI
is not decidable for I. So, if I receives a message
from {(NC, {NC}kSR)}kSI , since she only has the
key kSI , all she can detect is that she has received
an encrypted (with key kSI) pair of a nonce and an
encrypted message whose encryption key she is not
sure about. Therefore, if I wants to admit reception
of elements of the type {(NC, {NC}kSR)}kSI , she
has to admit reception of elements of the first type
{(NC,EM)}kSI .

Definition 15 A sequential SPA process is defined
inductively as follows:

(1) 0 is a sequential term.
(2) If a is an action (or an action with free vari-

able), and P is a sequential term, then a.P is
sequential.

(3) If P is a sequential term and x a free variable
in it, then [x : W ]P is sequential.

(4) All sequential terms are defined through 1,2,3.

A sequential process is a sequential term without any
free variable.

Definition 16 A SPA process T is called legal, if it
satisfies the following properties.

(1) If a receiving action p1.rcv(p2, “Message”) ap-
pears in T , then the “Message” must be just a

variable. For example, [x : NC]p1.rcv(p2, {x}k),
[x : NC][y : ID]p1.rcv(p2, (x, y)) and p1.rcv(p2, N)
where N is a nonce, are not legal. The
legal forms of them respectively are [x :
{NC}k]p1.rcv(p2, x), [x : (NC, ID)]p1.rcv(p2, x)
and [x : {N}]p1.rcv(p2, x).

(2) If a receiving action p1.rcv(p2, x) appears in T ,
then the variable x must belong to a p1 recog-
nizable type, i.e., if [x : W ]p1.rcv(p2, x) then W
must be p1 recognizable.

(3) T is a term with no free variable, i.e., a process.

Now, we are equipped to express the formalization
of security protocols using SPA syntax.

Definition 17 For a given security protocol with par-
ticipants {I,R, p1, p2, · · · , pn}, a SPA specification of
the protocol consists of sequential legal SPA processes
Tps, where p ∈ {I,R, p1, p2, · · · , pn}.

In the next section, the security protocols argued
in Examples 1, 2, 3 are formalized.

5 Modelling Some Security Protocols

In this section, we model some security protocols us-
ing SPA. We also identify the enemy model and spec-
ify it by SPA.

5.1 Protocol 1.

Assume the authentication protocol:

I → R : {NI}kRI
R→ I : NI

introduced in Example 1. It is specified through the
following SPA processes TI , TR:

TI = [x : NC]I.snd(R, {x}kRI ).[y : {x}]I.rcv(R, y).0

TR = [x : {NC}kRI ]R.rcv(I, x). R.snd(I, {x}k−1
RI

).0

Initiator chooses an x from type NC, encrypts x,
and sends the encrypted message to R, and only re-
ceives the same x whose encryption she sent to R;
she does not receive any other message. Responder
receives an encrypted nonce with the key kRI , i.e., a
message that belongs to the type {NC}kRI (respon-
der, according to the protocol expects an encrypted
nonce with the shared key kRI , and she just performs
the receiving action for the message in the very same
type), decrypts it and sends the result to I. Both TI
and TR are sequential and legal.

5.2 Protocol 2.

Assume the challenge-response protocol argued in
Example 2.
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I → R : nI
R→ I : {nI}kRI .nR
I → R : {nR}kRI

It is specified through the following SPA processes TI ,
TR:

TI = [x : NC]I.snd(R, x).[y : ({{x}kRI}, NC)]I.

rcv(R, y). I.snd(R, {Π2(y)}kRI ).0

TR = [x : NC]R.rcv(I, x). [y : NC]R.

snd(I, ({x}kRI , y)). [z : {{y}kRI}]R.rcv(I, z).0

Initiator chooses x from type NC and sends it to
R, then receives a message if it belongs to the type
({{x}kRI}, NC), and finally sends the encryption of
the first part of y with key kRI to R. Responder re-
ceives a message x from type NC, encrypts it and
concatenates it with a nonce y, sends the whole to I,
and receives the encryption of the variable y with key
kRI . Both TI and TR are sequential and legal.

5.3 Protocol 3.

Assume the Wide Mouthed Frog protocol.

