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ABSTRACT

Reliable access control is a major challenge of cloud storage services. This
paper presents a cloud-based file-sharing architecture with ciphertext-policy
attribute-based encryption (CP-ABE) access control mechanism. In CP-ABE;,
the data owner can specify the ciphertext access structure, and if the user key
satisfies this access structure, the user can decrypt the ciphertext. The trusted
authority embeds the private key of each attribute in a so-called attribute
access polynomial and stores its coefficients publicly on the cloud. By means of
the access polynomial, each authorized user will be able to retrieve the private
key of the attribute by using her/his owned pre-shard key. In contrast, the data
owner encrypts the file with a randomly selected key, namely the cipher key.
The data owner encrypts the cipher key by CP-ABE scheme with the desired
policies. Further, the data owner can create a different polynomial called query
access polynomial for multi-keyword searching. Finally, the data owner places
the encrypted file along the encrypted cipher key and query access polynomial
in the cloud. The proposed scheme supports fast attribute revocation using
updating the corresponding access polynomial and re-encrypting the affected
cipher keys by the cloud server. Moreover, most of the calculations at the
decryption and searching phases are outsourced to the cloud server, thereby
allowing the lightweight nodes with limited resources to act as data users. Our
analysis shows that the proposed scheme is both secure and efficient.
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assumed that the cloud server is semi-honest-but-
curious [1]. That is, the cloud server executes the
protocol honestly, but at the same time, it is seeking
to discover the connections and leakage of information
and to analyze encrypted information based on the
uploaded data. Further, it may act selfishly to save its
computation and/or downloading bandwidth. Thus,
access control cannot be assigned to the cloud server,
mainly because it is assumed that it is a public and
untrusted element. The major solution for the security
of data sharing is to use encryption algorithms to
prevent unauthorized access to classified information.
However, data encryption has its challenges such as
key management and distribution, access revocation
and searching capability. The revocation of a key is
required when user access is expired. Another problem
is the ability to search in the encrypted data, which
is either impossible or difficult to implement. Each
algorithm that tries to resolve or mitigate the effect of
these problems, depending on the design, can increase
the system complexity at the data owner, the data
user or the cloud server side. In this paper, we discuss
the following set of issues:

e Efficient attribute revocation

e Multi-keyword searching among the encrypted
files

e Outsourcing of decryption and searching to the
cloud server

1.1 Related Work

Attribute-based encryption (ABE), which is a gener-
alization of an ID-based encryption scheme, provides
an access control mechanism at the algorithm level [2].
In cloud storage services, it can provide a basis for
applying either ethical or legal restrictions on access
to information such as an age verification policy. Fur-
ther, access granted based on attributes can improve
user anonymity and accordingly preserves the privacy
of the user at a higher level than the access granted
based on the identifier.

A major shortcoming of the primary schemes is
revocation which for ABE systems refers to either
user revocation or attribute revocation. The former
stands for a user who is completely removed from the
whole system. While the latter points to a user who
loses some attributes and thereby misses some part of
his/her access privileges, but he remains in the system
as an active entity. Thus, attribute-level revocation
provides more fine-grained and flexible access control
than user-level revocation. Throughout this paper,
we focus on attribute revocation. Wang et al. [3]
proposed the hierarchical attribute-based encryption
(HABE) model by combining a hierarchical identity-
based encryption (HIBE) system and a ciphertext-
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policy attribute-based encryption (CP-ABE) system.
It provides fine-grained access control and supports
a scalable attribute revocation scheme.

In [4], the authors proposed a CP-ABE access con-
trol mechanism with efficient attribute and user re-
vocation capability. It is achieved by dual encryption
with the benefits of attribute-based encryption and se-
lective group key distribution in each attribute group.
However, maintenance of the keys in this scheme is a
costly operation.

Zu et al. [5] proposed a CP-ABE scheme with fast
attribute revocation. The master key is randomly di-
vided into two parts: the secret key and the delegation
key, which are sent to the user and the cloud service
provider, respectively. The former is used in the at-
tribute revocation process while the latter is used by
the user to extract the secret key. The scheme has a
lower storage overhead and communication cost.

Zheng et al. [6] proposed a verifiable attribute-
based keyword search (VABKS). It enables a data user
to search over the encrypted data, outsource search
operations to the cloud, and verify whether the cloud
has faithfully executed the search operations. Fan et
al. [7] proposed an attribute-based encryption scheme
that supports multi-keyword searching. Further, it
allows multiple data owners to enhance access control
over encrypted files.

Li et al. [8] proposed an ABE scheme that sup-
ports multi-keyword searching. It allows encrypted
keywords to be inquired correctly by multiple users if
they have a series of attributes that satisfy the access
structure. Note that a common point of the schemes
in [6-8] is that none of them supports attribute re-
vocation.

Wang et al. [9] proposed an attribute-based en-
cryption scheme supporting multi-keyword search and
attribute revocation. Although the scheme supports
attribute revocation, it imposes computational bur-
den and communication overhead on both attribute
authority and key generation server (KGS) for updat-
ing the secret key of non-revoked users.

Outsourcing some parts of the user process to the
cloud server makes the computational overhead on
the user side simple and constant. It becomes an
important feature when major parts of the system
on the user side are resource-limited devices. Since
searching and decryption are the most frequent op-
erations on the user side, outsourcing some part of
decryption or searching to the cloud server has the
potential impact on the efficiency of the system.

The schemes in [6-9] support multi-keyword search-
ing on encrypted data by the cloud server. On the
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other side, the schemes in [10-12] support outsourc-
ing of decryption.

Liu et al. [10] proposed an attribute-based en-
cryption that supports decryption outsourcing and
attributes revocation. Xia et al. [11] proposed an
attribute-based access control scheme with attribute
revocation capability in cloud computing. The scheme
employs an additional entity, a so-called access con-
troller, which is responsible for assisting the attribute
authority to generate the user’s attributes. Further,
the access controller is involved in decryption by gen-
erating an access token. Using expiring the access
token, the scheme revokes an attribute from a spe-
cific user. Liu et al. [12] proposed an ABE scheme
supporting decryption outsourcing in addition to at-
tribute revocation and policy updating. Updating the
access policy for encrypted data is suitable when the
user’s attributes are frequently changed or the data
owner updates access control.

