
ISeCure
The ISC Int'l Journal of
Information Security

January 2022, Volume 14, Number 1 (pp. 47–55)

http://www.isecure-journal.org

A Time Randomization-Based Countermeasure Against the

Template Side-Channel Attack ∗∗

Farshideh Kordi 1, Hamed Hosseintalaee 1, and Ali Jahanian 1

1Shahid Beheshti University Faculty of Computer Science and Engineering Tehran, Iran.

A R T I C L E I N F O.

Article history:

Received: December 19, 2020

Revised: May 19, 2021

Accepted: June 12, 2021

Published Online: September 6, 2021

Keywords:

Side-Channel Attacks, Template
Attack, Time Shuffling

Countermeasure, Profiled Attacks

Type: Short Paper

doi: 10.22042/isecure.2021.

262658.592

dor: 20.1001.1.20082045.2022.
14.1.4.4

A B S T R A C T

The template attack is one of the most efficient attacks for exploiting the

secret key. Template-based attack extracts a model for the behavior of side

channel information from a device that is similar to the target device and then

uses this model to retrieve the correct key on the target victim device. Until

now, many researchers have focused on improving the performance of template

attacks, but recently, a few countermeasures have been proposed to protect the

design against these attacks. On the other hand, researches show that regular

countermeasures against these attacks are costly. Randomized shuffling in the

time domain is known as a cost-effective countermeasure against side-channel

attacks that are widely used. In this article, we implemented an actual

template attack and proposed an efficient countermeasure against it. We focus

on the time shifting method against template attack. The results show that

template attack is very susceptible to this method. The performance of attack

on an AES algorithm is considerably reduced with this method. We reported

the analysis results of our countermeasure.The performance of the attack

can be determined according to various criteria. One of these criteria is the

success rate of the attack. According to these results, template attack will be

hardened significantly after the proposed protection such that the grade of the

key recovery increases from 1 with 350K traces in unprotected design to 2100

with 700K traces in the protected circuit. This security improvement gains in

the cost of about 7% delay overhead.

c© 2020 ISC. All rights reserved.

1 Introduction

Executing an encryption algorithm may leak side-
channel information such as power, electromag-

netic, time, etc. Side-channel attacks try to break
cryptosystems by exploiting this information, which is
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leaked by the hardware implementation. Side-channel
attacks (SCA) are known as serious threats to mod-
ern cryptographic implementations and protection
against SCA is a critical threat to the security of em-
bedded systems [1]. Generic SCA algorithm consists
of two steps; identifying leaked information and creat-
ing a model that fits this information. An important
SCA branch is power attacks that use power traces
as leaked information to mine the secure data inside
a system. The power leakage is made of two parts,
dynamic and static power. Dynamic power is a widely
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used method as a source of power attacks.

Power side-channel attacks categorize as Profiled
and Non-profiled categories. The only assumption for
non-profiled attacks is that the attacker must have
a similar device to collect power consumption. Non-
profiled attacks are a wide range of methods such as
SPA, DPA and CPA [2]. The simplest method for
this category is SPA in which attackers observe power
consumption for a key-related operation without con-
sidering any statistical method [2]. CPA is an algo-
rithm used to do power analysis that categorize as a
statistical attack. In this attack, the Pearson correla-
tion coefficient uses to extract the maximum depen-
dency between the key and the data. In this attack
is assumed that hypothetical key is correct when the
correlation between the Hamming weight model for
this key assumption and the real power consumption
of all hypothetical keys is most significant [3].

