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A B S T R A C T

Computing the period of the periodic functions is the main reason of using Simon’s

algorithm to attack symmetric-key cryptographic primitives. However, if the

target function does not satisfy Simon’s promise completely or if the number of

superposition queries of the adversary is limited, Simon’s algorithm cannot compute

the actual target period, unambiguously. These problems may lead to the failure of

period-finding-based quantum attacks.Our main aim in this paper is to relax Simon’s

algorithm so that quantum adversaries can still carry out the mentioned attacks

without any assumptions (Simon’s promise) on the target function. To that end, we use

two different methods, each of which is suitable for some of the period-finding-based

quantum attacks. In the first method, as a complement to Kaplan’s suggestion, we

first show that using Simon’s algorithm, one can find the proper partial periods of

Boolean vector functions so that the probability of their establishment, independent

of the target function, is directly related to the number of the attacker’s quantum

queries. Next, we examine how one can use the partial period instead of the actual

one. The advantage of this method is twofold: It enables the attackers to perform

the quantum period-finding-based distinguishers with a smaller number of quantum

queries than those of the previous relaxation method. On the other hand, it generalizes

the previous forgery attacks on modes of operation for message authentication codes.

In the second method, we use Grover’s algorithm to complement Simon’s algorithm

in quantum key recovery attacks. This ensures that the time complexity of the

mentioned attacks is less than that of a quantum brute-force attack.

© 2020 ISC. All rights reserved.

1 Introduction

Quantum computers can solve some complex prob-
lems much more efficiently than their classical

∗ Corresponding author.
∗∗This article is an extended/revised version of an ISCISC’18
paper.

Email addresses: ali.khosravi@alum.sharif.edu,
teghlidos@sharif.edu

ISSN: 2008-2045 © 2020 ISC. All rights reserved.

counterparts. Cryptanalysis of classical ciphers is no
exception to this rule. For a notable example, Shor’s
algorithm [1] can be used to break some asymmetric
ciphers, such as Elgamal and RSA, whose security is
based on the difficulty of solving discrete logarithms
and integer factorization, respectively. As another
well-known example, Grover’s algorithm [2] is one of
the most famous quantum algorithms which can pro-
vide a quadratic speedup compared to the exhaustive
classical search.
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Simon’s algorithm [3] is one of the most widely used
quantum algorithms in quantum shortcut attacks on
symmetric cryptosystems. Computing period [4–6] or
linear structure [7] of Boolean vector functions, which
are the two main pillars of most quantum cryptanal-
ysis, are the main aim of Simon’s algorithm. In fact,
assuming access to the quantum oracle of the target
primitive, one can use Simon’s algorithm to analyze
some symmetric primitives with linear complexity.
For example, Kuwakado et al. [8] have shown that
using Simon’s algorithm, one can recover the key of
Even-Mansour construction [9] with linear complex-
ity. The security of the mentioned cipher has been
proved in the random permutation model [9]. As an-
other significant work based on Simon’s algorithm,
we can refer to [6], which has proposed a quantum
distinguisher for three rounds of the Feistel family
for the first time. Kaplan et al. [5] have shown that
assuming access to quantum oracle, one can perform
forgery attacks on various modes of authentication
and authenticated encryption, with linear complex-
ity. Also, Simon’s algorithm is the cornerstone of the
quantized version of related key [10] and slide at-
tacks [5, 11]. Using Grover’s algorithm as a comple-
ment to Simon’s algorithm, Leander et al. [12] have
shown that whitening keys do not significantly affect
the security of the block ciphers.

In general, computing the period of the target prim-
itive is the main reason for using Simon’s algorithm
in most quantum cryptanalyses of symmetric ciphers.
However, if the target function does not satisfy Si-
mon’s promise, that is, the target function has other
collisions in addition to the target period, or if the
number of quantum queries of the adversary is re-
stricted, there is no guarantee that Simon’s algorithm
can find the period, unambiguously. This issue may
lead to the failure of quantum period-finding-based
cryptanalysis. To deal with this problem, Ito et al. [4]
eliminate the need to recover the actual period in
quantum distinguishers by focusing on the dimension
of the space spanned by the resulting vectors of Si-
mon’s algorithm. As mentioned by Ito et al., their
technique cannot be applied to quantum key recovery
attacks and forgery attacks on authentication and
authenticated encryption schemes since these attacks
aim at recovering the actual period.

1.1 Author’s Contribution

Our main goal in this paper is to relax Simon’s algo-
rithm such that quantum attackers can launch period-
finding-based attacks without any assumptions about
the target function, even if the number of his quan-
tum queries is restricted to a given small positive
integer. In this regard, we use two methods to fix the

mentioned flaws of Simon’s algorithm in the period-
finding-based quantum attacks. In the first method,
as a complement to Kaplan et al.’s [5] suggested
method, we first show that using Simon’s algorithm,
one can find proper partial periods of Boolean vector
functions, such that the corresponding probabilities,
independent of the target function, are directly re-
lated to the number of quantum queries. Then we
look at how the partial period can be used instead
of the actual period in some period-finding-based at-
tacks. As a result, compared to Ito et al.’s relaxation
method [4], using the partial period is not only appli-
cable to quantum forgery attacks on modes of opera-
tion for MACs but also improves the success proba-
bility of quantum distinguishers, assuming quantum
adversaries are restricted to a specific small number
of quantum queries. In the case of quantum key recov-
ery attacks, such as a quantum-related key attack, we
propose another method, the summary of which is as
follows. First, using Simon’s algorithm the attacker
finds some candidates for the key of the target block
cipher and then uses Grover’s algorithm to search for
the key among them.

The rest of this paper is organized as follows. In
Section 2 we give the basic notations and definitions.
In Section 3, the required quantum algorithms are
described. Section 4 is devoted to examining the be-
havior of Simon’s algorithm, provided that Simon’s
promise is not fully satisfied. Section 5 is dedicated
to how to launch quantum period-finding-based at-
tacks without any assumption on the target periodic
function. Finally, in Section 6, we conclude the paper
and present some suggestions for further work.

2 Preliminaries

In this section, we introduce the notations and defi-
nitions used throughout the paper.

