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A B S T R A C T

Most of the current research on static analysis of Android applications for

security vetting either works on Java source code or the Dalvik bytecode.

Nevertheless, Android allows developers to use C or C++ code in their

programs compiled into various binary architectures. Moreover, Java and the

native code components (C or C++) can collaborate using the Java Native

Interface. Recent research shows that native codes are frequently used in both

benign and malicious Android applications. Most of the present Android static

analysis tools avert considering native codes in their analysis and applied

trivial models for their data-flow analysis. As we know, only the open-source

JN-SAF tool has tried to solve this issue statically. However, there are still

challenges like libC functions and multi-threading in native codes that we want

to address in this work. We presented SANT as an extension of JN-SAF for

supporting Static Analysis of Native Threads. We considered modeling libC

functions in our data-flow analysis to have a more precise analysis when dealing

with security vetting of native codes. We also used control flow and data

dependence graphs in SANT to handle multiple concurrent threads and find

implicit data-flow between them. Our experiments show that the conducted

improvements outperform JN-SAF in real-world benchmark applications.

© 2020 ISC. All rights reserved.

1 Introduction

The Android operating system has been dominated
by the smartphone market with more than 70%

of the total devices due to a recent study by Stat-
counter [1]. The applications that have been devel-
oped by third-party developers are in different cat-
egories from banking and socialization to entertain-
ment and travel, etc. However, it has been reported
many times that Android application has been a
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threat to its users for privacy issues like information
leakage of sensitive data by malicious applications.
Even benign Android applications can be vulnerable
and leak sensitive information without an intention.
There are researches [2–6] that addressed this issue
and tried to find information leakage through taint
analysis. However, it should be mentioned that none
of them can find all the information leakages through
native codes in the program because the usage of
native code is one of the tough challenges in the se-
curity vetting of Android apps. Recent studies have
shown that many applications use native codes for
different purposes like efficiency and hiding premium
codes from reverse engineering. There are also other
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objectives like evading antivirus detection programs
for malicious applications. Recent years witnessed a
substantial rise in the number of apps using native
code and libraries. Avdiienko et.al in [7] have claimed
that from more than one million apps that they stati-
cally analyzed, 37% of them have used native code in
their applications. Also Wei et.al in [8] have argued
that there is substantial usage (39.7%) of native code
in benign apps on 100,000 Google Play applications
crawled randomly; therefore, the need for security
vetting these applications and their native codes is
essentially vital for user’s privacy.

Most of the previous works addressing information
leakage through native codes are using dynamic ap-
proaches that make the analysis not cover all the
program’s execution paths. As far as we know, there
is only one work [8] that has tried to solve this issue
by using static analysis techniques. However, there
are some limitations like multi-threaded native code
and libC functions in taint analysis. With the ad-
vancement of technology, mobile processors with more
cores have come to the market, making the use of
multi-threaded applications more relevant even for na-
tive codes. Multi-threaded programmings can affect
the precision of the static analysis by the dynamic
nature of threads. In this work, we have addressed
some of these limitations and solve the challenges
related to these issues. We have also implemented
the proposed solution as an extension to JN-SAF
that we call it SANT (a tool for Static Analysis of
Native Threads). This article is the first work that
analyzes multi-threaded Android native codes stati-
cally to the best of our knowledge. Note that static
analysis has more advantages than dynamic analysis
in many cases. While dynamic analysis only considers
a single execution path in each round of execution,
static analysis can explore the whole execution state
space at once. This is why static analysis promises to
achieve completeness in its analysis, while dynamic
analysis cannot. Hence, considering native threads in
the static analysis process can significantly enhance
Android applications’ security vetting. This is even
more important when considering that dynamic anal-
ysis of parallel execution, as in native multi-threading
in Android Apps, is highly complicated and time-
consuming.

In a brief statement, we can argue that the residual
challenges in static analysis of Android native codes
are as follows:

(1)Using native threads that are available through
POSIX libraries can initiate multiple threads.
These threads can pass data between each other
and make a static analyzer lose the tracking taint.

(2)Having comprehensive modeling of functions in

the libC library and JNI is important for taint
analysis to track the tainted data more precisely.

This work presents the following contributions:

(1)Studying the behavior of remaining not modeled
functions that existed in libC and JNI libraries and
modeled them for more precise analysis in native
codes.

(2)Using the control flow graph to distinguish the cre-
ated threads in the program and separate possible
concurrent threads using novel heuristics.

(3)Finding data leakage between the source and sink
threads using the data dependence graph and in-
creasing the taint analysis’s precision.

(4)Implementing the proposed solutions as an exten-
sion to JN-SAF named SANT.

The rest of the paper is organized as follows: Sec-
tion 2 presents the related work. The background and
example is presented in Section 3. Section 4 debates
over challenges and our solutions, while Section 5 de-
scribes our implementation. We discuss the conducted
experiments and evaluation results of the proposed
tool in Section 6. Limitations of SANT are discussed
in Section 7, and finally, Section 8 concludes the pa-
per.

2 Related Work

Here in this section, we briefly review several more
related works to highlight our contribution’s position.