Another powerful category of power attack is pro-
filed attack that precisely models the system’s noises
as well and uses this model for the attack. In this
kind of attack, as mentioned, accessing to a device
similar to the attacking device is assumed [4].
Profiled attacks include template, stochastic and
machine-learning-based attacks. Template at-
tack (TA) was first offered by Chari et al. in 2002.
This method extracts the most helpful information
from each power consumption trace [5] and [6]. TAs
consist of two steps; Profiling and Attacking steps. In
the profiling step, an attacker needs the same device
to build key-dependent templates. In the attacking
step, the probabilities of key-dependent noise are
calculated for each power trace captured from the
targeted device. Then, the secret key can be disclosed
by estimating the maximum likelihood method [7]. In
the TA method, like other profiled attacks, a precise
noise model is extracted from the power consumption
traces. Typically, the Gaussian model is considered
a noise model [8]. Stochastic attack (SA) is a type
of TAs that is in the profile stage instead of the
Gaussian model uses linear regression [9]. The main
problem with implementing TA is the scale of the
covariance matrix, which is a factor of the number of
sampling points. To mitigate this problem, A subset
of sample points (points of interest or POI) must
be chosen [10]. Points of interest are those points
that contain the most key dependency. Since TA is
hard to defend compared to other power SCA, this
paper analyzes the TA. Countermeasures against
the SCAs are constituted of hiding and masking in
software implementations. The masking method is an
effective countermeasure against SCAs that makes
unpredictable the intermediate values of prevention
dependencies between these values and the power
consumption. Intermediate values are covered by

random values for every execution. In the masked
implementation, the security is related to the ran-
domness degree of the masks [11]. The Higher-Order
DPA attacks can break the masking technique [12].

The hiding method consists of shuffling the order
of the operations or inserting random delays with
dummy operations to hide the relationship between
the power consumption and secret data [13]. This pa-
per is an extension of work originally presented in
ISCISC [14]. Randomized shifting in the time domain
is prposed as an effective countermeasure against
template attacks in this article. This countermeasure
makes it almost impossible to select POIs. Based on
the disadvantages of TAs, the attack will be so tricky
because we have to select all the sample points. This
article consists of the following sections. Section 3
provides a brief description of how TA attacks are
performed. Section 4 describes the proposed counter-
measures, and Section 5 includes an analysis of the
experimental results. Finally, in section 6 a conclusion
of the article is presented.

2 Related Work

Mangard et al. [11] have researched that TAs can
defeat protected algorithms by the masking method.
According to this article, masking does not improve
implementation security in the template-based attack.
The reported results confirm that the template-based
DPA attack is broken the masked implementation
with 15 power traces in the practical experiment.

Masking usually implies significant performance
overheads. The easiest method of defense against such
attacks is inserting random delays. Inserting random
delays is categorized as one of the Hiding counter-
measures methods. Hiding countermeasures propose
lower security than masking countermeasures but
their implementation offers lower costs [3]. By insert-
ing random delays, the alignment of the traces are
broken, thus increasing the number of traces needed
for the attack. The misalignment of the traces can be
a powerful countermeasure against SCA [4].

In another work by Mangard et al. was described as
a combination of masking and randomization meth-
ods to resist the TAs and the higher order attack. In-
creased resistance means that for a successful attack,
more traces need to be collected [15]. Another coun-
termeasure against TAs was suggested by Barenghi
et al. [16]. In this paper, an architectural counter-
measure against profiled attacks has presented that
differentiates the behavior of leaked information for
similar devices, thus disrupting the reuse of an ex-
tracted model for a similar one.

An essential assumption in a profiled attack is
that the leaked information behavior extracted of
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a sample device prepares a suitable descriptions for
the behavior of another sample of a similar device.
This method prevents the possibility of reusing the
profile obtained from one device for another similar
one. However, it does not prevent profile access and
a successful attack on the primary devices [16].

Authors of [17] mentioned that the performance of
the TA is highly influenced by factors such as mis-
alignment of traces, a large amount of data and se-
lection of interesting points. In [17], a method based
on Convolutional Neural Networks was proposed for
profiled attacks. Deep learning techniques are intro-
duced as an effective type of profiled attacks. SCA-
based deep learning is similar to TA but it uses deep
learning techniques to find the maximum likelihood
instead of using multivariate Gaussian distributions
[18]. Most countermeasures are designed to protect
the design against classic SCAs and cannot protect
the design from deep learning attacks.

In [18], a countermeasure is proposed against side-
channel attacks based on deep learning. It should be
noted that the proposed countermeasure can also in-
crease the resistance of classical side-channel attacks.
In this paper, the noise instructions is inserted into
the code as countermeasure. An important difference
with other countermeasures is the selection of more
appropriate noise inserting instructions and identifi-
cation of the accurate location of the noise [18].