2.1 Notations

Table 1. Notations

Symbol definition

⊕ bit wise exclusive-or

A∥B concatenation of A and B

TrancqL(T ) q most significant bit(s) of T

TrancqR(T ) q least significant bit(s) of T

|M | cardinality of the set M

Cost(S) The cost of process S

The notation F2 denotes a finite field of characteris-
tic 2, and Fn

2 is an n-dimensional vector space over
F2. Let perm(l) denotes the set of all possible per-
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mutations on F l
2. We use π

$←− perm(l) to represent
uniform sampling of the perm(l). For a Bolean vector
function g, we use fg to represent a specific function,
which is efficiently executable by a classical algorithm,
with access to function(s) g (and g−1, in case g is
invertible). The other notations are given in Table 1.

2.2 Definitions

Definition 2.1 (Quantum oracle function [13]).
Any Boolean vector function f : Fn

2 → Fm
2 , say

the target cryptosystem, with a defined circuit is
efficiently implementable as a quantum unitary
Of : |x⟩ |y⟩ → |x⟩ |y ⊕ f(x)⟩ on n+m qubits.

Definition 2.2 (Query model [14]). In general,
quantum attacks are divided into the following mod-
els, according to the adversary’s access to the oracle
of the target algorithm.

i) Q1 model : The quantum adversaries (i.e., at-
tackers who access quantum computers) are allowed
to perform only classical queries [15]. As a notable
example, this model is used in a quantized version
of online-offline meet-in-the-middle attack [15] and
in running Simon’s algorithm with only classical
query [16].

ii) Q2 model : The quantum adversaries have ac-
cess to the classical and quantum oracles and perform
quantum superposition queries [14]. For example, this
scenario is used in [4–6, 8, 17].

iii) Q3 model : The quantum adversaries are al-
lowed to make quantum superposition queries un-
der related key differences [14]. This model is too
strong and has been used in quantum-related-key at-
tacks [10].

Definition 2.3 ((Q2, AnyD)-Pseudorandom
permutation (PRP) [18]). For query models
Q2 and arbitrary polynomially-bounded n, an (Q2,
AnyD)-Pseudorandom permutation is a family of

efficient keyed permutations Pk : Fn
2 × F

|k|
2 → Fn

2

and Pk
−1, if for all probabilistic polynomial-time

distinguisher D, there exists a negligible function
negl(n) such that:

Pr[C] ⩽ negl(n),

where Pr[C] is defined as follows:

|Pr[DPk,P
−1
k = 1 : k

$←− F
|k|
2 ]−

Pr[Dπ,π−1

= 1 : π
$←− perm(n)]|

In fact, Pr[C] can be used as a measure to indi-
cate the deviation of the function Pk from a random
permutation π. In this paper, we are going to com-
pare the efficiency of our proposed distinguisher and

that of Ito [4]. For this purpose, we compare the cor-
responding Pr[C]s under the same conditions.

Definition 2.4 (Period of Boolean vector func-
tion [17]). A vector s is called period (actual pe-
riod [4]) of a vector function f : Fn

2 → Fm
2 , if

f(x) = f(x⊕ s),∀x ∈ Fn
2 .

In this paper, any function that satisfies the above
condition is called periodic function.

Definition 2.5 (Simon promise [17]). For a given
periodic Boolean vector function f : Fn

2 → Fm
2 , with

period s ∈ Fn
2 \{0}

n
, if there is no collision other than

the actual period s (i.e. f(x) = f(y)⇔ y = x⊕s), the
function f is called to satisfy Simon’s promise [17].

Definition 2.6 (Partial period [4]). In periodic
functions, if there are other collisions in addition to s ,
(i.e., ∃s′ ̸= s, x ∈ Fn

2 : x′ = x⊕ s′, f(x) = f(x′)), the
vector t ̸= s is called partial period, if f(x) = f(x⊕ t)
holds for some x.

Definition 2.7 (Maximum probability of partial
period [5]). For any periodic function f : Fn

2 → Fm
2 ,

the maximum probability of partial period is defined
as follows:

εf,s = max
t∈Fn

2 \{0,s}
Prx[f(x) = f(x⊕ t)]

This parameter shows how much the function f
deviates from Simon’s promise.

Definition 2.8 (Set of irregular permuta-
tions [4]). For any permutation π ∈ perm(l) and a
specified function fπ : Fn

2 → Fm
2 , the parameter ϵπf

is defined as follows:

ϵπf = max
t∈Fn

2 \{0,s}
Prx[f

π(x) = fπ(x⊕ t)]

Let us consider 0 ⩽ δ < 1 as an arbitrary constant.
A permutation π is called irregular, if ϵπf > 1 − δ.
Furthermore, the set of all irregular permutations
irrδf is defined as follows [4]:

irrδf = {π ∈ perm(l) : ϵπf > 1− δ}

3 Required Quantum Algorithms

Throughout this section, we assume that the reader
is familiar with the basic concepts of quantum pro-
cessing.

3.1 Simon’s Algorithm

Assuming access to the quantum oracle of Boolean
vector functions f : Fn

2 → Fn
2 (i.e. unitary operator

Of : |x⟩ |y⟩ → |x⟩ |y ⊕ f(x)⟩), one can compute the
period of f with linear complexity, provided that f
satisfies Simon’s promise. In fact, Simon proposed
the circuit Sf , which computes an orthogonal vector
to period s in each execution.
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Figure 1. Subroutine quantum circuit Sf of Simon’s algorithm

As shown in Figure 1, Sf is described as
(measure⊗ In) · (H⊗n ⊗ In) · (In ⊗measure) · Of ·
(H⊗n ⊗ In) and works as follows:

(1) Prepare (2n) qubits in state |0n⟩ |0n⟩;
(2) Apply the Hadamard transform to the n

most significant qubits which leads to state
2(−n/2)

∑
x∈Fn

2
|x⟩ |0n⟩;

(3) Apply the unitary operator Of to obtain the
state 2(−n/2)

∑
x∈Fn

2
|x⟩ |f(x)⟩;

(4) Measure the second register in the computa-
tional basis;
Executing this step yields an n-vector f(z),
then the first register collapses to the state
(1/
√
2)(|z⟩+ |z ⊕ s⟩).