FlowDroid [2] leverages taint analysis to track the
sensitive data-flow in the program. It uses an app-
level dummy-main method to handle Android sys-
tem events then uses a flow and context-sensitive
IFDS [12] algorithm to conduct taint analysis. Flow-
Droid does not handle native code and puts in a
comprehensive model for native method calls.

IccTA [4] extends FlowDroid and leverages IC3 [13]
to resolve the application Intents. It tracks data-flow
for intent calls and extracts their parameters .How-
ever, same as Flowdroid it does not handle native
method calls.

LeakDoctor [14] is an analysis system that looks
for privacy leaks by concluding if a privacy revela-
tion from an app is necessary for all functionalities
of the app. Privacy disclosures that are functionality-
irrelevant for the application are not justifiable; There-
fore, they will be considered potential privacy leak
cases. For this purpose LeakDoctor combines dynamic
response differential analysis with static response
taint analysis from Flowdroid.

SoProtector [15] has consolidated static and dy-
namic analysis techniques to find privacy leaks in An-
droid native codes. It uses Flowdroid for taint analysis
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and completes the Control Flow Graph(CFG) with
dynamic analysis of each app. It also uses machine
learning to find similarities in Opcodes’ grayscale im-
ages in native code and similar sequences between
Opcodes of different apps that tend to be malicious.
Like all of the dynamic analysis platforms, it cannot
cover all the execution paths in native code.

TaintART [16] instruments the ART compiler and
runtime and conducts a dynamic taint analysis.

GoingNative [7] first uses static analysis to find
the apps using native code then leverages dynamic
analysis to generate sandboxing security policies for
Android native codes.

Amandroid [3] is a data-flow analysis tool that im-
plements a component-based analysis using taint anal-
ysis and tracks possible Intra/inter-component data
flows. This tool does not consider native method calls.
Javadroid part of the JN-SAF is based on Amandroid
and utilizes its features to capture inter-component
data-flows.

NDroid [17] implements dynamic taint analysis
with QEMU machine virtualizer and looks for any
information that flows through native code. It uses
code instrumentation in the native world to deal
with information flows like JNI entry/exit and object
creation. However, like all dynamic analysis tools,
NDroid suffers from path coverage problems.

As the above literature review shows, the related
works either do not support handling native codes
or work dynamically to examine them. However, in
general, dynamic analysis tools fail when we tend
to consider the whole state space of the execution,
which is essential when we deal with security vetting
of applications. JN-SAF [8] is the first and the single
tool that claims to do static analysis of the Android
native codes. However, as we will see in the next sec-
tion, it lacks some essential requirements for precise
evaluation of security properties in Android applica-
tions. Hence this is our motivation to enhance them
in this paper.

3 Background and Example

We have provided the necessary background infor-
mation to understand how Android native codes can
work with multiple threads using the POSIX API.
We further discuss the remaining functions that have
to be modeled correctly in previous work [8], so we
can have a more precise analysis. We also provide a
motivating example to discuss the challenges in track-
ing data-flow between multiple threads in Android
native code and how remaining not modeled native
functions can affect data-flow tracking in the static
analysis.

3.1 Using Pthreads in Android Native Code

With the expansion of multi-core CPU in Android
devices, multi-threaded programming is getting more
prevalent between developers, and as a result, most
of the non-trivial Android apps use more than one
thread, therefore multi-threaded programming is
essential to Android development. At Android NDK,
POSIX Threads (pthreads) are bundled in Android’s
Bionic C library to support multi-threading. We
will first introduce thread creation and termination.
A thread can be created with the pthread create

function, which has the following prototype:
int pthread create(pthread t *thread, const

pthread attr t *attr, void*(*start routine)-

(void*), void *arg). This function creates and
starts a new thread with attributes specified by the
attr input argument. If attr is set to NULL, default
attributes are used. The start routine argument
points to the function to be executed by the newly
created thread with arg as the input argument to
the function. When the function returns, the thread
input argument will point to a location where the
thread ID is stored, and the return value will be
zero to indicate success or other values to indicate
an error. The thread is terminated after it returns
from the start routine function or we explicitly
call pthread exit. The pthread exit function has
the following prototype: void pthread exit(void

*value ptr). This function terminates the calling
thread and returns the value pointed by value ptr

to any successful join with the calling thread. The
pthread join function has the following proto-
type: int pthread join(pthread t thread, void

**value ptr). The function suspends the thread’s
execution until the thread specified by the first input
argument terminates [9].

3.2 Native Functions Affecting Taint
Analysis

The Native Development Kit, a.k.a NDK [10] is a
set of tools that allow developers to implement a
part or all of the Android applications using C or
C++ languages. NDK has come up with platform
libraries to manage native Activity components and
use physical device units. It uses the Java Native
Interface (JNI) [11] as the interface through which
the Java and C++ components communicate with
each other. The most use cases for NDK are reusing
existing third-party C or C++ libraries, improving
performance for CPU-intensive workloads such as
game engines, signal processing, physics simulation,
and so on. Although JN-SAF has modeled the JNI
and NDK libraries precisely, there is still a need to
model other neglected functions that can cause the
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taint analysis to lose its precision in tracking the
data-flow.