Miao et al. [13] proposed an ABE scheme for
personal health records which supports multi-keyword
searching in the multi-owner setting. Multi-owner
points to a system where encrypted data is shared
between multiple data owners.

Multi-authority is another feature in the ABE
scheme which is a proper solution for cloud storage
systems in which user attributes are issued by differ-
ent authorities. Both [12] and [14] support multiple
attribute authorities.

In addition to multi-authority, the scheme in [14]
supports user revocation and hidden policy. The hid-
den policy states that the scheme protects the privacy
of the access policy in addition to data confidential-
ity. Further, the authors in [15] proposed a CP-ABE
scheme supporting hidden policy in addition to fast
keyword search.

In [16], the authors presented a user collision avoid-
ance CP-ABE scheme with efficient attribute revoca-
tion. The attribute revocation is implemented using
the concept of an attribute group. When an attribute
is revoked from a user, the group manager updates
the secret keys of other users. The encryption policy
in ABE systems is either a ciphertext policy or a key
policy. The work in [17] proposed a key-policy ABE,
KP-ABE, which puts the access structure in the key
instead of ciphertext (CP-ABE). Further, it supports
policy updating.

In [18], the authors proposed PU-ABE, a variant
of CP-ABE supporting efficient access policy updat-
ing that captures attributes addition and revocation
to access policies. The ciphertexts received by the
end-user are constantly sized and independent of the
number of attributes used in the access policy. But,

the computational and communication overhead de-
pend on the number of attributes in the access policy.
Upon updating the access policy, the ciphertext is
re-encrypted by the data owner.

Xue et al. [19] proposed a CP-ABE access control
algorithm to prevent the Economic Denial of Sustain-
ability (EDOS) attacks in cloud storage wherein a
malicious attacker can download thousands of files.
In this scheme, users are first authenticated by the
cloud provider before sending any download request.
The authorized users confirm the resource consump-
tion for this download to the cloud provider.

1.2 Contribution of the Work

The contribution of our work can be summarized as:

e We embed the private key of each attribute in
an attribute access polynomial, thereby imple-
menting attribute revocation by updating the
access polynomial which is efficient in terms of
computational and communication overhead im-
posed on the attribute authority and the data
user.

e The proposed scheme supports multi-keyword
searching by embedding the desired keywords of
each file in a query access polynomial. The cloud
server efficiently performs the search by simple
hash and exponentiation operations instead of
bilinear pairing operations.

e Most of the computations are outsourced to the
cloud server, including decryption, searching
and re-encryption of the cipher keys, which
can greatly reduce the cost of decryption and
searching on the user side.

This article is organized as follows. In Section 2, the
required background is presented. In the Section 3,
the concrete construction of the proposed scheme is
explained. In Section 4, the security and performance
of our scheme are discussed. In Section 5, the proposed
scheme is compared with the current state-of-the-art
schemes. In the Section 6, we present the summary
and conclusion of the paper.

2 Preliminaries
2.1 Symbol Definition

Table 1 summarizes the notations and symbols used
in the proposed scheme. Let GGy and G; denote two
multiplicative cyclic groups with prime order p and
g are the generator of Gy and e : Gy X Gyg — Gy
is a bilinear mapping. In the two-way mapping, for
all u,v € Gy and a,b € Z,, we have : e(u®,v’)

e(u,v)® where e(g,g) # 1. Moreover, for any i
Z,, the Lagrange coefficient is defined as: A; 1, ()
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2.2 Access Structure and Access Tree

The access structure is used for the access policy. Let
Ay, As, ..., A, be a set of attributes. A monotone
access structure is a set A of non-empty subsets of
{A, Ay, ... ALY, de, A C 2404240} The sets
that belong to A are called authorized attribute sets,
and the ones that are not in A are called unautho-
rized attribute sets. It is useful to represent the ac-
cess structure in a tree denoted by I'. Each non-leaf
node of T acts as a threshold gate. Let N(x) and k,
respectively denote the number of children of node x
and its threshold value where 0 < k; < N(z). When
k; = 1, the threshold gate acts as an OR gate while
it becomes an AND gate when k, = N(z). Against,
each leaf node x of the access tree corresponds to an
attribute.

The parent of node z is denoted by parent(z). Fur-
ther, att(x) refers to the attribute that is associated
with the leaf node z in the tree. Moreover, there
is an ordering between the children of every node,
i.e., they are respectively numbered from 1 to N(z).
The index(z) returns the number associated with the
node x. Note that the index values are uniquely as-
signed to the children in the access structure for a
given key in an arbitrary manner.

2.3 Key Distribution Based on Access
Polynomial

Access polynomials were first introduced in [4] for
secure intra-group communication. The polynomial
allows group members to recover the encryption key.
In summary, the key management includes the fol-
lowing steps:

e Initially, the group controller sends the pre-
shared keys K1, Ks, ..., K, respectively to the
1th 2th . nt" group member via a secure
channel.

e The controller then generates the following poly-
nomial using pre-shared keys and the master
key K. Then, he/she computes the coefficients
(ag,a1,...,an—1) and broadcasts them to all of
the group members:

flz) =Ko+ H(x —K;) =

ap+ a1z + -+ ap_12" "+ 2" (1)

e Upon receiving the polynomial coefficients, the
i;p, member of group can retrieve the master
key by Ko = f(K;).