(5) Apply the Hadamard operator to the first reg-
ister again, giving

1√
2

1√
2n

∑
y∈Fn

2

(−1)z·y
[
1 + (−1)s·y

]
|y⟩ (1)

(6) Measure the above register in the computa-
tional basis;

Note that the amplitude of each y vanishes, if s·y =
1. As a result, by measuring the above state on the
computational basis, it is obtained a vector orthogonal
to s. By O(n) times executing quantum circuit Sf

as a subroutine of Simon’s algorithm, one obtains
n− 1 independent vectors, orthogonal to s with high
probability. Then s can be computed using basic
linear algebra. In summary, to compute the period
of the periodic function f , Simon has proposed the
following algorithm:

Algorithm 1 Simon’s algorithm

1: Initialize U := ∅;

2: Choose a positive integer c;

3: for i = 1, . . . , cn, do

4: Run the quantum circuit Sf to obtain an n-bit

vector ui;

5: Set U := U ∪ {ui};
6: end for

7: Compute the system of linear equations s · ui =

0, ∀ui ∈ U for s;

8: Return s;

3.2 Grover’s Algorithm

Grover’s algorithm [2] and its generalized variants
are widely used in quantum cryptanalysis of symmet-
ric ciphers. For example, those are the basis of the
quantum online-offline meet-in-the-middle (MitM) at-
tacks [15] and also the cornerstone of the quantum
preimage [19], multi-target preimage [13, 20] and col-
lision [13, 20] attacks on hash functions.

In this section, according to our attack strategy,
we describe the following generalizations of Grover’s
algorithm.
Theorem 1 ( [21]). Let X represent the target search
space. (not necessarily {0, 1}n). Consider the test
function f : Fn

2 → F2, such that f(x) = 1 if x ∈
M , for a specific marked subset M ⊂ X : |M | ⩾ 1,
otherwise f(x) = 0. There exists a quantum algorithm,
say AlgorithmA, which finds a marked element x ∈
M , at cost of the order√

|X|/|M |(Cost(Setup) + Cost(Checking))

where Setup and Checking represent the process of
constructing a uniform superposition of all elements in
X and process of applying quantum unitary operator
Of , respectively.

In the special case, where the target search space
is the set of all possible vectors (i.e., {0, 1}n), the
cost of the setup step is low and can be neglected,
therefore the following theorem results.
Theorem 2 ( [15]). For a specific set X, let g :
Fn
2 → F2 be a Boolean function, such that g(x) = 1

if x ∈ X and g(x) = 0, otherwise. There exists a
quantum algorithm, say AlgorithmB, that finds an
element x ∈ Fn

2 : g(x) = 1 with O(
√

2n/|X|) times
execution of unitary operator Og.

Note that the setup of AlgorithmA itself can
be a separate quantum algorithm, for example,
AlgorithmB without its final measurement. As a no-
table example, this method has been used in [13, 21].

4 Relaxation of Simon’s Algorithm

As mentioned in Section 3.1, if the target function
completely satisfies Simon’s promise (i.e. f(x) =
f(y)⇔ y = x⊕ s), Simon’s algorithm can compute
the period of the target function with linear com-
plexity [3]. In this section, we examine what happens
if Simon’s promise is partially fulfilled (i.e. f(x) =
f(y) ⇐ y = x ⊕ s). In fact, our main goal in this
section is to investigate the impact of unwanted colli-
sions on the result of Simon’s algorithm. The follow-
ing theorem is inspired by Theorem 1 of [7], shows
that, even with numerous unwanted collisions, the
result vector of the quantum circuit Sf is orthogonal
to the period of the target periodic function f .
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Theorem 3. For any periodic Boolean vector func-
tion f : Fn

2 → Fm
2 , even with a large number of un-

wanted collisions, the result vector of each execution
of the quantum circuit Sf is definitely orthogonal to
the period s.

Proof. Let f(z) indicate the measurement result of
the second register in item 4 of the quantum circuit
Sf , described in Section 3.1. In addition to the period
s, f may have other collisions at f(z). Suppose that
T = {t1, t1⊕s, . . . , tq, tq⊕s} represents the set of such
unwanted collisions. Note that, since the function, f
is a periodic function, ∀ti ∈ T we have ti ⊕ s ∈ T .
Hence, for each α ∈ {{s, 0} ∪ T}, we have f(z) =
f(z ⊕ α). Therefore, after item 4 of circuit Sf , the
first register collapses to the following state:

1√
2(q + 1)

(|z⟩+ |z ⊕ s⟩+
∑
ti∈T

|z ⊕ ti⟩+ |z ⊕ ti ⊕ s⟩) (2)

Let T ′ = {t0, t1, . . . , tq : t0 = 0n, t1, . . . , tq ∈ T}. The
Equation 2 can be rewritten as follows:

1√
2(q + 1)

∑
ti∈T ′

|z ⊕ ti⟩+ |z ⊕ ti ⊕ s⟩

By applying the Hadamard operator, in the item 5
of quantum circuit Sf , the state of the first register
changes as follows:

1
√
2n

1√
2(q + 1)

∑
y∈Fn

2

(∑
ti∈T ′

(−1)(z⊕ti)·y

)
[1 + (−1)s·y ] |y⟩

The result of measuring the above register, on the
computational basis is orthogonal to the period.

Let U = {u1, . . . , ucn} indicates the set of all vec-
tors obtained from cn times executing quantum cir-
cuit Sf . According to Theorem 3, all members of the
set U are orthogonal to the period of the function f .
Therefore, if the dimension of spam(U) = n− 1, one
can unambiguously calculate the period s by solving
the system of equations x · ui = 0,∀ui ∈ U . Other-
wise, a set of candidates is obtained for the period
s. The following theorem shows the success proba-
bility of Simon’s algorithm in the computing period
unambiguously.
Theorem 4 ( [5]). For any periodic boolean vector
function f : Fn

2 → Fm
2 , if εf,s ⩽ p0 < 1, the probabil-

ity that Simon’s algorithm returns s uniquely after cn
quantum queries is greater than 1− (2( 1+p0

2 )c)n.

According to Theorem 4, if the target function
has numerous collisions other than the actual period
or if the number of quantum queries is limited to a
given small integer, one cannot compute the period
s unambiguously. As a result, this issue may lead to
the failure of period-finding-based quantum attacks.
Therefore, to make the aforementioned attacks more
practical we aim at using the partial period instead
of the actual one. To find a suitable partial period, it

is necessary to introduce the following lemma from
Kaplan.
Lemma 1 ( [5]). For a fixed Boolean vector function
f : Fn

2 → Fm
2 and any t ∈ Fn

2 , let pt = Prx[f(x) =
f(x⊕ t)]. Then the probability of obtaining ’u’ such
that u · t = 0, after executing the quantum circuit Sf ,

is (1+pt)
2 .