3.3 Motivating Example

A malicious or careless developer can leverage NDK
and develop a part or all of his/her application in
native code. Listing 1 demonstrates an example of this
situation by an application that has been developed
in two parts consisting of Java and the native world.
This application leaks data through native code, and
because of the presence of native threads, previous
work [8] cannot detect the data leakage that happens
in this situation. In this example, we have an activity
class in Java world that loads a native library named
threadLeak and imports native method send. On the
other hand, in the native world, we have an exported
native function called send.

As an example, here is the following sequence of
events that can happen in reality:

(1)Java world: An Activity Component named
main activity initiates a system service object and
extracts the device id (IMEI) from that object and
assign it to a string variable and send it to the
native world with the help of native function send.

(2)Native world: Native function send receives the
sensitive value as an argument named data. To get
the object data in string format, the program has
to use the GetStringUTFChars and assign it to a
const char* (in this example we named it source).
We also have a libC function named snprintf

which gets several characters as input and copies
the second argument into the first argument. Af-
ter that, the main function initiates two separate
threads, where one of them receives sensitive data
as input. Each of these threads has an inner loop;
one of them continuously reads the global variable
and logs it to the console, while the other thread
will sleep at each loop iteration. When all loops
have been finished, this thread propagates the sen-
sitive data it has previously received as an argu-
ment and assigns it to the global variable. With
this assignment, the other thread that was logging
this global variable will log the sensitive data, and
we are going to encounter a sensitive data leakage
in our program.

Thanks to work done in [8], we have a somehow
complete model of the JNI interactions with Java and
native code that can capture the data flow between
the two worlds. However, some remaining challenges
still exist, and solving them could lead to more preci-
sion in our analysis. For example, to track the data-
flow in native code, we have to model all the functions
that can affect the data-flow, like the snprintf func-
tion at line 25 that copies sensitive data, assigning it

Listing 1 Example android application

1 package test.multiple_interactions;

2 public class MainActivity extends Activity{

3 static{System.loadLibrary("threadLeak");}

//"libthreadLeak.so"↪→
4

5 public static native void send(String data);

6 protected void onCreate(Bundle

savedInstanceState){↪→
7 super.onCreate(savedInstanceState);

8 setContentView(R.layout.activity_main);

9 TelephonyManager tel = (TelephonyManager)

getSystemService(TELEPHONY_SERVICE);↪→
10 String imei = tel.getDeviceId();//source

11 send(imei);

12 }}

1

2 char* Global = "globalVariable"

3 void* run_by_thread1(void* arg){

4 int count = 5 , i;

5 char* source =(char*) arg;

6 for(i=0 , i<count;i++){

7 sleep(1);

8 LOG("thread 1 looping");

9 }

10 Global = source;

11 return;

12 }

13 void* run_by_thread2(void* arg){

14 int count = 10 , i;

15 for(i=0 , i<count;i++){

16 sleep(1);

17 LOG("thread 2 sink %s ",Global);

18 }

19 return;

20 }

21 Java_threadLeak_MainActivity_send(JNIEnv

*env,object thisObj, jstring data){↪→
22 const char* source =

env->GetStringUTFChars(data,0);↪→
23 pthread_t th1,th2;

24 int ret,someInt=0;

25 char* sensetive =

(char*)malloc(sizeOf(source));↪→
26 snprintf(sensetive , sizeof(source),"%s",

*source);↪→
27 pthread_create(&th2,NULL,run_by_thread2,(void*)

someInt);↪→
28 pthread_create(&th1,NULL,run_by_thread1,(void*)

sensetive);↪→
29 pthread_join(&th1);

30 pthread_join(&th2);

31 LOG("%s","notSensetive");

32 }
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to the other variable. If these kinds of functions are
not modeled in the static analyzer, it cannot track
the sensitive data, and it is going to have false nega-
tives in its analysis. Lots of JNI functions have been
modeled in previous work [8] but functions in the
libC library are neglected.

Threads have a dynamic soul in most programs, so
static analyzers cannot focus on them easily. Track-
ing data-flow between threads is a non-trivial work,
and there is no static analyzer to capture data-flow
between them in Android native code. For instance,
in the example code depicted in Listing 1, we can-
not track the data-flow statically because we do not
know which thread will write to a specific variable or
read from it. As we can see, there is a loop in each
thread that causes threads to be concurrent, and a
race would start at any thread-shared variable in the
program. Therefore there is a need to have a new
approach for solving this kind of challenges.

4 Challenges and Our Solutions

Geared toward having a precise security vetting in
static analysis of native threads in Android applica-
tions, we chose to use the static analysis tools that
exist out there and leverage them, so we do not need
to start from scratch. Previous work [8] has done a
great job, and we have built our ideas upon it. In
the remainder of this section, we will be discussing
the targeted challenges in previous work and what
ideas and approaches have been made in this work to
conquer them.