I → S : I, {tI , R, kRI}kIS
S → R : {tS , I, kRI}kRS

Unfortunately, SPA is not rich to formalize times-
tamps. Certainly, it is easy to add a type message for
timestamps to the syntax, but it is not enough and it
is needed to assume a clock process which runs in par-
allel with protocols. This is because, when an agent
wants to verify that a received timestamp is fresh,
or wants to generate a fresh timestamp, she needs a
clock to communicate with it. For simplicity, in this
paper, we do not consider timestamps, and instead of
the Wide Mouthed Frog protocol, the following faulty
protocol is specified:

I → S : I, {R, kRI}kIS
S → R : {I, kRI}kRS
TI = [x : KEY ]I.snd(S, {(R, x)}kIS ).0

TS = [x : {(ID,KEY )}kIS ]S.rcv(I, x).

S.snd(R, {(I,Π2({x}k−1
IS

))}kRS ).0

TR = [x : {(ID,KEY )}kRS ]R.rcv(S, x).0

The three specifications TI , TR and TS are sequential
and legal.

5.4 Enemy (intruder model)

Intuitively, an enemy can be thought as a process
which runs in parallel to a protocol. If a protocol is
used for security purposes, this postulates an enemy

against which the protocol is secure. The standard
enemy for formal analysis of security protocols was
introduced by Dolev and Yao in 1983, and is com-
monly known as the Dolev-Yao intruder model. It is
a very strong enemy, that all messages sent from any
honest principal to any other must pass through the
enemy. The enemy can read, alter, and redirect any
and all messages. However, encryption is treated as
a black box. The enemy can only decrypt a message
if she has the right keys. For simplicity, we assume a
week enemy that has no key, and can only concate-
nate messages and unfold concatenations. The enemy
is modeled by the following SPA process.

E(S) =
∑
p,q∈ID[x :M]e(p).rcv(q, x).E(S ∪ {x})+∑

p,q∈ID〈S ` y〉e(p).snd(q, y).E(S),

initial : E(S0),

where S0 ⊆ M, a finite subset of M, is the initial
knowledge of enemy, and e(p) denotes the enemy im-
personating a participant p.

Note that,
∑

is not a signature of the syntax of
SPA; since ID is finite, for convenience, we used it for
alternative composition. Enemy starts with an initial
knowledge S0 a subset of M, it is assumed that this
initial knowledge is finite. Impersonating some par-
ticipants, she receives some new messages from other
participants and increases her knowledge. She also
may impersonate some participants and send some
messages to other participants. Note that the enemy
just can unfold pairs and concatenate messages, and
she cannot encrypt or decrypt any message. There-
fore, because it is assumed S0 is finite, the enemy al-
ways has access to a finite number of elements ofEM,
i.e., encrypted messages. Since S0 is finite, {y | S0 `
y} ∩ EM is finite. Now, assume {y | S ` y} ∩ EM
is finite, as enemy receives new messages, she can in-
crease her knowledge S, but since she cannot encrypt
any message, she just gains access to a message m in
EM by receiving a message m′ that S ∪ {m′} ` m.
Surely,m′ could only finitely contain many encrypted
messages as its components, thus {y | S ∪ {m′} `
y} ∩ EM is also finite (?).

Proposition 5 Assume a participant p, if W is p-
recognizable type then enemy always has access to a
finite number of elements of W , i.e., at any state for
the knowledge S of the enemy {y | S ` y}∩W is finite.

Proof. If W is a finite type, then trivially {y | S `
y} ∩W is finite. If W is infinite, according to Defi-
nition 14, the construction of W must contain EM,
i.e., either W = EM, or W is constructed by several
times applying rule 2 of Definition 14, when the type
EM is used in the construction. In other words, since
the only basic infinite p-recognizable type isEM, any
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infinite type has EM in it structure. So, we prove
the proposition by induction on the structure of W .
If W is one of the finite p-recognizable types ID, NC,
KEY, PM, and {m} (m ∈M) then the answer is triv-
ial. If W is EM, the above discussion (?) proves the
proposition. Assume for p-recognizable types V1 and
V2, {y | S ` y} ∩ Vi is finite. Then, surely {y | S `
y} ∩ (V1, V2) and {y | S ` y} ∩ {V1}k are finite. �

Now, by identifying the enemy model, we are in a
position to look over the definition of authentication
(Definition 11), for security protocols.