The following theorem, inspired by Xie et al. [22,
23], shows that any vector that is orthogonal to all
vectors returned by Z times execution of the quantum
circuit Sf , i.e. ui’s, is the appropriate partial period.
Theorem 5. For any periodic Boolean vector func-
tion f : Fn

2 → Fm
2 , let U = {u1, . . . , uZ} represents

the set of all vectors obtained from Z times execution
of quantum circuit Sf , as a subroutine of Simon’s al-
gorithm, and A be the set of solution(s) of the system
of equations x · ui = 0,∀ui ∈ U . Then for all a ∈ A
and all ϵ satisfying 0 < ϵ < 1, we have:

Pr[Prx[f(x) = f(x⊕ a)] > 1− ϵ] >

max

{(
1− e−

Zϵ2

2

)
,

(
1−

(
2
(
1− ϵ

2

)Z
n

)n
)}

(3)

Proof. First, we prove that the left side of the Equa-
tion 3 is greater than the first element inside the
accolade. For a ∈ A, let pa = Prx[f(x) = f(x ⊕ a)]
and qa = 1+pa

2 . We define the random variable Y as
follows:

Y (u) =

{
0 if u · a = 0

1 if u · a ̸= 0

According to Lemma 1 the expectation of Y is 1 −
qa. By Z times executing of quantum circuit Sf as
a subroutine of Simon’s algorithm, one can get Z
independent identical random variables Y1, . . . , YZ .
By Hoeffding’s inequality [24] we have

Pr[((1− qa)−
1

Z
∑

i∈{1,...,Z}

Yi) ⩾ ϵ] ⩽ e−2Zϵ2

Since a ∈ A, by the definition of random variable Y ,
we have

∑
i∈{1,...,Z} Yi = 0. As a result

Pr[(1− qa) ⩾ ϵ] ⩽ e−2Zϵ2

Pr[1− qa < ϵ] > 1− e−2Zϵ2

Pr[qa > 1− ϵ] > 1− e−2Zϵ2

According to the definition of qa = 1+pa

2 , the above
relation can be rewritten as follows:

Pr[
1 + pa

2
> 1− ϵ] > 1− e−2Zϵ2

Pr[1 + pa > 2− 2ϵ] > 1− e−2Zϵ2

Let ϵ′ = 2ϵ

Pr[pa > 1− ϵ′] > 1− e
−Zϵ′2

2
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Using pa = Prx[f(x) = f(x ⊕ a)], the proof of the
left part of the max-term is completed, as follows:

Pr[Prx[f(x) = f(x⊕ a)] > 1− ϵ] > 1− e−
Zϵ2

2 (4)

In a special case where Z > 2n, let ϵ =
√

2n
Z , there-

fore, with overwhelming probability (i.e., 1− e−n) we
have

Prx[f(x) = f(x⊕ a)] > 1−
√

2n

Z
(5)

We remind the proof of the Equation 3 for the second
element inside the accolade by Kaplan et al. [5] as
follows:

For a fixed Boolean vector function f : Fn
2 → Fm

2

and vector t from its domain, let pt = Prx[f(x) =
f(x⊕ t)]. According to Lemma 1, all independent vec-
tors obtained from Z times executing of quantum cir-
cuit Sf are orthogonal to t with probability ( 1+pt

2 )
Z
.

As a result, the probability that Simon’s algorithm
returns a vector t such that pt ⩽ p0 < 1 is bounded
as follows:

Pr[pt ⩽ p0] ⩽
∑

t:pt⩽p0

(1 + pt
2

)Z
⩽ 2n ×

(1 + p0
2

)Z
=

(
2
(1 + p0

2

)Z
n

)n

⇒ Pr[pt > p0] > 1 −

(
2
(1 + p0

2

)Z
n

)n

Let pt = Prx[f(x) = f(x⊕ t)], we have

Pr[Prx[f(x) = f(x⊕ t)] > p0] > 1−

(
2

(
1 + p0

2

)Z
n

)n

(6)

In a special case where Z > 3n, according to Theo-
rem 2 of [5], by placing Z

n = 3
1−p0

, we have

Pr
[
Prx[f(x) = f(x ⊕ t)] > 1 − 3n

Z

]
≈ 1 (7)

By placing p0 = 1− ϵ in Equation 6, we have

Pr

[
Prx[f(x) = f(x⊕t)] > 1−ϵ

]
> 1−

(
2

(
1−

ϵ

2

)Z
n

)n

(8)

Thus the Equation 3 holds for the second element
inside the accolade.

Consequently, by considering Equation 4 and Equa-
tion 8 at the same time, the proof of this theorem is
completed.

Ito et al. [4] have shown that if the target function
f : Fn

2 → Fm
2 has no period, most likely no vector

appears in the output of Simon’s algorithm. More
precisely, if U = {u1, . . . , uZ} represents the set of
all vectors obtained by Z times executing quantum
circuit Sf , they have shown that the dimension of
span(U) is n with high probability. Therefore, the
system of equations x·ui = 0,∀ui ∈ U has no solution.

Theorem 6 ( [4]). For a random permutation π
$←−

perm(l) and given function fπ : Fn
2 → Fm

2 , let U =
{u1, . . . , uZ} represents the set of vectors resulting
from Z times executions of quantum circuit Sf . Then
the following relation holds:

Pr[dim(span(U)) < n] ⩽ 2n ·e−δZ/2+Prπ[π ∈ irrδf ].

5 Applications of Improved
Relaxation Method

The period of boolean vector functions is one of the
most widely used concepts in the quantum cryptanal-
ysis of symmetric ciphers. Assuming access to the
quantum oracle of the target periodic function f , its
period can be computed with one of the Simon’s [3]
or Bernstein-Vazirani’s [17] algorithms. In both algo-
rithms, the target period can be retrieved ambigu-
ously, if there are multiple collisions other than the
actual one or the access to quantum oracle corre-
sponding to the target function f is limited. In prac-
tice, this issue challenges the period-finding-based
quantum attacks. Dealing with this problem is our
main goal in this paper.

Throughout this section, we assume that the num-
ber of quantum queries of the attacker is restricted
to a given positive integer, say Z.