Although the authors claimed that the scheme has
forward and backward secrecy, it lacks both of them.
The main weaknesses are: 1) The member who has
left the group, can discover the new key of the group
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Table 1. Symbols Definition

Symbols Description

n Number of data users

m Number of attributes
SK Secret Key

TK Could decryption key
MSK Master secret key

PK Public key of the scheme

Hash function

r Access Structure

ck Cipher-key which is used for file encryption

rq Query-key which is used in query access polynomial
U; The identifier of the ith user

L Set of all attributes

K; The pre-shared key of the ith user

a; jth attribute (5 < m)

v;j Private key of the attribute a;

PK; Public key of the attribute a;

e Bilinear map

Go Bilinear group

P Big prime number

g Generator of group Go

Zyp A finite field of numbers {0,1,...,p — 1}

T A random attribute which is used in attribute access polynomial ¢

I (z, r;) Attribute access polynomial for jth attribute
g(z,rq) Query access polynomial

N; Number of users having attribute j

and 2) The new member can retrieve the previous
key of the group [20]. Another vulnerability is raised
when a member who can factorize the polynomial
f(x) — f(K;), can retrieve the pre-shared key of the
other users and thus can compute the master key
after leaving the group. An effective countermeasure
scheme is to use a type of hash-based polynomial
[21]. In this paper, we use a version of a hash-based
polynomial along with a random number as a seed.
Precisely, our access polynomial is defined as:

f(x) ZKCJFH(QJ—H(KN")) (2)

Where H is a one-way cryptographic hash function
and r is a random value that is forcefully updated
upon changing the polynomial. Further, to act in
a finite group, all multiplications and additions are
performed modulo a prime number.
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Figure 1. The overall architecture

3 Proposed Scheme

In this section, we describe the overall framework of
our scheme and the construction of the solution.

3.1 A. The System Model

The overall architecture of the proposed scheme,
shown in Figure 1, consists of the following compo-
nents:

e The data owner encrypts a file and shares it by
putting it on cloud storage.

e The data user who searches through the en-
crypted files by query keywords, selects one of
them, downloads and decrypts it.

e The cloud server where the data owner puts the
encrypted files. Further, most of the computa-
tion in decryption and searching is outsourced
to the cloud server. Moreover, it performs re-
encryption of the cipher key in the case of at-
tribute revocation.

e The trusted authority is responsible for creat-
ing keys corresponding to each attribute and
distributing them among the users. Further, it
performs attribute revocation.

We assume that each data user has a pre-shared key
with the trusted authority. It means that the trusted
authority, through a secure channel, negotiates and
establishes keys K, K>, ..., K, to the first, second,
..., and n'" data user, respectively. The construction
consists of the following phases:

Initialization

Secret key generation
Encryption
Pre-computation
Searching
Decryption

Attribute revocation

3.2 Initialization Phase

The initialization algorithm gets the maximum num-
ber of attributes in the system, namely |L|, as input.

Then it chooses a bilinear group Gg of prime order p
with generator g. Moreover, two elements «, 5 € Z,
are randomly selected. Then, for each attribute a;,
the trusted authority selects a random value v; € Z,
as the private key of the attribute. The public key of
attribute a;, denoted by PKj, is computed as:

PKj=g% 3)

For each attribute public key, ver; is an integer vari-
able that represents the version of the attribute. The
version is initialized to 1 and incremented by one unit
upon the generation of new private/public key pairs
as the result of attribute revocation. The public key
and master secret key of the scheme are defined as:

PK = {Go,g,h = g e(9,9)",

(PKy,very), (PKa,vers),...,(PKy,very)} (4)
MSK:{B?gaavvaw-wvm} (5)
The public key is put on the cloud server as publicly
accessible data. In addition to the public key, the
trusted authority generates an attribute polynomial
for each attribute. It is worth mentioning that, at the
beginning of the process, the polynomials are null
since no attributes are yet assigned to users. Actually,
by assigning a specific attribute to some users during
the secret key generation phase, its access polynomial

is formed and grew up.

3.3 Secret Key Generation Phase

KeyGen(U;,S,MSK) — SK The algorithm which
is run by the trusted authority receives the identifier
of the user, the set of attributes S requested by the
user and the master secret key MSK as input. In
this phase two actions are taken place: 1) Generation
of the secret key and 2) Updating the corresponding
attribute access polynomials. For the first time that a
user requests, the former action is done. The trusted
authority randomly generates a pair of r and z € Z,,
which are unique for each system user and computes
D as follows: e

D=g7 (6)
Then, the trusted authority sends the secret key
SK = (z,D) to the system user. For the succeeding
requests of this user, the former action is ignored.
In our scheme, the trusted authority does not send
any attribute key directly to the user. Indeed, the
attribute keys are embedded in the attribute ac-
cess polynomial which is put on the cloud server.
For each user with distinct rrand z private part of

attribute a; is defined as g*i*. Note that, among
the parameters of this term, r» and v; are unknown
to the user and only z which is sent to the user is
known to him/her. This feature makes the system
resistant to collusion attacks by prohibiting the us-
age of another user’s attribute. Now, for the latter
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action, the trusted authority creates polynomial
coefficients of each requested attribute in S. For
each attribute a; € S,N; is incremented by one.
Further, assume that the pre-shared key of the cur-
rent user and the users who have previously gotten
aj are respectively denoted by (K1, Ka,...,Ky;).

Moreover, suppose the value of gvTr'z for these
users are respectively be as y1,y2,...,yn;. The
access polynomial for attribute a; is defined
as Lagrange interpolation for the set of points
(H(Klvrj)7y1)7 (H(KQ’rj)’yQ)’ R (H(KNj’rj)7yNj)'
It is done in two stages. First, the polynomial basis
L;(z) for the user U; is defined as:

Lite)= ]

1<t<Nj i

X —H(Kt,’/‘j)
H(K;,rj) — H(Ky, 1))

(mod p)

(7)

Finally, the attribute access polynomial for these
users through the corresponding values y1,y2, . .., yn;
is defined by the linear combination of basis polyno-
mials as:

) =
y1L1(x) + yaLo(x) + - - + yn, L, (x)(mod p) =
S0+ 812 + 8227 + -+ + sy, 12" " (mod p)  (8)