4.1 Tracking the Data-Flow in Library
Functions

JN-SAF has leveraged the angr [18] symbolic execu-
tion framework and its annotation option to track the
data-flow in the program. JN-SAF propagates the
annotations through the program execution path so
that each assignment or similar actions would cause
the appropriate operands to get annotated. However,
the library functions like libC remain intact. To track
the data-flow in functions like libC or other functions
affecting the data-flow, one has to simulate their ex-
act behavior with the data. Therefore, we decided
to extend the JN-SAF to support libC functions.
For this goal, we have to simulate the propagation
in these functions and implement them in the sim-
procedure functionality of angr. libC functions that
affect the taint analysis behave similarly according to
their parameters in annotation propagation. They get
the first argument and copy it into the second one.
Therefore we have to analyze the function’s overall
behavior in ARM assembly and apply our annotation
propagation rules. In the arm processors’ prologue

phase, functions get their argument in particular reg-
isters and the program’s stack. If the arguments are
less than 5, their value or address would be at reg-
isters r0 to r4, and if there is more, they would be
placed at stack. All of the targeted functions have
less than five arguments. Therefore we use the sim-
procedure in angr in the way that related arguments
in the prologue phase of each function would be read.
If the argument was tainted, we would taint the re-
ceiver argument to track the data-flow in our analysis.
For example, in Listing 1 at line 25 when snprintf()

has been called, we would look at its parameter at
register r3, and if it were tainted, we would propagate
the taint to the argument at register r0 too. This ex-
ample would apply to all remaining functions that
can affect the data-flow tracking in our analysis.

4.2 Finding Concurrent Threads

Thread usage in programs is a prevalent task. Pro-
grams usually need to separate the process-intensive
tasks or synchronized data transfers in other threads
rather than the program’s main thread to prevent la-
tency in the program interface. Because of the threads’
dynamic nature, trivial static analysis techniques can-
not capture the data flow in these scenarios. To track
the data-flow in threads, first, we need to find the
concurrent ones. There may be different threads in a
particular program, but most are not associated with
each other. For this purpose, we have presented a new
approach that leverages the path groups in the con-
trol flow graph of the program and looks for thread
create and terminate functions vertices traversing the
CFG. A path group is a group of finite sequence of
vertices (basic blocks of the program) connected with
edges as the program’s execution flow. These groups
start from the root vertex in the graph and continue
to the leaf such that each path group denotes a dif-
ferent execution path in the program’s control flow.
As we mentioned in previous sections, threads can
be created and terminated with different functions
like pthread create() and pthread join() (there
are also other functions that can terminate or create
a thread). Considering these types of functions, we
can track each path group in the control flow graph
and differentiate between multiple concurrent thread
groups. We have presented our algorithm for this pur-
pose in Algorithm 1, and we will trace the proposed
algorithm in a CFG that is shown in Figure 1. This
CFG is an example of a program with two different
path groups. The CFG is summarized to the thread
create and terminate functions for space reasons.

Initially, we have defined three sets for retaining
the concurrent functions that are created by different
thread vertices in the graph. There is an exclude
set as the terminated thread functions and a set
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start

pthreadcreate(1)

pthreadcreate(2)

pthreadjoin(1)

pthreadcreate(3)

pthreadjoin(2)

pthreadjoin(3)

pthreadcreate(1)

pthreadcreate(2)

pthreadjoin(2)

pthreadcreate(3)

pthreadjoin(1)

pthreadjoin(3)

Figure 1. Control flow graph

of tuples that maps each thread group number to
that group’s concurrent thread functions. After that,
at line 9, we traverse the vertices in a path group
and check if they are members of the TTF (Thread
Termination Functions) or TCF (Thread Creation
Functions), respectively. While traversing these nodes,
If the vertex is a member of the TTF set, we add
the function which is related to that vertex to the
exclude set for later use. Otherwise, if it is a TCF set
member, we will save it to the concurrent group set
at line 18. Meanwhile at line 12, we will be checking
that if we already have any function vertices in our
exclude set so to subtract them from our collected
function vertices in the concurrent group set leading
to a new thread group which is going to be added to
the thread group map set. thread group map contains
all separate thread groups and their related vertices
in the control flow graph. Finally, at line 20, if the
algorithm have reached to the leaf vertex, we will
be saving that group as the last one, returning the
thread group map set as our algorithm output.

Considering the sample CFG in Figure 1, Algo-
rithm 1 would take each path group (vertical lines and
grid lines) and distinguishes the concurrent threads.
In this example, the TGroupMap set for the grid line
path would be {(1,{thread1,thread2}),(2,{thread2,-
thread3})} and for the vertical line path would
be {(1,{thread1,thread2}),(2,{thread1,thread3})}
respectively.

4.3 Implicit Data Leakage Between
Concurrent Threads

In the previous section, we demonstrated our algo-
rithm to collect concurrent threads and retain them
as separate groups. This section will use these groups
and find any data dependency that goes from a source
thread to a sink thread. We call a thread source if

one or more of the thread function’s input arguments
are tainted as sensitive data. In contrast, a thread
is called a sink if the thread function has called a
sink function after itself in the function call graph.
After finding the source and sink threads for each
concurrent group, we will leverage the data depen-
dence graph and check if there is any data dependency
between the tainted input argument in the source
thread function and the argument passed to the func-
tion after the sink thread. DDG(Data Dependence
Graph) is a graph that consists of vertices as vari-
ables and edges as data dependency between these
variables in the analyzed program. We have proposed
our approach with the help of the set theory in Al-
gorithm 2. This algorithm takes various inputs as a
set. VIAF set is an abbreviation for Vertices Input
Argument Function that is the set which has been
extracted from CFG where we used symbolic execu-
tion to get each basic block as vertices and their re-
lated function and input arguments for that function.
Other inputs are Function Call Graph (FCG), Data
Dependence Graph (DDG), set of tainted arguments
in the program, and the set of sink functions in the
taint analysis. The remaining inputs are the same as
Algorithm 1 that will be used when we call the con-
currency handler function from the Algorithm 1. At
first, we define separate sets to retain sources, sinks,
and leakage points. For each path group of the CFG,
we will call the Algorithm 2 and get the concurrent
threads for that particular path group. Afterward, we
iterate over thread groups as a list and compare the
thread vertices inside each group.