5.1 Forgery Attack on Modes of Operation
for MAC

Analysis of modes of operation for message authenti-
cations [5], encryptions [25] and authenticated encryp-
tions [5] are some important applications of Simon’s
algorithm. For example, Kaplan et al. [5] have shown
that, in Q2 model, adversaries can launch forgery
attacks on some of the authentication and authenti-
cated encryption schemes with linear complexity. In
the following, we describe their forgery attack on the
CBC MAC shown in Figure 2.

Figure 2. Construction of CBC MAC

According to Figure 2, the output tag corre-
sponding to the r concatenated block messages
M = m1∥m2∥· · · ∥mr is generated as follows:

c0 = 0, ci = Ek(ci−1⊕mi), CBC MAC(M) = Ek′(cr)
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For two arbitrary vectors t0, t1 ∈ Fn
2 , consider the

function fCBC MAC : F2×Fn
2 → Fn

2 , which is defined
as follows:

(b, x)→ CBC MAC(tb∥x)

fCBC MAC(b, x) = Ek′

(
Ek(x⊕ Ek(tb))

)
It can be easily verified that the function fCBC MAC

has period s = 1∥Ek(t0)⊕ Ek(t1), because

fCBC MAC(b⊕ 1, x⊕ Ek(t0)⊕ Ek(t1))

= fCBC MAC(b, x),∀b, x ∈ F2 × Fn
2

Kaplan et al. [5] analyzed the CBC MAC in the
following steps:

(1) Run Simon’s algorithm to find the period
s = 1∥Ek(t0)⊕Ek(t1), using unitary operator
OfCBC MAC ;

(2) Query the tag of (tb∥m), i.e., τ =
fCBC MAC(tb∥m), for arbitrary block mes-
sage m ∈ Fn

2 and b ∈ F2;
(3) Return the τ -value as a valid tag for the mes-

sage tb⊕1∥m⊕ Ek(t0)⊕ Ek(t1);

According to Theorem 4, if the number of the
allowed quantum queries are limited or if the number
of unwanted collisions of the function fCBC MAC is
large, Simon’s algorithm cannot compute the period
s unambiguously. However, according to Theorem 5,
each vector α∥β ∈ F2 × Fn

2 derived from the Simon’s
algorithm is the suitable partial period that satisfies
the following equation.

Pr

[
Prb,m[CBC MAC(tb⊕α∥m⊕ β) =

CBC MAC(tb∥m)] > 1− ϵ

]
>

max

{(
1− e−

Zϵ2

2

)
,

(
1−

(
2
(
1− ϵ

2

)Z
n

)n
)}

(9)

In fact, Equation 9 means that for every ⌈ 1
1−ϵ⌉ ran-

dom messages, on average, one satisfies the rela-
tion CBC MAC(tb⊕α∥m⊕β) = CBC MAC(tb∥m),

with probability greater than max{(1− e−
Zϵ2

2 ), (1−
(2(1− ϵ

2 )
Z
n )n)}.

Note that Equation 9 is valid for all 0 < ϵ < 1.
Therefore, in a special case where Z > 2n, let fix

ϵ =
√

2n
Z . Hence, according to Equation 5 we have

Prb,m[CBC MAC(tb⊕α∥m⊕ β) =

CBC MAC(tb∥m)] > 1−
√

2n

Z
(10)

That is, the tag corresponding to any message
(tb∥m) ∈ {t1, t2} × Fn

2 is also a valid tag for the

message (tb⊕α∥m⊕ β), with probability greater than

1−
√

2n
Z .

Note that, according to Equation 5 and Equation 7,
if the number of quantum queries of an adversary is
greater than 3n, i.e., Z > 3n, Equation 10 can be
improved as follows:

Prb,m[CBC MAC(tb⊕α∥m⊕ β) = CBC MAC(tb∥m)]

> max

{(
1−

√
2n

Z

)
,

(
1−

3n

Z

)}
(11)

According to Equation 11, the success probability of
the proposed algorithm, independent of the subrou-
tine block cipher Ek depends on the number of quan-
tum queries of the adversary and block size of the
Ek. For the two prevalent block sizes of 64 and 128
bits, Figure 3 shows a relation between the number
of adversary’s quantum queries and a lower bound
for the success probability of the proposed method.
According to Figure 3, as the number of quantum
queries increases, the success probability of the at-
tacker tends to 1.

Figure 3. The result of the proposed method

Dealing with Nonce

Many modes of operation for MACs use a nonce
value, N , to guarantee independence of the MAC
outputs. Let PN represents a specific mode of opera-
tion for the MAC, such as GMAC, under a random
nonce N ∈ Fn

2 . In general, Kaplan et al. [5] have
suggested the following steps for analyzing PN .

(1) Define the function fPN , such that it is a
special case of PN having a known period s,
where s is independent of nonce N ;

(2) Run Simon’s Algorithm to recover s, us-
ing unitary operator OfPN : |x⟩ |y⟩ →
|x⟩
∣∣y ⊕ fPN (x)

〉
;

(3) Query the tag of message m, (i.e. τ =
fPN (m)) for an arbitrary classical massage
m under a random nonce N ;

(4) Return τ as a valid tag for the message m⊕ s
with the same nonce N ;
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For example, their forgery attack on the GMAC is
as follows. For two arbitrary vectors t0, t1 ∈ Fn

2 : t0 ̸=
t1, consider the function fGMACN : F2 × Fn

2 → Fn
2 ,

which is defined as follows:

(b, x)→ GMAC(N, tb∥x)
fGMACN (b, x) = tb ·H2 ⊕ x ·H ⊕ Ek(N∥1)

where H = Ek(0). As shown by Kaplan et al., the
function fGMACN has period s = 1∥(t0 ⊕ t1) · H.
Because fGMACN (b, x) = fGMACN (b⊕ 1, x⊕ t0⊕ t1).

Using the above algorithm we can find the ap-
propriate partial period for fGMACN . For this pur-
pose, it suffices to show that the output distribution
of circuit SfGMACN is independent of the nonce N .
For a fixed vector α∥β ∈ F2 × Fn

2 and two distinct
vectors N,N ′ ∈ Fn−1

2 , let pNα∥β and pN
′

α∥β represent

Prb,x[f
GMACN (b, x) = fGMACN (b ⊕ α, x ⊕ β)] and

Prb,x[f
GMACN′ (b, x) = fGMACN′ (b ⊕ α, x ⊕ β)], re-

spectively. It is easy to verify that pNα∥β = pN
′

α∥β . Since
the effect of the nonce in the output difference of
fGMACN is eliminated. Set pα∥β = pNα∥β = pN

′

α∥β . Ac-
cording to Lemma 1, each vector obtained by exe-
cution of quantum circuit SfGMACN is orthogonal to

the vector α∥β, with probability
1+pα∥β

2 , which is in-
dependent of nonce N and N ′. Therefore, the same
attack proposed for the analysis of CBC MAC can
be used for other authentication modes, analyzed by
Kaplan [5].