Where H is a one-way hash function and r; € Z,
is a random value. Note that r; acts as a salt to
blind the factor of a single user in different at-
tributes. Further, all the computations are done
in modulo p. Thus, the attribute polynomial f7 is
completely identified by polynomial coefficients sg
to sn;. Each polynomial f7 denoted by 3-tuples
(aj,ver;, (so,81,82,...,5N;-1,7;)) is stored publicly
accessible in the cloud storage in addition to the
public key of the system. For the first time that
accesses polynomial is created by only a single user,
it becomes a constant polynomial as f7(z,r;) = g"i*.
It reveals the secret key of the target user. To fix
this problem, we can initialize the access polynomial
be a set of dummy users, e.g., five users to avoid
finding or guessing the secret key of the intended
users. After receiving SK, the user U; is capable of
recovering the private key of each granted attribute
which is required for the decryption/search phases.
Assume that the user requests the attribute a;. After
reception of SK = (z,D), he/she downloads the
attribute access polynomial f7 from the cloud and
does the following calculations:

D; = fI(H(Ky,ry)) = g7 (modp)  (9)

It means that f7 is computed at the point
H(K;, ;). Similarly, the user can obtain a unique D;
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for each own attribute a; € S. Now, the user creates
Transform key TK as:

TK = {g®*"/8 (D;,ver;) : Ya; € S} (10)

We will use TK in both the decryption and search
phases.

3.4 Encryption Phase

In this phase, the instructions that the data owner
must follow to encrypt her/his file M with a specific
policy are described. The process includes the follow-
ing steps:

e The data owner receives the latest version of
the system public key from the cloud server.

e The data owner randomly generates a pair of
keys ck,r, € Z,. The former is a cipher key
used for encryption of the content of M. The
latter is query-key which is used to encrypt the
keywords extracted from the M.

e The file M is encrypted with ck and a symmetric
encryption algorithm like AES. The encrypted
file is denoted by E.r(M).

The data owner first selects a polynomial
g, for each node z in the access tree I' from
the root and continues in a top-down manner
until reaching to leaf nodes. For each node x
in T, the degree of polynomial ¢, is k, — 1.
Starting from the root R, the algorithm selects
arandom s € Z, and sets ¢r(0) = s and then it
randomly chooses kr — 1 other points of gr to
completely define it. For any node x € T, it sets
42(0) = Gparent(z) (index(x)) and selects k, — 1
other points randomly to completely define g,.
In T, let X be the set of attributes associated
with the leaf nodes. The algorithm creates the
ciphertext C'T as:

PN

CT = (C = ck.e(g,9)*,C = h*,
0; = PK# :va; = att(z) € X) (11)

e The data owner determines a set of keywords as-
sociated with the content of the file M. Suppose
W = wy,ws,...,w, denotes the set of chosen
keywords. The data owner generates the query
access polynomial of M using keywords in W
and query-key rg, as:

Q(r.rg)=(a—H(w1,ry)) (2 —H(wz.rq))- (2= H(wa.r))
(12)

=to+tizt+taa oty 12"

Note that the degree of the polynomial is identified
by the number of keywords in W. This step is op-
tional and can be bypassed if the data owner de-
cides to disable multi-keyword searching onAthe en-

crypted file. Finally, the data owner appends (R) and
(to,t1,--.,tu—1) to CT as the following five-tuple:
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PN

CT = (C =ck.e(g,9)*,C=h%*C; = PKJ{II(O) .
Va; = att(z) € X, Index = (to, t1,...,tu-1)) (13)

Now, the data owner stores CT along with E., (M)
in the cloud.

3.5 Pre-Computation Phase
Transform(CT, TK) — TQ or null

This is a prerequisite phase for both the search-
ing and decryption phases. During this phase, partial
decryption of both cipher-key and query-key is per-
formed by the cloud server. It consists of two steps:
1) Updating the transform key which is performed
by the data user and 2) Partial decryption which is
done by the cloud server.

3.5.1 Updating Transform Key By The Data
User

This step forces the data user to get the latest version
of his/her attributes. For each attribute, the data user
checks the current version of his/her local D; with
the version of a; on the cloud. If the cloud server has
a newer version, as the result of attribute revocation,
the data user downloads new f7 from the cloud and
then updates D; according to Equation 9. Finally,
TK, along with CT is sent to the cloud server.

3.5.2 Partial Decryption By The Cloud
Server

The cloud server gets the ciphertext C'I" and D; of
user attributes, from the data user. Let SK’ denote
the set of D; of data user attributes. The cloud server
performs the partial decryption of ciphertext as the
following operations: The decryption process is de-
fined by DecryptNode(CT,SK', z), a recursive algo-
rithm with CT, SK’ and node z of T" as inputs. This
algorithm is similar to [10]. For a leaf node z, assume
a; = att(x). If a; ¢ S then decryption is failed and
we set DecryptNode(CT,SK',xz) = null. If a; € S
then, it returns:

e(D;j, Cy) = e(g"/ i) guit=(0)) = ¢(g, g)r0=(0)/=
(14)

For a non-leaf node x, we call DecryptNode for each
child y of x. Suppose S, denotes a set of child nodes
that returns the non-null value for DecryptNode. If
k; < |Sz|, the decryption at node z is failed and it
returns null. It means that the user attributes at node
x are not sufficient since the number of nodes that
return a non-null value is less than k., the threshold
of node z. Otherwise, we can continue to decrypt.
Let Si, denotes a desired subset of S, with k, nodes.
The decryption at the node z can be done as:

DecryptNode(CT,SK', )

= H DecryptNode(CT, SK', )~ (0)
YESk,

= I (elg.gyro@/z)2m=t
YESk,

= H (e(g, g)dvarentiw (index(y))/2)
YESk,

- H (e(g, g)rqw(j)/Z)Aj,T,,, (0)
€Sk,

Aj1, (0)

— e(g,g)rq’(o)/z (15)

Where j = index(y) and T,, = {index(y) : y € Sk, }.
We call DecryptNode at the root of the access struc-
ture. If the SK’ satisfies the required attributes of T,
the decryption algorithm is taken place. It leads to
the following value :

A = DecryptNode(CT,TK', R) = e(g,9)"*/* (16)

Further, the cloud server computes B and (Q respec-
tively as:

C ck.e(g,g)** ck
e(C.D) ~ gt elg g D
R rq.e(g,9)** Tq (18)

C=UCD) T gt ) el
Finally, the cloud server returns TQ = {A, B, Q} to
the data user. Otherwise, if SK’ does not satisfy the
required attributes of I', the decryption is failed and
the algorithm returns null.