Example 7 The protocol 1 is not secure. In fact, the
parallel instances

T = TA(I) ‖ TA(R) ‖ E

is an initiator-fail. Agent A completes one run as an
initiator with B in T , i.e.,

Sc(A(I))δHγ (TA(I) ‖ TB(R))≪ Sc(A(I))δHγ (T),

whereas, B does not complete one run as a responder
apparently with A, i.e.,

Sc(B(R))δHγ (TA(I) ‖ TB(R)) 6≪ Sc(B(R))δHγ (T).

6 Verification

In this section, we address the issue of formal verifi-
cation of authentication stated in Definition 11. For
a given protocol PR = (TI , TR, Tp1 , Tp2 , · · · , Tpn),
and enemy E introduced in Section 5.4, to verify
that if PR is secure, we must check all possible
parallel-instances T of PR, stated in Definition 11. It
is showon that for every deterministic finite-sending
protocol PR, and every natural number t, it is de-
cidable whether PR is t-secure or not. If a protocol
is t-secure, then we can be sure that if no agent runs
the protocol more than t times all in parallel, then
the enemy cannot make any flaw. To verify that if
a protocol PR is t-secure, we must show for every
parallel-instances T, length(T) ≤ t, T neither is an
initiator-fail nor a responder-fail.

Definition 18 Assume a sequential SPA process T ,
the process T is called finite-sending, if any state of the
transition system T (the transition system induced by
the inference rules of the operational semantics) can
just finitely make many sending transitions, i.e., if s ∈
ST is a state of T , then the set J(s) = {s a→ s′ | a =
Id1.snd(Id2,m), s′ ∈ ST ,m ∈ M, Id1, Id2 ∈ ID} is
finite.

Proposition 6 A sequential SPA process T , is finite-
sending, if for any sending action

Id1.snd(Id2, C[x])

in T , where C[x] is a message formula with free
variable x, either x belongs to a finite type, i.e., T
contains an operator [x : W ], W a finite type, tak-
ing place before Id1.snd(Id2, C[x]), or there exists a
receiving action Id3.rcv(Id4, x) taking place before
Id1.snd(Id2, C[x]) such that Id1 = Id3.

Proof. Assume for an arbitrary state s ∈ ST , the set
J(s) = {s a→ s′ | a = Id1.snd(Id2,m), s′ ∈ ST ,m ∈
M, Id1, Id2 ∈ ID}. Since T is sequential, there ex-
ists an open action Id.snd(Id′, C[x1, x2, · · · , xk])
in the term T , where x1, x2, · · · , xk are mes-
sage variables, such that s a→ s′ ∈ J(s) then a =
Id.snd(Id′, C[m1,m2, · · · ,mk]) for some possi-
ble messages m1,m2, · · · ,mk ∈ M. Now accord-
ing to the assumption, for each variable xi, ei-
ther xi belongs to a finite type or there exists a
receiving action Id.rcv(Id′, xi) happening before
Id.snd(Id′, C[x1, x2, · · · , xk]). If xi is a variable of
a receiving action Id.rcv(Id′, xi), then since it hap-
pened before reaching the state s, the value of xi
is determined and fixed. If xi is not a variable of a
receiving action, then it ranges over a finite type.
Therefore, the number of sending transitions that s
makes is finite. �

Example 8 The sequential process

T1 = [x : NC][y : NC]S.snd(I, {(x, {y}kSR)}kSI ).0

is finite-sending. Both variables x, y appear in the
sending action that belong to the finite typeNC. The
sequential process

T2 = [ x : {(NC,EM)}kSI ]I.rcv(S, x).

I.snd(S,Π1({x}k−1
SI

)).0

is also finite-sending, because the variable x occurs in
the receiving action I.rcv(S, x). The sequential pro-
cess T3 = [x : EM]I.snd(S, x).0 is not finite-sending.

Definition 19 A protocol PR = (TI , TR, Tp1 , · · · ,
Tpn) is called deterministic, if all transition systems
TI , TR, Tp1 , · · · , Tpn are deterministic.

Definition 20 A protocol PR = (TI , TR, Tp1 , · · · ,
Tpn) is called finite-sending, if all transition systems
TI , TR, Tp1 , · · · , Tpn are finite-sending processes.