5.2 Quantum Distinguishers

Using Grover’s algorithm [2] and quantum counting,
Kaplan et al. [21] have introduced quantum linear,
differential and truncated differential distinguishers.
They have shown that by accessing quantum ora-
cle and an appropriate differential characteristic (or
linear approximation), the distinguishers are signifi-
cantly superior to their classical counterparts.

In a seminal work, Kuwakado and Morii [6] have
shown that if the internal round functions, used in

the three-round Feistel structure Ek : F
n
2
2 × F

n
2
2 →

F
n
2
2 ×F

n
2
2 , are random permutations, assuming access

to quantum oracle, then the quantum adversary can
distinguish it from a completely random permutation
with linear complexity. The main idea of their attack
is as follows:

Let O : Fn
2 → Fn

2 be either a 3-round Feistel

structure Ek or a random permutation π
$←− perm(n).

Suppose that the quantum oracle O is given. The
main goal of attacker in this attack is to distinguish
whether O = Ek or O = π.

According to Figure 4, the following relation holds:

Tranc
n
2

R (Ek(XL, XR)) = XL ⊕ P2(XR ⊕ P1(XL))

Figure 4. Three round Feistel

For two arbitrary vectors t0, t1 ∈ Fn
2 : t0 ̸= t1 con-

sider the function fEk defined as follows:

fEk : F2 × F
n
2
2 → F

n
2
2

fEk(b, x) = Tranc
n
2

R (Ek(tb, x))⊕ tb = P2(x⊕P1(tb))

It can be easily verified that the function fEk has
period s = 1∥P1(t1) ⊕ P1(t2). Since, the following

relation holds for all (b, x) ∈ F2 × F
n
2
2

fEk(b, x) = fEk(b⊕ 1, x⊕ P1(t1)⊕ P1(t2)) (12)

Kaplan et al. [5] and Kuwakado et al. [6] have shown
that if the internal round functions P1, P2 and P3 are
random functions/random permutations, respectively,
the number of unwanted collisions of the function
fEk can be neglected. Therefore, according to Theo-
rem 4, one can compute the period s using Simon’s
algorithm. As a result, to distinguish the status of the
given oracle O, the attacker asks for two values O(m)
and O(m⊕ s) for the desired value m. According to
Equation 12, if O(m) = O(m⊕s), then O = Ek. Else
O = π.

In practice, it is possible that the round functions
used in the 3-round Feistel structure do not behave
like a completely random function or random per-
mutation. As a result, the function fEk may have
several unwanted collisions. Therefore, by Theorem 4,
Simon’s algorithm may not be able to compute the
period s, which is the basis of the described distin-
guisher. To deal with this problem, Ito et al. [4] have
focused on the dimension of the space spanned by the
resulting vectors of Simon’s algorithm. This method
eliminates the need for recovering the actual period.
As mentioned in Theorem 6, if the target function
has no period, the dimension of the space spanned
by the resulting vectors is equal to n with a high
probability. Therefore, the distinguisher can detect
the status O = π with a high probability. In the next
section, we briefly describe the general form of Ito’s
relaxation method:

5.2.1 General Description of Ito’s
Distinguishers

Let O : F l
2 → F l

2 be either a random permuta-

tion π
$←− perm(l) or a specified block cipher Ek :

F l
2 → F l

2. Assuming that there exists a function
fEk : Fn

2 → Fm
2 with key-dependent period s, Ito et

al. [4], have proposed the following steps for distin-
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guishing the status of the oracle O:

(1) Run the quantum circuit SfO , Z times and
add the result of each execution to a set U ;

(2) If dim(span(U)) = n, then the distinguisher
D guesses O = π and returns 0. Else D
guesses O = Ek and outputs 1;

Note that if the real status of the given oracle O is Ek,
then the dimension of span(U) is obviously smaller
than n, because, by Theorem 1, all members of the
set U are orthogonal to the period of the function
fEk . As a result, by Theorem 6, we have

Pr[C] > 1− 2n · e− δZ
2 − Prπ[π ∈ irrδf ] (13)

5.2.2 Our Proposed Distinguisher

In this section, to deal with the described shortcom-
ings of Simon’s algorithm, we use the partial period
instead of the actual one in period-finding-based quan-
tum distinguishers. In the following, we use Zc and
Zq to represent the number of classical and quantum
queries of the attacker from the given quantum ora-
cle O, respectively. Note that, since the number of
queries to quantum oracle O is restricted to Z, we
have Z = Zc+ Zq.

Let δ : 0 < δ ⩽ 1 be a value, say 0.5, such that
Pr[∃t′ : Prx[f

π(x) = fπ(x ⊕ t′)] > 1 − δ] is small,
provided that the permutation π is randomly selected.
To know how to choose a suitable value for δ, we
refer the reader to [4]. For distinguishing between Ek

and a random permutation π
$←− perm(l), we suggest

Algorithm 2 as follows. Just like Ito’s method, we
assume that for block cipher Ek there exists a func-
tion fEk : Fn

2 → Fm
2 , so that it has a key-dependent

period s.

Algorithm 2 Modified quantum distinguisher

1: Initialize the sets U := ∅ and H := ∅;

2: for i = 1, . . . ,Zq, do
3: Run the quantum circuit SfO to get an n-bit vec-

tor ui;

4: Set U = U ∪ {ui};
5: end for

6: Compute the system of equations x · ui = 0, ∀ui ∈ U

for x, store the solution(s) in an auxiliary variable A;

7: a
$←− A;

8: for i = 1, . . . , Zc
2
, do

9: xi
$←− Fn

2 ;

10: Compute fO(xi) and fO(xi⊕a), store them in H;

11: end for

12: Compute the value P ′ = |{xi:f
O(x)=fO(x⊕a)}|

Zc/2
for

member of H; (In fact, P ′ is an estimation of P =

Prx[f
O(x) = fO(x⊕ a)])

13: if P ′ > 1− δ + ϵ
2
, then

14: Guess O = Ek and output 1;

15: else

16: Guess O = π and output 0;

17: end if

Note that the reason for using ϵ in step 13 of 2 is to
decrease the error of estimating P . Below we explain
how to choose a suitable ϵ.