At line 8, each thread group has been extracted to
compare the function vertices inside each group to
detect sink or source threads. For this goal, we get
the related function for the thread vertex in CFG.
This function is the child vertex of each thread create
or terminate vertex in the CFG graph. We can ver-
ify if this function is a source by checking its input
arguments for being tainted with this information.
Otherwise, at line 14, we look for the child function
in FCG to see if the thread function has any sink
function called after itself and if it is, we will save
the sink function input argument for later use. After
this step, we use the prior information and leverage
the DDG for finding any data dependency between
the source and sink thread functions. Thereby at line
18, we will start to iterate in source and sink sets
and look for any path from source to sink arguments
of the thread functions. If there are any paths from
source to sink, we will save the source and sink points
in the Leakage point set as our algorithm’s output.

5 Implementation

We have implemented SANT on top of the JN-SAF
and made it publicly available as a forked ver-
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Algorithm 1 The concurrency heuristic algorithm
Input: pg: List of nodes of a PathGroup, TCF: set of Thread Create Functions, TTF: Set of Thread Terminate Functions,

VIAFuncSet: set of basic blocks and their realted function and its input arguments
Output:TGroupMap: set of groups for Concurrent Threads

1: procedure ConcurrencyHandler(pg, TCF ,TTF ,V IAF )

2: TGroupSet← ∅
3: ExcludeSet← ∅
4: TGroupMap← ∅
5: I ← 0

6: let pg = v1, v2, ..., vn
7: for j ← 1, n do

8: Func = {func|(vj , IA, func) ∈ V IAF}
9: if vj ∈ TTF then
10: ExcludeSet← ExcludeSet ∪ {Func}
11: else if vj ∈ TCF then

12: if ExcludeSet 6= ∅ then
13: I ← I + 1

14: TGroupMap← TGroupMap ∪ {(I, TGroupSet)}
15: TGroupSet← TGroupSet− ExcludeSet
16: ExcludeSet← ∅
17: end if
18: TGroupSet← TGroupSet ∪ {Func}
19: end if

20: if j = n then
21: I ← I + 1

22: TGroupMap← TGroupMap ∪ {(I, TGroupSet)}
23: end if
24: end for

25: return TGroupMap

26: end procedure

sion 1 . JN-SAF consists of three main parts named
JavaDroid, NativeDroid, and JNI Bridge. JavaDroid
is implemented on top of the Amandroid [3], and
it does the Dalvik-bytecode analysis. NativeDroid
is built on top of angr [18] and it is responsible for
binary code analysis. JNI Bridge is the intermedi-
ate layer that connects JavaDroid (implemented in
Scala) with NativeDroid (implemented in Python)
and makes them able to exchange control and data
communication. JNI bridge is built on top of jpy [19]
which is a bi-directional Java-Python bridge. There
are three major steps in this framework, and we
implemented improvements as an extension to one of
them.

Preprocess is the first step where the APK is decom-
piled into the intermediate representation, pilar [3] for
Java, and vexIR [20] for binary code. The second step
in JN-SAF is environment modeling, where the entry
points for the application components will be created
to capture all lifecycle methods of the program. The
third and last step is Summary-Based-Bottom-Up
data-flow analysis (SBDA) [8] that is consisted of mul-
tiple parts, and we have implemented our approach in
the native function summary builder part of it. Native
function summary builder is accountable for adding
JNI function models with sim-procedure option from
angr and manage the annotation-based data-flow

1 github.com/behnamandarz/argus-saf

analysis. We have implemented the remaining func-
tions discussed in Section 3.1 using sim-procedure and
improved this part of the framework.

For implementing the proposed improvements in
Section 3.2 and Section 3.3, we used DDG, CFG,
and FCG from angr framework and completed the
function summary builder part of the JN-SAF.