3.6 Searching Phase

Search(wy,wsa, ..., wy) = (b1,ba, ..., by)

This phase enables the data user to search multi-
ple keywords through the encrypted file. The result
of the search is an array of boolean values wherein
each element respectively identifies the occurrences
of the intended keyword. Using the T'Q) received in
the pre-computation phase, the data user is capable
of computing query-key r, as:

Q Az — T(I'(e(gag)TS/Z)Z
' e(g,9)s

Let, Wo = {wi,ws,...,w,} denotes the set of
query keywords. The data user computes WD =
{H(wi,rq), H(wa,7q),...,H(wy,rq)} from Wg by
rq, and sends it to the cloud server. The cloud
server regenerates the query access polynomial of
the intended file by the coefficients of tg,t1,...,t, as
follows:

Q(z) =to + 1z + taa® + -+ ty_12"* " + 2 (20)

1S¢0ured)
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Figure 2. Searching Phase

Then, for each received value it checks the following
condition:

Q(H (wi,rq)) == (21)

If the condition is met, the intended keyword ex-
ists in the file M. The cloud server sends an array
of Boolean values as{by, by, ...,b,} to the data user
where in b; indicates the existence of w; in the en-
crypted file. The details of the phase are shown in Fig-
ure 2. Since the algorithm takes the hash of each key-
word concatenated by the random value 7y, the cloud
server is not able to get any information on query
keywords since r, is unknown to the cloud server.

3.7 Decryption Phase

This phase enables a data user to decrypt an en-
crypted file if his/her attributes meet the access pol-
icy of the intended file. The complete process is shown
in Figure 3. Like the searching phase, the data user
must first perform the pre-computation phase to ob-
tain T'Q) from the cloud server. If the access structure
T is satisfied by the user’s attributes, partial decryp-
tion of CT is successfully done and the cloud server
returns TQ, otherwise, it returns null. Assume the
cloud server returns T'Q), the data user is now capable
of recovering cipher-key ck by:

B — klelg:9)?)?
e(g,9)"

Now, the data user downloads the encrypted file
E (M) and simply decrypts it by ck to retrieve the
plain file M. The searching phase enables the user to
initially search for desired keywords in the encrypted
file. If the result meets the user’s request, then he/she
runs the decryption phase to download and decrypt
the target file. This makes the data user avoid unnec-
essary decryptions.

=ck (22)

3.8 Attribute Revocation Phase

This algorithm takes an attribute and a set of users
as input. It revokes a; from the users in . After a re-
vocation, none of the users in (2 is capable of decrypt-
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Figure 3. Decryption Phase

ing by a;. Attribute revocation is one of the most
challenging actions in the attribute-based encryption
scheme. Our scheme implements attribute revocation
efficiently in terms of the data owner computations,
the messages sent between parties and re-encryption
imposed on the cloud server. The attribute revocation
consists of the following three steps:

e Generating new attribute by the trusted author-
ity

e Updating attribute access polynomial by the
trusted authority

e Re-encryption of cipher keys by the cloud server

3.8.1 Generating New Attribute
Private/Public Key

Suppose we want to revoke the attribute a;. Further,
assume that the private key of a; is v; and its version
equals ver;. Now, the trusted authority randomly
selects a v} € Z, (v # v;) as a new private key. Let
U; denote the modular division of the new key to the
previous key as:

(23)

The trusted authority sends U; to the cloud server.
The cloud server updates the public key and the
version of attribute a; as:

* U, vt
PK; = PK]’ = ¢"

ver; =

J ver; + 1

3.8.2 Updating Attribute Access Polynomial

Assume that p represents the set of users for whom
the attribute has not been revoked. Thus, the new
value of N will be equal to the size of y, i.e., N =
|¢£]- The trusted authority must enable these users to
update the corresponding private key of attribute a;.
This is simply done by updating the attribute access
polynomial of a;. Precisely, the new polynomial is
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reconstructed by pre-shared keys of the users in p
according to Equation 7 and Equation 8:

N,

1

F@,ry™) = s+ sia + s3a® s e
(26)

Where r;* € Z, is a new random value to protect
the system against factorization attacks. Finally, the
trusted authority sends (a}, very, (s, s7, - - -
to the cloud server to update the attribute access
polynomial. By this polynomial, the users in p are
able to retrieve the private part of the new attribute,
Dj, according to Equation 9. Against, each user for
whom the attribute is revoked, is unable to compute
D; since her/his pre-shared key is excluded from
the new attribute access polynomial. Unlike [10], in
which attribute revocation imposes a highly inten-
sive messaging overhead to the trusted authority to
inform new attributes to the non-revoked users, it
is enough in our scheme that the trusted authority
updates the attribute access polynomial on the cloud
server. On the other hand, when a non-revoked user
becomes online, he/she is enforced to update her/his
transform key T'K by running before any decryption
or searching. It means that the attribute updating is
done on demand and initiated by the user.

3.8.3 Re-Encryption of the Cipher-Keys

This step which is done by the cloud server completes
the puzzle of attribute revocation. Re-encryption of
cipher keys prohibits the revoked user from recov-
ering the cipher keys by the old attributes. Upon
receiving U; from the trusted authority, the cloud
server updates the ciphertexts associated with the re-
voked attribute a;. The re-encryption process can be
completely done using U;. The cloud server searches
for the ciphertext which is encrypted by attribute
a;. Suppose Cg, denotes a leaf node contains aj, the
cloud server updates these terms by exponentiating
with Uj. Since:

* : v v} /vj Vv a
Ca, = (Ca,)P = (g7 =) = gt (27)

The whole process for a ciphertext C'T is formalized
as:

CT* ={C*=C,R*=R,C"=C,
Vay, = a;: Ch = (Co,)V Vag #a;: Ci. = Cq,}
(28)

Note that the rest terms in which a, # a; remain
unchanged. Re-encryption of cipher keys makes the
data owners get rid of file re-encryption which could
be a very costly operation. It is worth mentioning that
the server only knows U; and accordingly, neither v}
nor v; is known to the cloud server.