Remark 1 One can easily verify that all security
protocols specified in Section 5, are deterministic and
finite-sending. In fact, many security protocols like
the Needham-Schroeder protocol (with shared keys),
the Kerberos protocol, the Andrew secure RPC pro-
tocol, the Yahalom Protocol etc. [1], can be specified
by deterministic finite-sending processes.

Lemma 1 If PR = (TI , TR, Tp1 , · · · , Tpn) is a deter-
ministic finite-sending protocol, then every two pro-
cesses Ti and Tj, i, j ∈ {I,R, p1, p2, · · · , pn}, are com-
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munication finite-branching.

Proof. Since both Ti and Tj are sequential finite-
sending, each state of them can only make finitely
many sending transitions. On the other hand, the
communication function γ, just permits communica-
tion between sending actions and receiving actions.
Since both Ti and Tj are deterministic, no state of
them makes a definite receiving transition more than
one time, i.e., any state s of Ti or Tj , by each ac-
tion Id1.rcv(Id2, d), Id1, Id2 ∈ ID, d ∈M, makes at
most one transition. Therefore Ti and Tj are commu-
nication finite-branching. �

Lemma 2 If PR = (TI , TR, Tp1 , · · · , Tpn) is a de-
terministic finite-sending protocol, then for any Ti,
i ∈ {I,R, p1, p2, · · · , pn}, two processes Ti and E are
communication finite-branching.

Proof. First, note that the process E is determinis-
tic. Now, since Ti is finite-sending and E is determin-
istic, the number of pairs (a, b) that can communicate
(γ(a, b) is defined, a is a sending action of Ti, and b
is a receiving action of E) is finite. Therefore, if it is
proved that the number of pairs (b, a) that can com-
municate is finite, b a receiving action of Ti, and a
a sending action of E, we are done. Since Ti is a le-
gal SPA process, the receiving action b is in the form
p.rcv(q, x), for some p, q ∈ ID, where x ranges over a
p-recognizable type W . Due to the Proposition 5, E
can just finitely make many sending transitions con-
taining messages inW . Therefore, the number of pairs
(b, a) that can communicate is finite. �

Theorem 2 If PR = (TI , TR, Tp1 , · · · , Tpn) is a
deterministic finite-sending protocol, then for any
parallel-instance T of PR and for every k ∈ N, both
processes

δHγ (
∏k

TA(I) ‖
∏k

TB(R)

∏k
Tp1 ‖

∏k
Tp2 ‖ · · · ‖∏k

Tpn)

and δHγ (T) are finite transition systems.

Proof. Because of the last two Lemmas 1, 2, both
δHγ (T) and

δHγ (
∏k

TA(I) ‖
∏k

TB(R)

∏k
Tp1 ‖

∏k
Tp2 ‖ · · · ‖∏k

Tpn)

are finite-branching. On the other hand, since each
Ti, i ∈ {I,R, p1, p2, · · · , pn}, is finite-depth, due to
Proposition 2, both processes are also finite-depth.
Thus, by Proposition 1, they are finite. �

Assume two agents A,B execute a protocol PR. If
we want to verify that a parallel-instance T of PR
is an initiator-fail, we must check for all k ≤ iA(I)

whether A completes k runs as initiator in T, i.e.,

Sc(A(I))δHγ (
∏k

TA(I) ‖
∏k

TB(R)

∏k
Tp1 ‖∏k

Tp2 ‖ · · · ‖
∏k

Tpn)≪ Sc(A(I))δHγ (T).

then B completes k runs as responder in T, i.e.,

Sc(B(R))δHγ (
∏k

TA(I) ‖
∏k

TB(R)

∏k
Tp1 ‖∏k

Tp2 ‖ · · · ‖
∏k

Tpn)≪ Sc(B(R))δHγ (T).