We take the Android application presented in List-
ing 1 as an example to walk through the thread leak-
age detection process. Considering the native world,
function Java threadLeak mainActivity send()

would receive the sensitive variable data and assign it
to another variable named sensitive with the help
of snprintf() function. In this part of the program,
we use our modeled libC functions and propagate the
tainted value from data to sensitive. In continue,
two separate threads would be created that one of
them is receiving tainted argument. Algorithm 1
will capture these two pthread create() functions
in CFG and save them in one group as concurrent
threads. After that run by thread2 function will go
into a loop and leaks the global variable. At first
iterations of the loop, this variable is not sensitive
but another thread named run by thread1 would
assign sensitive data to global and make it sensitive
at some point in program execution. We handle this
by using DDG from angr and check for any data de-
pendency between source and sink thread arguments
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Algorithm 2 Thread leakage algorithm
Inputs: VIAF: set of basic blocks and their realted function and its input arguments ,PG: set of PathGroups in CFG, FCG: function

call graph, DDG: data dependence graph , SFS: set of functions known as a sink, TAS: Set of tainted arguments and variables in
program, TCF: set of Thread Create Functions, TTF: set of Thread Terminate Functions

Output: LeakagePointSet: set of all program points that are detected as leak

1: procedure ThreadHandler(V IAF, PG, FCG,DDG,SFS, TAS, TCF, TTF )

2: LeakagePointSet← ∅
3: Sources← ∅
4: Sinks← ∅
5: for all pg ∈ PathGroups do
6: TGroups← ConcurrencyHandler(pg, TCF, TTF, V IAF )

7: for x← 1, n = |TGroups| do
8: Let (x, TgSet) ∈ TGroups
9: for all Func ∈ TgSet do

10: ChildFunc = Child(FCG,Func) . Thread function to be invoked

11: InputArg = {IA|(v, IA,ChildFunc) ∈ V IAF}
12: if InputArg ∈ TAS then . Source thread

13: Sources← Sources ∪ {(ChildFunc, InputArg)}
14: else if ChildFunc ∈ SFS then . Sink thread

15: Sinks← Sinks ∪ {(ChildFunc, InputArg)}
16: end if
17: end for

18: for all source ∈ Sources do . Search for any data dependency between source and sink

19: SoIA = {InputArg|(ChildFunc, InputArg) ∈ source}
20: for all sink ∈ Sinks do

21: SiIA = {InputArg|(ChildFunc, InputArg) ∈ sink}
22: ChildSet = ∅
23: ChildSet = ChildSet ∪ Child(DDG,SoIA)

24: while ChildSet 6= ∅ do
25: NewChild = ChooseRandomMember(ChildSet)
26: ChildSet = ChildSet−NewChild

27: if NewChild = SiIA then

28: LeakagePointSet← LeakagePointSet ∪ {(Source, Sink)} . New leakage point
29: break

30: else ChildSet = ChildSet ∪ Child(DDG,NewChild)
31: end if

32: end while

33: end for
34: end for

35: Source, Sink = ∅
36: end for
37: end for

38: return LeakagePointSet

39: end procedure

(in this case sensitive and global) and report
them as sensitive data leakage point in the program.

6 Experimental Evaluation

We evaluated SANT on benchmark and real-world
apps. Our dataset includes: (1) An extended version
of NativeFlowBench created by [8] and extended by
us so we can consider other perspectives like libC
functions and concurrent execution challenges. (2)
One thousand randomly chosen malware from AMD
[21] dataset that has used native code. We perform
experiments to answer the following research ques-
tions (RQ):

RQ1: How does SANT performs on benchmark apps?

RQ2: How is the usage of thread and libC functions
in the AMD dataset?

RQ3: Does SANT has improvements in the security
vetting of real-world applications?

RQ4: How is the performance of SANT compared
to its related previous work?

6.1 RQ1: How Does SANT Perform on
Benchmark Apps?

For evaluation objectives, we have developed and
added eight apps to NativeFlowBench since there is
not any existing benchmark for evaluating thread re-
lated data-flow analysis capability of Android static
analysis tools for native code. NativeFlowBench+ in-
volves a set of hand-crafted apps, developed to test
specific analysis features. Because those apps are
hand-crafted, the ground truth is well known, and we
can compute measures like precision and recall. Na-
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tiveFlowBench+ is classified in 5 parts: Part A concen-
trates on inter-language data-flow analysis challenges,
Part B concentrates on resolving native Activities,
Part C concentrates on inter-component communi-
cation between Java and native components, Part D
concentrates on implicit data-flow between treads in
different situations and Part E concentrates on data-
flow affecting functions that have not been considered
in previous work. As it is stated by [8] “The apps in
these test suites are not crafted to favor a particular
tool and they present common scenarios one will find
when reasoning about the relevant security issues”.

To extend NativeFlowBench and cover our thread
related data-flow issues, we have developed different
apps in various aspects of thread implementation
and also libC/JNI functions that could affect the
data-flow analysis and made this benchmark publicly
available 2 . These aspects are as follows:

• Thread communication through global variables
• Implementing threads using conditional vari-

ables
• Thread synchronization using the mutex

• Thread synchronization using R/W locks
• Thread synchronization using semaphores
• LibC and ignored JNI functions from JN-SAF

We compare the performance of SANT with the
previous work JN-SAF by running these tools against
each of the benchmark apps to check if they can
report the correct data leakage point, and the detailed
comparison is reported in Table 1. The results are
shown in terms of True Positive (O), False Positive (*),
and False Negative (X), if any. If some app has more
than one leakage point, then the result is shown for
each of them.