,37\[;,1,7";-())

Algorithm 1. Computing the coefficients of access polynomial

GETPOLYNOMIALCOEFFICENTS (K1, Ko, ..., Ky, 1)
1 ap«1
2 a1 « —H(Ky,r) (mod p)
3 a«<0for2<i<n
4 fori+2ton
5 do
6 B« H(K;,r) (mod p)
7 a; +— 1
8 for j < i—1 downto 1
9 do
10 o < aj_1 — PBaj_1 (mod p)
11 ap  —Pay (mod p)

12 return (ap,a1,...,qy)
3.9 Computations Related to Access
Polynomial

The computation of access polynomial coefficients is
a major operation in both secret key generation and
attribute revocation phases for the trusted authority
and keywords encryption for data user. Thus, its
effective implementation has a crucial impact on the
performance of the scheme and accordingly, on the
system’s scalability. Algorithm 1 briefly describes the
computation of access polynomial coefficients. It is a
primary operation for polynomial basis computation
as well as computing query access polynomial during
the encryption phase. It acts incrementally. Initially,
the result is initialized by the (x — h(K7,7)). At the
i*" iteration of the outer loop, the current polynomial
is multiplied by the binomial (z — H(K;,r)). Thus,
we must update the coefficients as:

F(z) = (g + 1z + -+ o127 Y (z — h(K;, 7))
= 70[0H(Ki7’l") + (Olo — OélH(Ki, 7’))1‘ + -+
(OZZ‘,Q — Olile(Ki, T)).’Ei71 + Oliflil'i (29)

This is done in the inner loop by index j. Note that
all of the operations are done modulo p. At the end,
the algorithm returns the n-tuple («ag,...,a,-1) as
the final coefficients.

4 Security and Efficiency Analysis

4.1 Collusion Resistance

Our scheme is resistant to collusion attack. Suppose
user U; and Us respectively have attribute a; and a;/
and they want to collude and create a user with both
a; and a;. The former has ¢"/(i%) as his own secret
key of a; while the latter has gT// (vj=') as secret key of
ajr. Note that each user has its r and 2z and the value
of » and v; are unknown to the user. The successful
collusion needs to generate g™/ (“"*) from ¢"/(*i#) and
ng/(”;Z,). But, this is impossible. Since U; does not
know the value of r and v; and the same thing is
true about r” and v for U,. Indeed, the secret key is
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blinded with a distinct random value that is uniquely
assigned to each user and is unknown to him/her.

4.2 Forward Secrecy

Forward secrecy in our scheme means that a user
whose attributes are revoked is unable to decrypt the
ciphertext that is encrypted by new attributes. The
proposed scheme has a secure attribute revocation
since the new private key of the attribute is embedded
in a new access polynomial and further, all associated
cipher keys are re-encrypted using the new private
key.

Suppose an insider attacker has access to the se-
cret key of all users, i.e., g’/ (%) for users who have
attribute a;. Actually, this is not a realistic assump-
tion. But, we want to show that even this attacker
with enough computational power and time is unable
to recover a new attribute private key after revoca-
tion. Suppose that the attacker is able to factorize
iz, ry) — g"/(#%3) for each secret key and obtain the
primitive factors © — H(K;,r;) for each U;. Due to
the exclusion of its pre-shared key from the new ac-
cess polynomial, the attacker’s goal is to retrieve the
new g"/(*v3) by using any H (K, r;) of a non-revoked
user still included in the new polynomial. But, when
the attribute is revoked, r; is replaced by 7}, and the
new access polynomial is built by H (Ki,r}‘). Thus,
the attacker faces the following problems:

e Computing K; from H(K;,r;) and r;, and then
computing H (K;,77)
e Computing H(Kj;,r}) directly from H(K;,1;),
r and r} without revealing K;
The first option yields hash reversing, which contra-
dicts the one-wayness of cryptographic hash functions.
For the second, we conjecture that it is as hard as the
first one. Therefore, a successful attack on the access
polynomial such as [20] is impossible. It is worth men-
tioning that the state-of-the-art factoring polynomial
with rational coefficient is not so efficient. The first
polynomial-time algorithm for factoring polynomials
over finite fields was proposed in [22]. Its running
time is O(n'? + n%(log| f|)®) where n is the degree of
polynomial and |f| for f(z) = ap + a1z + - -+ + apa™
is defined as:

fl=(ad +af + - +a2)"/? (30)

However, even assuming the feasibility of accessing
polynomial factoring, the revoked user is incapable
of obtaining the private key of the new attribute.
More precisely, the forward secrecy of our scheme is
based on the one-wayness of the cryptographic hash
function.

1S¢0ured)

4.3 Statistical Analysis

Since we assume the cloud server is semi-honest-but-
curious, there is a potential for the cloud server to
investigate the query keywords that are requested by
the data users over a long period of time. But, the
proposed scheme is secure against statistical analysis.
It basically originated from the fact that we encrypt
the keywords of the file into query access polynomials.
Because the data user sends its query in terms of
H(w,ry) per each keyword w, the cloud server cannot
guess or even obtain a verifiable text for w since
rq is only known to the users with corresponding
attributes. Further, since 7, is unique per encrypted
file, the query for a single word w in two different files
leads to distinct terms H(w,r,) and H(w,r;). Thus,
the cloud server could not learn about the common
query pattern for different files. Therefore, statistical
analysis of the user queries is not feasible.