Also, to verify that T is a responder-fail, we must
check for all k ≤ iB(R) whether B completes k runs as
responder in T, thenA completes k runs as initiator in
T. According to the Proposition 4, for two transition
systems T1, T2, T1 ≪ T2 is decidable if both T1 and
T2 are finite. Due to the last theorem,

Sc(A(I))δHγ (
∏k

TA(I) ‖
∏k

TB(R)

∏k
Tp1 ‖

∏k
Tp2

‖ · · · ‖
∏k

Tpn),

Sc(A(I))δHγ (T),

Sc(B(R))δHγ (
∏k

TA(I) ‖
∏k

TB(R)

∏k
Tp1 ‖

∏k
Tp2

‖ · · · ‖
∏k

Tpn),

and

Sc(B(R))δHγ (T) are finite; thus, the following corol-
lary can be deduced.

Corollary 1 If PR = (TI , TR, Tp1 , · · · , Tpn) is a
deterministic finite-sending protocol, then for any
parallel-instance T of PR, it is decidable whether it
is an initiator-fail (a responder-fail) or not.

The following theorem asserts that if a protocol
PR is deterministic finite-sending then it is decidable
whether it is t-secure or not.

Theorem 3 If PR = (TI , TR, Tp1 , · · · , Tpn) is a de-
terministic finite-sending protocol, then it is decidable
if it is t-secure or not.

Proof. To verify that a protocol is t-secure, we
must check for any parallel-instance T of PR with
length(T) < t, whether it is an initiator-fail (a
responder-fail) or not, is decidable by the last corol-
lary. �

7 Concluding Remarks and Related
Works

We considered SPA to specify security protocols, how-
ever, as it is said, SPA is not novel and it can be trans-
lated to the µCRL language [13], the reason to con-
sider SPA is just for convenience to take advantage of
its terms to formalize the notion of agent’s scope and
agent’s recognizability.

It is shown that it is decidable if a protocol is t-
secure or not for any arbitrary t ∈ N. We conjecture
that
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For every protocol there exists a number
M ∈ N, such that if for all t < M the pro-
tocol is t-secure, then it is secure.

That is, if an enemy cannot obtain enough informa-
tion from M parallel instances of the protocol, in or-
der to attack it, then extra sessions do not increase
the ability of the enemy. we guess that the number
M is a function of the complexity of the structure of
the message types appearing in the protocol.

There are lots of works in the literature which at-
tempt to model authentication using process alge-
braic approaches such as [18, 19, 20, 21, 22, 23]. This
work should be considered in line with works which
express the correctness of protocols via the notion of
correspondence [24, 25, 26, 27]. Woo and Lam origi-
nally proposed correspondence assertions for specify-
ing authentication:

... when an authenticating principal finishes its part of

the protocol, the authenticated principle must have been

presented and participated in its part of the protocol [24].

Also, in [25,26] a type system for correspondence as-
sertions is presented for spi and pi calculus. The as-
sertions are used to formalize that in all possible ex-
ecutions of parallel composition of two processes, P
and Q, some point of execution in P must have been
preceded by some point of execution in Q.

The notion of authentication, considered in this
paper, is in some sense similar to the correspondence
assertions, where we take advantage of the notion of
rooted branching simulation for transition systems.
To verify the notion of authentication, we do not
apply usual model checking technics which check
whether the possible states satisfy a certain property
or not. The verification is simply finding a rooted
branching simulation for transition systems which
the existence of such a simulation is decidable. Ac-
tually, the notion of correspondence is indicated via
the two following notions:

(1) agent’s scope to the protocol (Definition 10),
and

(2) agent’s recognizability of types (Definition 14).

Different agents may have different scopes and differ-
ent recognizability powers. These two notions may be
compared with the works which aim to model the no-
tion of authentication via epistemic logic [28, 29, 30].
In epistemic logic, different agents may have differ-
ent beliefs due to their different information. Here,
different agents may have different scopes of the pro-
tocol due to their various roles in the protocol, and
they may have different recognizability powers due to
their different access to keys and secrets. In epistemic

logic, the knowledge of agent is modelled through the
notion of possible worlds of Kripke models [31,32]. A
protocol is described by a sequence of epistemic ac-
tions which update the Kripke models of knowledge,
and security properties (authentication, anonymity,
and etc) are specified through the formulas of the epis-
temic logic. After updating the model using the epis-
temic actions, it is verified whether the formula speci-
fying the security property is satisfied in the resulting
updated models. Epistemic actions are actions where
different agents may have different views on them.
Therefore, the notion of agent’s scope has shown it-
self in the notion of epistemic actions.
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