As mentioned earlier, TA has been introduced as a
highly beneficial method in the category of SCAs. In
this paper, we focused on protecting the AES algo-
rithm against template attacks by hiding countermea-
sures. However, time randomization has been widely
used for protecting encryption algorithms against
DPA and CPA. However, analysis of the impact of
this method on TAs has not been reported, while
analyses show that real implementation of TAs (e.g.
using the interesting points) is very sensitive to any
time-shifting. For this purpose, we propose an effi-
cient random time shuffling on critical subset points
of the AES encryption algorithm (that are selected
randomly) to filter the interesting points for obtain-
ing successful TAs. We will validate the effectiveness
of countermeasures against TAs. Our analyses lead
to important conclusions about the function distribu-
tion of the mean vector and points of interest.

3 Template Attack

We appreciate that you have selected our journal
for publishing your paper. We set up some rules to
standardize the papers we receive in order to make it
easier for the author and the editor. Please consider
these rules in writing your manuscript.

3.1 Profiling Stage

At this step, the attacker collects a large amount of
power consumption traces from a similar device to
make the profiles. The Hamming Distance (HD) reg-
ularly examines the relationship between power con-
sumption and bit switches from 0 to 1 or 1 to 0. The
Hamming Weight (HW) is the number of “1” bits in
the binary sequence. On the other hand, based on
the microcontrollers’ assumption, the HW and HD
models are almost equal [19]. The S-Box output can
be used to build 256 classes directly. This method is
more recommended because each of these 256 classes
is related to the information of each guessed key di-
rectly [20]. In this paper, we build templates accord-
ing to the HW model with power traces to improve
the success rate of the TAs. As a result, 9 templates is
built in this step. The S-Box output of the first round
of the AES algorithm is usually chosen to collect the
power traces because the S-Box is a non-linear func-
tion within an AES encryption algorithm. The HW
of the S-Box output byte is calculated as:

H = HW (S(p⊕ k)) (1)

S is the S-Box, p is plaintext, and k is a corresponding
key in the AES encryption algorithm.

The templates are built based on hamming weight
(Ti) = {T0, T1, . . . , T8} in order to characterize the
device. In template attacks, the total number of N ×
M states may occur which N is the number of traces
and M is the number of sample points that are used.
Each sample includes two parts, signal and noise.
According to the result of HW, each power trace is
mapped to one template. Consequently, 9 templates
are built because an 8 bit may have HW 0 to 8.

Each template consists of a mean vector (µ) and
a covariance matrix (C). The µ vector and the co-
variance matrix C determine the noise model for all
profiles. Vector µi is defined as the mean vector of the
traces belongs to template i. It can be calculated as:

µi =
1

ni

ni∑
j=1

ti,j ∀ i ∈ 0, 1, . . . , 8 (2)

where ti,j is jth power trace vector of the template i
and ni is the number of traces in an ith template. The
covariance matrix of an ith template (Ci) is defined
as:

Ci =
1

(ni − 1)

ni∑
j=1

(ti,j −µi)T (ti,j −µi) ∀ i ∈ 0, 1, . . . , 8 (3)

Accordingly, positive covariance shows that both
dimensions increase together. Negative covariance
means that as one dimension increases, the other
dimension decreases and zero covariance indicates
that two dimensions are independent of each other.
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Eventually, the attacker can create a multivariate
Gaussian noise model according to the mean vector
and the covariance matrix per template.

3.2 Attacking Stage

At this stage, the key is recovered with a small amount
of traces that is collected from the device under at-
tack. The maximum likelihood methods determine
the correct key bytes. A multivariate normal distribu-
tion model can be extracted using the two parameters
of mean and covariance obtained from the previous
step.

First of all, the new power trace is given to be
identified, then the attacker guesses a key-value by
following methods.

• Considering a two-dimensional matrix based on
the number of traces of the attacking step and
guessed keys.

• The probability density function is calculated
according to each guess of the keys and the
plaintext for each template. Then, the proba-
bility density function (PDF) is inserted into
the previous step matrix corresponding to its
plaintext.

• Finally, the sum of the matrix columns is com-
puted and one vector with 256 elements is gen-
erated based on the guessed key.

• The best guess key is the maximum value of
the vector in the previous step.