4.4 Complexity of Updating Access
Polynomial

Updating the access polynomial is one of the most
time-consuming operations for the trusted authority
during secret key generation and attribute revocation.
Suppose n denotes the number of users who incorpo-
rate in access polynomial for attribute a;. For each
user, a basis polynomial with degree n—1 is computed
according to Algorithm 1. Since the number of multi-
plications/additions in iteration ¢ of this algorithm is
equal to ¢ — 1, the whole number of modular multi-
plications/additions becomes 1 +2 4 -+ (n — 2) =
1(n—1)(n —2). As the access polynomial consists of
n basis polynomial, the process for Equation 7 con-
sumes n{ % (n—1)(n—2)+n} operations. Moreover, the
Lagrange interpolation according to Equation 8 takes
n? multiplications/additions. Thus the whole process
takes n{3(n—1)(n—2)+n}+n? = L(n® —n? 4+ 2n)
operations. Further, the number of Hash operations is
equal to n. In summary, the complexity of updating
the access polynomial is O(n?).

5 Evaluations

This section presents an experimental analysis of
the computational overhead of the proposed scheme.
Then, we make a comparison of our scheme with
some well-known architectures in terms of supported
capabilities.

5.1 Evaluation of Access Polynomial
Coefficients

The only bottleneck that can be raised in the proposed
scheme is due to the updating access polynomial when
the number of users grows up. Although this operation
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Figure 4. Runtime for computation of the access polynomial
coefficients (On Intel core i7 with 4G bytes RAM)

is O (n2), it is possible to provide good scalability by
selecting an appropriate prime for the operations in
GF(p). The choice of p is dependent on the symmetric
algorithm used for file encryption. Since AES which is
used in our scheme supports 128/192/256-bit keys, we
consider 128, 192 and 256-bit prime numbers which
have a fast reduction algorithm. They are respectively
selected as:

Piog=2128_297_1 (31)
Prop=2192_964_1 (32)
Pagg=2256 _9224 4 9192 996 3 (33)

Note that P192 and P256 are part of the proposed
prime numbers for NIST ECC in GF(p). A prime
with a fast reduction algorithm significantly speeds
up the modular multiplications and thus efficiently
accelerates the computations of access polynomials.
We use SHA-256 for the hash function in access poly-
nomials when P256 is used. For Pjog and Pigs, we use
the least significant 128 and 192 bits of the hash out-
put, respectively. We focus on the implementation of
Algorithm 1 which is O (nQ) and run by the trusted
authority in both secret key generation and attribute
revocation phases.

The result of the implementation is shown in Fig-
ure 4. The program written in C++ is compiled with
Visual C++. It runs on a laptop PC with Intel Core
i7 with 4GB of RAM. We see that a trusted authority
with a regular system setting can run the algorithm
for 1000 users on GF(Pss6) in 77 seconds. Further,
the running time for GF(Pi2s) and GF(Pjg2) are re-
spectively equal to 20.5 and 43 seconds. It is a trade-
off between security, the size of the prime and system
scalability. We can select the optimum point based on
the number of users that the system needs to support.

5.2 Comparison to Prior Work

This section provides an analysis and makes a com-
parison of the proposed scheme with prior work in
terms of characteristics and efficiency. In Table 2, our

scheme is briefly compared with the previous well-
known work. The criteria for comparison are:

Attribute revocation
Decryption outsourcing
Multi-keyword searching
Search outsourcing

Multiple attribute authorities
Multi-owner setting

Policy update

Hidden Policy

Verification of search result done by the cloud
server

Constant-size ciphertext

e Encryption policy

Attribute revocation is a major challenge in most
of the ABE schemes. The schemes in [6-8, 13, 15,
17, 19, 23, 27] do not support attribute revocation.
Further, in some schemes that support attribute re-
vocation, it puts a great burden of computational
and communication overhead on the data owner and
the trusted authority. For example, in [9-12], the
trusted authority is forced to communicate with all
of the users to send the updated private key upon at-
tribute revocation. We efficiently reduce the commu-
nication overhead by updating the access polynomial
of each attribute on the cloud server. Each user up-
dates his/her private keys on demand just whenever it
is needed by downloading the polynomial coefficients
from the cloud server.

The computational overhead on the user side can
be mitigated by outsourcing the decryption process
to either a cloud or a proxy server. This is supported
in our scheme as well as in [10-12, 16, 23, 24, 26].
The next feature is necessary to enable data users to
quickly find the required files from a vast amount of
encrypted data. Further, it is amplified in terms of
efficiency by outsourcing the multi-keyword search to
the cloud/proxy server. It enables the data users to
intelligently select the files for decryption and thereby
reducing the overall computational and communica-
tion overhead of the scheme. We can see that the pro-
posed scheme supports both multi-keyword searching
and outsourcing of search operations, as well as the
work in [6-9, 13, 15, 23, 27]. In all of them, the type of
search is exactly match, which means the query items
must be exactly included in the text without any pre-
fix or suffix. We can see that the proposed scheme
is the only scheme that simultaneously supports the
first four features mentioned above, i.e., attribute
revocation, decryption outsourcing, multi-keyword
searching and outsourcing of search operation.

However, some features are not supported in our
scheme. Among them, multi-authority refers to an
ABE scheme that is appropriate for access control

1S¢0ured)




146

ABE with efficient AR, DO, and MKS in Cloud Storage — Palanki, and Shafieinejad

Table 2. Comparison with other schemes (CP: Ciphertext-Policy KP: Key-Policy)

Feature ours [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [23] [24] [25] [26] [27] [28]
Attribute revocation vV Vv X X X Vo v v X Y X X X v v Vv X
Decryption outsourcing v X X X X X v Vv X X X v X X v v X X v X

Multi-keyword searching v x v v v v X X

Search outsourcing v O x v v v v X X
Multi-authority X X X X X X X X
Multi-owner X X X v X X X X
Policy update X X X X X X X X
Hidden Policy X X X X X X X X
Verification of Search X X v v X X X X

Constant-size ciphertext X X X X X X X X

Encryption policy

X

X

X

CP CPCPCPCPCP CP CP CP

v X v X X X v X X X v v

X v v X X X X X v X X X
X X X X X X X X X X v X
X X X X X X X v v v v X

CpP CP CP CP KP CP CP CP CP CP CP CP

in the cloud storage system where the users hold
attributes issued by different authorities. The schemes
in [12, 14, 28] support multiple attribute authority
as well as attribute revocation.