As it is illustrated in Table 1, SANT and JN-SAF
have the same results on Parts A, B, and C consid-
ering our tool is an extended version of JN-SAF.
However, it has outperformed the previous work
in Part D and E of the benchmark. In Part D of
the benchmark, because SANT can analyze implicit
data-flow between threads, it has outperformed JN-
SAF in three cases of native thread global var and
native thread global mutex and native thread global-
conditional var. In two cases of native thread -
semaphores and native thread r/w locks, we could
not capture the data leakage through threads because
of the complexity of the synchronization process be-
tween threads. Analyzing this kind of apps requires
the exact modeling of how these synchronization
mechanisms work. We leave this to future work. In
Part E, we detected the apps using libC and JNI

2 github.com/behnamandarz/NativeFlowBenchPlus

Table 1. The experimental results on benchmark

App Name SANT JN-SAF

Part A: Inter-language dataflow

native source O O

native nosource

native source clean

native leak O O

native leak dynamic register O O

native dynamic register multiple O O

native noleak

native noleak array * *

native method overloading

native multiple interactions O O

native multiple libraries O O

native complexdata O O

native complexdata stringop * *

native heap modify O O

native set field from native OO OO

native set field from arg OO OO

native set field from arg field OO OO

Part B:Native Activity Resolve

native pure O O

native pure direct O O

native pure direct customized O O

Part C:Inter-component Communication

icc Javatonative O O

icc nativetoJava O O

Part D:Native Threads

native thread global var O X

native thread mutex O X

native thread conditional var O X

native thread semaphore X X

native thread r/w locks X X

native thread noleak

Part E:Remaining functions

jni array region O X

libc copy string O X

Sum, Precision and Recall

O, higher is better 22 17

*, lower is better 2 2

X, lower is better 2 7

Precision p = O/(O + *) 91% 89%

Recall r = O/(O + X) 91% 70%

F-measure f = 2pr/(p + r) 91% 77%

O = True Positive, * = False Positive, X = False Negative
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functions affection data-flow that have not been
considered and modeled in previous work.

Eventually, both SANT and JN-SAF had false
alarm on native complexdata stringop and na-
tive noleak array because both tools do not do pre-
cise string analysis and cannot distinguish different
indexes of a Java array.

6.2 RQ2: How Much Is the Usage of Thread
and libC Functions in AMD Dataset?

Android malware dataset (AMD) consists of 24,384
samples that are from 71 different families, with a
total of 135 varieties. These malwares have diverse
behaviors as they include various types of malware
from trojan, backdoor, and ransomware to spyware
and adware. In this dataset, 34 families are cover-
ing 5,365 samples that have native code inside their
applications. We have randomly chosen 1000 mal-
ware samples from these 5,365 samples to cover all
34 malware families, as mentioned earlier. In the first
place, we have analyzed their CFG to look for libC
or thread related functions to discover how much the
usage of these functions is prevalent in Android apps.
We have presented our findings in Table 2. As we
can see in Table 2, these functions’ usage is pretty
common. From 34 malware families that we have an-
alyzed, 74% used libC and 44% used thread related
functions. There was about 8% of .so files that we
could not analyze since they were compiled with other
architectures rather than ARMv5, and our binary
analysis tool [18] does not support them properly.

6.3 RQ3: Does SANT Has Improvements
in Security Vetting of Real-World
Applications?

We ran our experiment using the previously men-
tioned 1000 samples from AMD dataset and com-
pared SANT with its base work JN-SAF. There are
nine families in AMD dataset that has been reported
to have information leakage through native codes.
Both SANT and JN-SAF were able to detect in-
formation leakage in 8 families, and the missed one
is Lotoor, which is a family of all the rooting tools.
SANT has a better results in families named Boqx,
DroidKungFu and VikingHorde, because of handling
threads and libC functions. In Boqx family SANT
were able to report 52 more samples to have informa-
tion leakage. Similarly, it has reported 31 and 3 more
information leakage in samples from DroidKungFu
and VikingHore families. However, in other families,
the results were the same, and there were 18 false
positives in other families that do not have informa-
tion leakage. We assume that these false positives are
because of insufficient taint granularity in both tools.
The number of detected samples in the nine malware

Table 2. Usage of thread and libC functions

Family name Samples Thread LibC

Airpush 36 X X

Andup 36 X X

Boqx 110 X X

Dowgin 33 X X

Droidkungfu 80 7 X

FakeAV 4 7 7

FakeUpdates 3 X 7

Fjcon 10 N/A N/A

Gingermaster 18 N/A N/A

GoldDream 31 N/A N/A

Gumen 46 7 X

Jisut 20 7 X

Kemoge 15 X X

Ksapp 23 X X

Kyview 22 7 X

Leech 29 7 7

Lotoor 66 7 X

Mmarketpay 13 N/A N/A

Mseg 25 X X

Ogel 6 7 X

Opfake 7 7 7

Penetho 17 7 7

Ramnit 8 N/A N/A

Slembunk 80 X X

Smskey 29 7 7

Spybubble 9 7 7

Tesbo 5 7 7

Triada 73 X X

Updtkiller 22 7 X

Vikinghorde 7 X 7

Winge 18 7 7

Youmi 48 7 X

Ztorg 16 7 7

families with information leakage for both SANT and
JN-SAF is presented in Figure 2. Our experiment’s
final results with AMD dataset in three analysis mea-
sures are presented in Table 3. In the following, we
will discuss our observations from this experiment.