The PDF function is calculated as follow:

fi,j(ti,j ; (µi, Ci)) =

1√
(2π)n det(Ci)

exp

(
−1

2
(ti,j − µi)

T (Ci)
−1(ti,j − µi)

)
(4)

The attacker approximate the secret key which max-
imizes the likelihood:

k = argmaxfi,j(ti,j |k) (5)

The number of sample points is significant in TA at-
tack and a wide range of samples lead to excessive
computational loads. For building templates in the
first experiment, 350000 traces are recorded with ran-
dom input plaintexts with random keys. The second
set of traces is a small number (approximately 50).
We calculate and sort the value of the probability dis-
tribution function for all the hypothetical key values
and determine the grade of the key recovery based
on these sorted values.

3.3 Feature Selection

Points of interest (POI) are those points that give
the maximum correlation between the power model

and power traces. The advantages of applying POIs
are as follows:

• It decreases the number of sampling points per
trace, which leads to a reduction in calculations
per profile.

• Numerical problems related to the inverse of
the covariance matrices will remarkably reduce
the performance of TAs. The ill-condition error
occurs due to a large number of data in the
inverse matrix [21].

As a result, selecting points that defines the tem-
plate is an essential part of the attack. With this
method, the template size will be smaller and the
profiling stage will lead to better performance. There
are various techniques to extract interesting points.
Sum of squared differences (SOSD) and correlation
power analysis (CPA) are the efficient methods. The
SOST-based and Principal Component Analysis
method (PCA) will lead to choosing the best inter-
esting points [16]. According to another paper, CPA
and the SOST methods will conduct to the best
efficiency [10]. SOSD can be computed as follows.

SOSD =

ni∑
i=1

nj∑
j=1,j 6=i

(µi − µj)2 (6)

By normalizing the variance parameter in the SOSD
calculation, the quality level can be increased. This
normalized SOSD is called SOST that is computed
as follows. SOST is calculated as:

SOST =

ni∑
i=1

nj∑
j=1,j 6=i

 ((µi − (µj)√
( δimi

)2 + (
δj
mj

)2

 (7)

where δi is the variance of template i ∈ {0, 1, . . . , 8},
mi is the number of traces for template i and µi is
the mean vector of this template.

To find POIs, we calculated the SOST such that
the points having higher SOST values, indicate POIs
and built the templates for these points. The rest of
the sampling points are removed in the power traces
and the templates are built based on the interesting
points.

4 The Proposed Countermeasure

Randomize time-shifting in cryptographic algorithms
has been proposed as an effective countermeasure
against SCAs. The basic idea is to remove the data
dependency of the intermediate value and the secret
key. This means that the power consumption char-
acteristic changes and the attacker cannot find the
dependency between the data and the key. First of
all, we have implemented the TA and we have ap-
plied it to an unprotected AES algorithm on an ARM
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Figure 1. First Round of AES to insert random delay.

microcontroller. In this implemented attack, using
a maximum of 15 power traces, we can retrieve the
correct key.

In the following steps, a single net of the design is
selected and its delay is shuffled randomly. Then mul-
tiple random delays are inserted on multiple random
places in order to apply to the AES implementation.

In multiple random delays, two random factors are
used to apply the random delay in a random place
as follows.

• The first factor specifies the place where the
delay should be applied it. Depending on the
random value generated, the delay can be added
before each of the SubByte(), ShiftRow(), Mix-
Column(), and AddRoundKey() functions for
each AES round. RandFunc determines this
value according, to Figure 1.
• The second factor determines the delay that

must be added to the random location. This
value is determined by the RandDly variable in
Figure 1.

The rand () function is used to generate random
numbers with uniform distribution, which is used
twice. In the first step, a random number is produced
in the range of [0, 3], which indicates the location
of the delay. In the next step, a random number is
produced in the range of [0, 10] indicating the amount
of delay. In this implementation, there is no need to
use the random number generator in the hardware.
The whole implementation is done in software and
this is the advantage of it. The codes for this section
are shown in Algorithm 1.

The key point is that the delay length should be
shortened to minimize the performance overhead. In
order to achieve such a result, Having several short
random delays is more effective, as recommended
in [22] and [13], because finding and eliminating many
short delays are more complicated than long delays.
It should be noted that the length of individual delays
in single and multiple delays are in the distance [0,
10]. In the single delay method, the delay is inserted
before the SubByte function in AES-128 based on

Algorithm 1 Pseudocode for AES with random de-
lay inserted.