Further, multi-owner ABE is a scheme, in which
multiple data owners are allowed to share their data
with a flexible access policy and thereby, authorized
data users can issue search queries according to
their corresponding attributes. It is supported by
the schemes proposed in [7, 13]. Policy updating is
another feature that allows data owners to flexibly
adjust the access control policy over their encrypted
data. A trivial solution is to make the data owner
respectively retrieve the ciphertext from the cloud,
decrypt it, re-encrypt the plaintext under a new ac-
cess policy, and finally send back the new ciphertext
to the cloud server. This method is not efficient due
to the high communication overhead imposed on
network bandwidth as well as the high computation
on data owners. Policy updating is supported by the
schemes in [12, 17, 18, 28]. The main idea is that the
data owner generates new keys and sends them to
the cloud server. Then, the cloud server updates the
ciphertext using new keys. Hidden policy refers to
a CP-ABE scheme that preserve the privacy of the
access structure in the ciphertext. The results show
that the schemes [14, 15, 25] support hidden policy.

The schemes in [6, 7, 27], in addition to outsourc-
ing the search operations, allow the data user to verify
whether the cloud server has faithfully executed the
search operations. In [7], it is achieved by generat-
ing an authentication tag by the data owner for each
encrypted file and a challenge-response protocol be-
tween the data user and the cloud server. The schemes
in [24-27] have an odd feature named constant-size
ciphertext. It means that against the other schemes
in which the ciphertext length is growing up by the

ISeﬂure@

number of attributes involved in the encryption, these
schemes have a fixed-length ciphertext and thereby
reducing the storage cost.

Finally, the encryption policy for the ABE scheme
is either ciphertext-policy or key-policy. We can see
that [17] is the only work that uses key-policy, KP-
ABE, which puts the access structure in the key
instead of ciphertext (CP-ABE). Table 3 and Table 4
respectively compare the communication overhead
and computational complexity of our scheme with
the schemes in [9, 10, 12, 23, 26-28]. The complexity
of each algorithm is measured based on the required
primitive operations. We mainly focus on four kinds
of primitive operations: exponential /multiplication on
Gy, exponential /multiplication on Gy, bilinear pairing
and hash operation.

We can see that the encryption which is done by
the data owner has about the same cost for all the
schemes. Precisely, regarding the group operations
in Gy, our scheme has the same complexity as the
schemes in [10, 12, 26-28] and lower complexity than
the schemes in [9, 23].

For keyword encryption, existing only in the
schemes supporting multi-keyword search, our scheme
has more complexity than [9, 23] in terms of group
operations in Gg since we embed the keywords in
a query access polynomial. In contrast, our scheme
acts more efficient than [9, 23, 27, 28] in searching
phase due to the following reasons:

e In our scheme, search is accomplished only by
multiplications in group Gy while in [9], it
requires bilinear pairing operations in addition
to group operation.

e In our scheme, the number of group operations
is equal to while it is equal to in [9] since the
cloud server is to arbitrarily select Ng compo-




November 2022, Volume 14, Number 3 (pp. 135-149)

nents from Ny words. Note that () denotes
the combination, the number of choices m ele-
ments from a set of n elements.

Moreover, on the user side, our scheme is simpler
than [9, 23, 27, 28]. Because the data user in [9] must
perform 3Ng group operations to generate search to-
ken in addition to Ng hash operations necessary in
our scheme. Further, the schemes in [23, 27, 28] need
to perform at least a single bilinear pairing operation
per each query keyword at the user side. The decryp-
tion operation on the user side, for the schemes which
do not support outsourcing, is dependent on the num-
ber of attributes that appeared in ciphertext [9, 28].
For example, in [9], the decryption is accomplished by
2k + 1 group operations which k denotes the number
of attributes owned by the data user. In contrast, for
our scheme along with [10, 12, 23, 26] which supports
outsourcing, decryption at the user side is carried
out by a constant number of group operations. The
main part of decryption is done by the cloud server
in the transform/pre-computation phase. It includes
both group and bilinear mapping operations. The
number of operations is dependent on the number of
attributes either appearing in ciphertext or owned
by the data user. The last two operations, update
key and ciphertext update are required for attribute
revocations. The latter which is done by the cloud
server is the same for all the schemes since it requires
exponentiation for each ciphertext consisting of the
revoked attribute. While the former, which is done
by the attribute authority, is simply accomplished by
only one exponentiation in literature [9, 10, 12]. But,
in our scheme, it triggers an update event for access
polynomial of the revoked attribute which imposes

1 .
§NJ‘3 -Gy + N;Cpy on the attribute authority.

However, our scheme outperforms other schemes
in terms of communication overhead triggered by
attribute revocation. Table 3 shows the number of
required messages during the update key phase of
attribute revocation. The attribute authority in [9,
10] must send new keys to all non-revoked users,
i.e., N;. While in our scheme, it is sufficient for the
attribute authority to send only a single message
containing the attribute access polynomial to the
cloud server. The data users are gradually updating
their keys on demands when they are going to run
the decryption or searching phase, i.e., getting the
latest version of attribute access polynomials.

It is worth noting that users are not always on-
line in practical applications. In previous revocation
schemes such as [3-5, 9-12], the attribute authority
is responsible for updating and sending new attribute
keys to non-revoked data users. It leads to a more
complex attribute authority that needs continuous

Table 3. Communication Overhead

Operation  [9] [10] Our Scheme

Key-Update N; Nj 1

checking of whether a data user is online to establish
a secure channel via session key agreement protocol
and thereby transmit the new keys to him/her.

6 Conclusion

This paper presented a CP-ABE scheme that sup-
ports attribute revocation and decryption outsourc-
ing as well as the ability to multi-keyword searching
and outsourcing of search operations. The idea be-
hind both attribute revocation and multi-keyword
searching is the use of access polynomials. The re-
sults showed that the scheme outperforms previous
schemes in terms of communication overheads im-
posed on the attribute authority and field computa-
tions imposed on data users.
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