After modeling the remaining libC functions from
previous work, we have detected more malware sam-
ples from DroidKungFu malware family. This mal-
ware is a backdoor that tries to get root privilege on
the device and execute malicious codes. To get root
privilege, it uses secbino program and if it failed to
root the device, it will copy secbino to /data/data/p-
kg/secbino and use the chmod 4755 command to get
the execution permission and execute secbino to get
the root privilege and download other malware APKs.
JN-SAF detects these behaviors by modeling those
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Linux programs that can execute shell commands
such as popen, system, execv and extract the parame-
ters of those system API calls and apprehend what
shell commands are executed. However, other mal-
ware variants from this family are using libC functions
that prevent the parameters from reaching the shell
commands. By modeling these functions, SANT can
capture the data leakage behavior in these variants.

Triada acquires the IMSI of the device in Java
world and sends it to the native method named
nativeSayTest(), and that function will leak IMSI
by invoking SmsManager class from Java world and
transfers the sensitive data out of the device. Gumen
also had the same behavior as Triada but leaking the
IMEI of the device.

Boqx malware family leverage native code for com-
mand and control communications. This malware
starts a service that launches two threads named
statThread and extThread to handle C&C communi-
cation. Using this communication, Boqx tries to load
malicious payloads from xbox.ooqqxx.com dynamically.
SANT can capture the native threads implicit data-
flow and report it as a leakage point. It has reported
52 more samples of this malware family that previous
work did not.

Ogel and UpdtKiller use the native code to cover
their malicious identities like URL or premium num-
bers and retrieve this data whenever needed. SANT
and JN-SAF both have the same results on these
families.

VikingHorde malware family creates a botnet that
uses proxied IP addresses to disguise ad clicks, gen-
erating income for the attacker. This malware com-
municates with the C&C servers using native code to
receive commands or new malware payloads. Our tool
has detected implicit information leakage through
threads in the native world from 6 samples of this
malware, while previous work only reports 3 of them.

6.4 RQ4: How Is the Performance of SANT
Compared to Its Related Previous
Work?

We have tested both SANT and JN-SAF on five dif-
ferent malware samples from five families in the AMD
dataset to compare our tool’s overhead with previ-
ous work. These malware samples were chosen from
Triada, Boqx, DroidKungFu, Gumen, and SlemBunk
families. The results have shown that there is a low
overhead on all samples, based on the size of their Na-
tive code. As it can be seen from Table 4, the most
overhead was on DroidKungfu family with about 12%,
and the lowest overhead was on Triada with only 5%.
The results of these samples and others are presented
in Table 4.
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Figure 2. SANT and JN-SAF results on AMD dataset

7 Discussion

Analyzing Java and native world inter-language com-
munication requires precise resolution of string values.
SANT propagates constant strings in both worlds,
and it will not be able to get the precise string values
if they are manipulated in the way. As explained in
prior research [22–24], string analysis is an expensive
and non-trivial job, and we leave it to future research.

JavaDroid in SANT inherited some limitations like
Java reflection and dynamic class loading from Aman-
droid [3]. We can mitigate Java reflection limitation
using [25] or [26] in our future works.

Path explosion issue can occur in NativeDroid be-
cause of the symbolic execution of large programs in
angr. There are ways to handle this issue partially. We
can use SMT solvers to guide our symbolic execution
engine to explore the preferred paths or merge some
particular states [27]. We can also use catching mecha-
nisms like function summarization for symbolic execu-
tion [6] to handle repetitive functions in the program.
One other mitigation could be implementing chopped
symbolic execution [28] in angr tool. Dynamic code
loading issues cannot be handled by static analysis
because of downloading the program run-time codes.
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Table 3. Comparison between SANT and JN-SAF on AMD

dataset

Measure SANT JN-SAF

Precision 94.1% 91.9%

Recall 55.4% 39%

F-measure 69.7% 54.8%

Table 4. SANT run-time overhead compared to JN-SAF on

AMD dataset

Malware Family SANT run-time overhead

DroidKungFu 12%

Gumen 10%

SlemBumk 8%

Boqx 8%

Triada 5%

One solution could be a sandbox mechanism to let
the program run and download its possible dynamic
loaded codes and pass them to our static analyzer.

As in all static analyzers, obfuscated or packed
programs are hard to be analyzed because of the pos-
sibility of generating run time codebase or strings.
This is because obfuscated and packed programs may
hide some of their codes in encrypted from, which
will be decrypted in the run time. Therefore, since
we do not have any clue what these encrypted codes
might be, we cannot analyze them with our tool.
We considered and modeled libC functions that could
affect the taint analysis procedure. We did not con-
sider other third-party libraries in our analysis since
they are not in our work scope.

8 Conclusion

We have presented SANT, an extended version of
JN-SAF, that is a static analyzer of Android native
codes for security vetting of Android applications.
We leveraged various program graphs(CFG, DDG,
FCG) from angr binary analysis tool and tracked the
data-flow between possible concurrent threads with
our new approach. As far as we know, this is the first
work in Android native code that considers threads
in the binary analysis. Our experiments show that
SANT can be used for security vetting of Android
applications using native codes.
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