1: RndFunc = PRNG
2: RndDly = PRNG
3: state = M
4: for 1 through 10 do
5: if RndFunc is 0 then
6: RndDly
7: SubByte(state)
8: else if RndFunc is 1 then
9: RndDly

10: ShiftRow(state)
11: else if RndFunc is 2 then
12: RndDly
13: MixColumns(state)
14: else if RndFunc is 3 then
15: RndDly
16: AddRoundKey(state)
17: end if
18: end for

random function. This countermeasure makes select-
ing POIs very hard and forcing the attacker to ana-
lyze the vast number of points for two steps (profiling
and matching steps) of TAs. We can eliminate POIs
with this method. To achieve such a result, we need a
wide range of sample points for profiling and attack-
ing phases for each trace. Additionally, we require
much more power traces for building templates and
successful key recovery. According to the description
of POIs in section 2, TAs will be more challenging.
The most used metrics for attacks and countermea-
sure is the number of traces for the profiling step(the
value N of M sample points) [22].

5 Experimental Results

We extracted the power consumption traces on a
microcontroller during an AES-128 operation. Our
target device is an STM32F407 processor. Sampled
data was acquired with a 300MHz and 2Gsamples/S
oscilloscope. In the profiling step, significant power
traces were acquired from the profiling device for the
random values of plaintext and the key to building
templates. In the profiling step, we have to find the
value of the Hamming weight of each power trace
and map to 9 templates according to Figure 2. For
example, the maximum number of classes we need
to control simultaneously is related to classes with a
Hamming weight of 4, where 70 values are possible.

In the attacking step, A small amount of traces is
used to have a successful attack. Our results show
that the main parameter that influences the likeli-
hood of success of an attack against a time shuffling
technique is the number of places that might be cho-
sen for delay shuffling. In the first step of our experi-
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D
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Number of 
different values

probability

HW = 0 1 leaf 1/256

HW = 1 8 leaves 8/256

HW = 2 28 leaves 28/256

HW = 3 56 leaves 56/256

HW = 4 70 leaves 70/256

HW = 5 56 leaves 56/256

HW = 6 28 leaves 28/256

HW = 7 8 leaves 8/256

HW = 8 1 leaf 1/256

Figure 2. Hierarchical of HW templates

Figure 3. The result of TA against the unprotected AES (a)
SOST (b) mean vector for HW=6

ment, N = 350000 traces each of which contains P =
3500 sample points are used for training (Template
generation) and the number of interesting points is
Npoi = 5. We applied the SOST method to pick sig-
nificant points in time belong to the first round of
AES. We required at most 15 traces for a successful
attack against AES-128 without countermeasure.

Figure 3 depicts the statistical information of un-
protected implementation. This figure comprises two
sub-figures; Figure 3-a represents the SOST for TAs
against AES-128 encryption without countermeasure
and Figure 3-b shows the mean vector from 1 of 9
HW of the profiled templates. POIs (POI0 to POI5
in Figure 3-a) are the highest peaks in SOST. More-
over, the difference between the signal and noise is
shown by the red vertical line.

Afterward, AES is protected by shuffling the delay
at the point before the SubByte function. Then, we
performed our attack on AES with a countermeasure.
Figure 4 shows the results of the proposed method

Figure 4. The TA result against the AES with the delay

shuffling on one node(a) SOST (b) Mean vector for HW=6

Figure 5. The result of TA against the AES with multiple
random delays (a) Sum of squared t-differences (sost) for AES

encryption with multiple random delays (b) mean vector from

one of nine HWs template profiled

after inserting one random delay. In this experiment,
the number of traces used to train is N = 450000 and
the number of interesting points is Npoi = 50 that is
shown just 5 points for example.