Considering Zq and Zc as quantum and classical
queries used in step 3 and 10, respectively, the data
complexity of the attack is equal to

Zq + Zc = Z

To compare the efficiency of our proposed distin-
guisher with Ito’s, we compute Pr[C], which is de-
scribed in 2.3, as follows. To that end, let us first
compute the probability that the attacker mistakenly
returns 1, whereas the actual status of a given oracle
is a random permutation π.

Pr
[
Dπ,π−1

= 1| π $←− perm(n)
]

= Pr
[
Dπ,π−1

= 1| π $←− perm(n), π ∈ irrδf

]
· Prπ [π ∈ irrδf ]

+ Pr
[
Dπ,π−1

= 1| π $←− perm(n), π ̸∈ irrδf

]
· Prπ [π ̸∈ irrδf ]

⩽ Prπ [π ∈ irrδf ]+Pr
[
Dπ,π−1

= 1| π $←− perm(n), π ̸∈ irrδf

]
According to the definition, given in 2.8, for any per-
mutation that is not a member of the set irrδf , there
exists no vector t so that Prx[f

π(x) = fπ(x⊕ t)] >

1− δ. As a result, Pr[Dπ,π−1

= 1| π $←− perm(n), π ̸∈
irrδf ] ⩽ Pr[P ′ − P ⩾ ϵ

2 ]. Therefore, according to Ho-
effding’s inequality [24] we have

Pr[Dπ,π−1

= 1| π $←− perm(n)]

⩽ Prπ[π ∈ irrδf ] + e−
Zcϵ2

2 (14)

On the other hand, the probability Pr[DEk,E
−1
k = 1 :

k
$←− F

|k|
2 ] is bounded as follows:

Pr[DEk,E
−1
k = 1| k $←− F

|k|
2 ] ⩾

Pr[P ⩾ 1− δ + ϵ, (P − P ′) <
ϵ

2
]

= Pr[P ⩾ 1− (δ − ϵ)] · Pr[(P − P ′) <
ϵ

2
] (15)

Consequently, according to Equation 14, Equation 15,
Theorem 5 and Hoeffding’s inequality, we have

Pr[C] > PL − Prπ[π ∈ irrδf ] (16)

where we use PL to indicate the following relation

PL = max

{
1−
(
e−

Zq(δ−ϵ)2

2

)
, 1−

(
2(1−δ − ϵ

2
)

Zq
n

)n}
·
(
1− e−

Zcϵ2

2

)
− e−

Zcϵ2

2 (17)
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Note that, Equation 16 is valid for all Zc and ϵ, there-
fore enjoy optimal performance, we should optimize
it for both values Zc and ϵ. As a result

Pr[C] > max
ϵ,Zc
{PL} − Prπ[π ∈ irrδf ] (18)

5.2.3 Comparison with Ito’s Method

As shown in Table 2, the advantages of using the par-
tial period over Ito’s relaxation method is twofold:
First, it applies not only to quantum distinguishers,
but also to forgery attack on modes of operation for
MACs. Second, it improves the success probabili-
ties of quantum period-finding-based distinguishers,
provided that the adversary is limited to a speci-
fied small number of queries. To show the second
advantage, we compare the success probability of our
proposed method with that of Ito’s in terms of the
number of quantum queries. If our proposed lower
bound for Pr[C] in Equation 18 is greater than that
of Ito’s in Equation 13, then our proposed attack
would be stronger than Ito’s. For this purpose, the
value max

ϵ,Zc
{PL} in Equation 18 should be greater than

the value 1− 2n · e− δZ
2 in Equation 13, that is

max
ϵ,Zc
{PL} > 1− 2n · e− δZ

2 (19)

Let fix δ = 0.5 and n = 128. As it can be seen in
Figure 5, the Equation 19 holds for Z < 366.

Figure 5. Investigate the establishment of Equation 19, for a
special case, where n = 128 and δ = 0.5

In conclusion, the attacker must check whether
Equation 19 holds, according to the parameters used
in the attack. If it holds, then our method is superior
to Ito’s, otherwise, Ito’s is recommended.

5.3 Quantum Key Recovery Attack

In quantum key recovery attacks, just like the classi-
cal examples, the main target of the adversary is to re-
cover the key of the underlying algorithm. Assuming
access to the quantum oracle or quantum related-key
oracle of the target function, the power of the quan-
tum adversaries is surprisingly high in some types of

mentioned attacks. For example, despite the fact that
the security of Even-Mansour construction has been
proved in random permutation model, Kuwakado et
al. [8], has introduced a quantum key recovery attack,
which works only with linear complexity. In another
outstanding work, Roetteler et al. [10] have shown
that by performing quantum related key attack, quan-
tum adversaries are able to recover the key of block
ciphers with linear complexity. In the following, we
briefly describe their method.

5.3.1 Quantum Related-Key Attack

For block cipher Ek : Fn
2 → Fn

2 , k ∈ F
|k|
2 , consider

the related-key oracle OEk
, which for block message

m ∈ Fn
2 and bitmask L ∈ F

|k|
2 as input, returns the

value Ek⊕L(m). In this attack, it is assumed that the
attacker is allowed to query the oracle OEk

with a su-
perposition of keys. Let m1, . . . ,mr : mi ∈ Fn

2 repre-
sent r arbitrary block message, so that mi’s are pair-

wise different. In the following, we use
−→
M and Ek(

−→
M)

to indicate m1∥· · · ∥mr and Ek(m1)∥· · · ∥Ek(mr), re-
spectively. As shown by Roetteler et al. [10], accord-

ing to the strict key avalanche criterion, if r > ⌈ 2|k|n ⌉,
the following relation holds.

Ek(
−→
M) ̸= Ek′(

−→
M),∀k, k′ ∈ F

|k|
2 : k ̸= k′

Consider the function fEk : F
|k|
2 → F 2rn

2 , which is
defined as follows:

fEk(x) =

(
min

(
Ex(
−→
M), Ex⊕k(

−→
M)
)
,

max
(
Ex(
−→
M), Ex⊕k(

−→
M)
))

It is easy to verify that the function fEk is a periodic
function with period s = k. Because

fEk(x) = fEk(x′)⇔ x′ = x⊕ k

Consequently, one can recover the secret key k by
performing Simon’s algorithm.

In general, the main idea of period-finding-based
quantum key recovery attacks, for analysis of Ek, is
as follows:

(1) Define the function fEk so that it has period k;
(2) Run Simon’s algorithm to recover s = k, using

unitary operator OfEk to retrieve the period k;

According to Theorem 4, if the function fEk has
other collisions in addition to k or if Z is small, Si-
mon’s algorithm cannot recover the period s = k.
This issue may lead to the failure of the quantum
key recovery attacks. Note that, since quantum key
recovery attacks aim at recovering the key of the tar-
get cipher, i.e. the actual period of the function fEk ,
one cannot use the concept of the partial period in
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Table 2. Comparison between the results of the relaxation methods

Relaxation methods modes of operation for MACs
Quantum

distinguishers
Quantum key

recovery attack

Focusing on the dimension
of the space [4].

Not applicable
Preferred for a large
number of quantum

queries
Not applicable

Using partial period
Prs > max

{(
1 −
√

2n
Z

)
,

(
1 − 3n

Z

)} Preferred for a small
number of quantum

queries
Not applicable

Using Grover’s algorithm
as a complement of
Simon’s algorithm

Not applicable Not applicable T ⩽ O(

√
2|k|−1)

the aforementioned attacks. Therefore, we suggest
the following algorithm. In this section, we show that
even if Simon’s algorithm cannot compute the period
s = k, it reduces the key space of the target cryp-
tosystem. Therefore, the attacker can search in the
remaining space with the help of Grover’s algorithm.

5.3.2 Modified Quantum Key-Recovery
Attacks

According to Theorem 3, each execution of the quan-
tum circuit SfEk , as a subroutine of Simon’s algorithm,
produces a vector ui orthogonal to the key of the target
algorithm (i.e. period of fEk). Let U = {u1, . . . , uZ},
Dim and B represent the set of all vector obtained
from Z times execution of quantum circuit SfEk ,
as subroutine of Simon’s algorithm, dimension of
span(U) and a basis for subspace span(U), respec-
tively. As a result, running Simon’s algorithm with Z
quantum query, leaksDim-bits information about the
target key to the attacker. Therefore, he can search
the remaining key space using Grover’s algorithm. In
summary, we propose the following algorithm.

Algorithm 3 Modified quantum key recovery attack

1: Initialize the set U := ∅;

2: for i = 1, . . . ,Z, do
3: Run the quantum circuit SfEk to get a |k|-bit

vector ui;

4: Set U = U ∪ ui;

5: end for

6: compute the value of dim(span(U)), store the result

in auxiliary variable Dim;

7: if Dim == |k|−1, then
8: Solve the system of equations x · ui = 0, ∀ui ∈ U ;

9: Return the result of step 7 as the target key and

finish the algorithm;

10: else

11: Find a basis for span(U) and store the result in

an auxiliary set B;

12: Apply the generalized Grover’s algorithm, where

• Setup: Construct the state
1√

2|k|−dim

∑
x:x·b=0,∀b∈B |x⟩, using Grover’s

algorithm without any measurement.

• Checking: Check if input x is the key of Ek.

13: end if

Considering 3 uses the quantum oracle function Z
times, the data complexity is Z. According to Theo-

rem 2, the cost of setup in step 12 of 3 is
√

2|k|

2|k|−Dim ·
Tdot =

√
2−Dim · Tdot, where Tdot indicates the time

required to execute an inner product. Therefore, ac-
cording to Theorem 1, the total cost of 3 is equal to√
|X|/|M |(Cost(setup) + Cost(Checking)) + Z

=
√
2|k|−Dim(

√
2−Dim · Tdot + TfE ) + Z

=
√

2|k|Tdot +
√

2|k|−DimTfE + Z (20)

Where TfE indicates the time required to execute the
function E in a superposition of states.
Note that in Equation 20 for the small value of Dim,
the second term is dominant compared to the first
and third terms in view of computation complexity of
3. Therefore the complexity of the algorithm is almost
equal to the second term. Otherwise, if the value of
Dim is large, the attacker can search for the target
key k in the candidate subspace classically. Therefore,
the time complexity is obtained as follows:

min

{(√
2|k|Tdot +

√
2|k|−DimTfE + Z

)
,

(
2|k|−DimTfE

)}
Note that, for a fixed Z, the value of the Dim is
completely related to the target algorithm EK , but
certainly is greater than 0. This ensures that the
time complexity of the attack is less than that of a
quantum brute-force attack.

In conclusion, 3 can be used in the following quan-
tum attacks.

• Key recovery attack on Even-Mansour construc-
tion introduced by Kuwakado et al. [8].

• Quantum Slide attack introduced by Kaplan et
al. [5].
• Quantum related key attack introduced by Roet-

teler et al. [10].
• Quantum slide attacks introduced by Bonnetain
et al. [11].
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6 Conclusions

Period-finding is one of the most widely used concepts
in quantum cryptanalysis of symmetric primitives us-
ing specific structures, which can be computed by
Simon’s quantum algorithm, assuming access to the
quantum oracle of the target primitive. Nevertheless,
unwanted collisions of the target periodic function or
limitations on the number of quantum queries of the
adversary can be a bottleneck for the correct opera-
tion of Simon’s algorithm. This issue can lead to the
failure of period-finding-based quantum attacks. In
this paper, we have relaxed Simon’s algorithm using
two different methods. In the first method, we have
used the partial period instead of the actual one. This
method not only improves the success probability
of the period-finding-based quantum distinguishers,
provided that the adversary is limited to a specified
small number of queries, but also relaxes quantum
forgery attacks on modes of operation for MACs. On
the other hand, in the case of quantum key recovery
attacks, we have used Grover’s algorithm as a com-
plement to Simon’s algorithm. As a result, even if Si-
mon’s promise is not satisfied and the target function
has numerous collisions other than the target period,
the complexity of the attack, independent of the tar-
get primitive, is certainly less than the complexity of
the quantum brute force attack.

Note that our proposed quantum distinguisher
makes some classical queries to the given quantum
oracle. Considering the quantum counting algorithm,
using a quantum query, provides quadradic speed up,
it seems that using this algorithm can improve the
success probability of our proposed distinguisher. On
the other hand, based on some primary research in
quantum differential attacks, it seems that the partial
period has great potential for computing an appro-
priate differential characteristic. These ideas can be
considered for future works.
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