As shown in Figure 5, the difference between the
noise level and the signal level is significantly smaller
than Figure 4. The difference between SOST results
for protected and unprotected implementations is
getting further. This means that the protected circuit
is hardened against the attack. Figure 5 represents
the results of the protection method after shuffling
of delay on multiple nodes.
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Table 1. Success rate depending on the number of traces on

protected and unprotected AES

Design #traces #Sample pints The rank of

in a trace The correct key

Unprotected 350000 5 1

400000 6000 2106.3

Protected 500000 6000 2103.9

600000 6000 2101.1

700000 6000 2100.3

As shown in Figure 5, the noise level and the signal
level are getting closer to each other because of the
trace misalignment that resulted in the applied ran-
dom delay shuffling. On the other hand, the plotting’s
shape means vector in Figure 5-b represents that ap-
plied time shuffling has a more chaotic outcome and
there is no impressive general point. It shows that
the correlation between the leaked information and
the secret key is mitigated considerably. On the other
hand, it is inferred from Figure 5 that the POIs selec-
tion methods are not helpful due to the closer differ-
ence between the signal and noise. In this situation,
the attacker must consider more sample points of a
trace and more trace data for a successful attack.

In the following, we try to present a quantitative
evaluation of the proposed method. The amount of
traces needed for the profiling stage to find the cor-
rect key(or result in an acceptable grade of the key)
is a widely used metric to show the quality of protec-
tion against a specific attack [4]. Table 1 represents
the number of traces and corresponding resulted in
the grade of the key recovery for protected and un-
protected AES algorithms. We sort all full subkeys
according to the maximum likelihood method based
on the probability distribution that is explained in
section 2 and determine the grade of the key recovery.
It is worth noting that the probability of success sig-
nificantly reduces in protected implementation and
it was not possible to have a successful attack.

As is seen in Table 1, the grade of the key recov-
ery is raised exponentially in the protected design
such that the successful attack is not possible practi-
cally. Moreover, by increasing the number of profil-
ing traces, this grade does not decrease considerably
(e.g. 2106.26 for 400K traces to 2100 for 700K traces).
In this experiment, the sampling rate is 2GHz and
the time per sample is 0.5ns. Insertion of multiple
delays generates time overhead that is calculated cor-
responding to increased points. In this method, the
number of sample points is increased from 35000 to
37500. As a result, the time overhead for the time
shuffling method is near 7%.

Finally, it is worth noting that for the following
reasons, we have used and analyzed the time random-
ization method for TAs.

• Previous articles have not reported the analysis
of time randomization for TAs, while TAs are
very sensitive to the time-shifting method and
this analysis is very informative.

• The numerical obstacles are the critical vulner-
ability of the TA because it leads to poorer clas-
sification performance. One of the advantages
of TAs is the profiling stage. In this paper, we
evaluate that we need 350, 000 profiling power
traces to have a successful attack for unpro-
tected AES. Each trace contains 35, 000 sample
points per execution of AES. With such a con-
siderable amount of data and complex computa-
tion is required about 40 to 50 GB of memory
to do the profiling stage. Based on what was
mentioned and citations, we should choose POIs
to boost the efficiency of the profiling stage. On
the other hand, we will show how POIs have
been removed by inserting random delays. How-
ever, the time randomization method will apply
an enormous value of noise into signals and de-
tection of the peak will be pointless because it
will not contain useful information. We must
be used 35, 000 sample points per power trace
and more than profiling power traces are re-
quired for a protected AES. Dealing with this
computational complexity will be impossible. It
can be concluded that profiled attacks are so
sensitive to this countermeasure and our result
confirms this sensitivity.

6 Conclusion

n this paper, we focus on TAs and propose a counter-
measure against it. We introduced the countermea-
sure based on time randomization to filtering interest-
ing points. We performed three experiments. Firstly,
power traces extracted from a software implementa-
tion of the AES without countermeasures. Secondly,
power traces are extracted from AES by inserting one
random delay. Thirdly, power traces are extracted
from AES by inserting multiple random delays. We
ran the feature selection technique (SOST) on three
methods and showed how POIs had been removed.
Results showed our countermeasure counteracts the
key recovery effort based on template attacks. Time
randomization as a countermeasure also results in
7% time overhead and the grade of the key recovery
is raised exponentially in the protected design (e.g.
2106.26 for 400K traces to 2100 for 700K traces). As
future work, it would be interesting to implement
random shuffling on AES that is one of the time ran-
domization techniques.
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