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A B S T R A C T

With the widespread use of Android smartphones, the Android platform has

become an attractive target for cybersecurity attackers and malware authors.

Meanwhile, the growing emergence of zero-day malware has long been a major

concern for cybersecurity researchers. This is because malware that has not

been seen before often exhibits new or unknown behaviors, and there is no

documented defense against it. In recent years, deep learning has become

the dominant machine learning technique for malware detection and could

achieve outstanding achievements. Currently, most deep malware detection

techniques are supervised in nature and require training on large datasets of

benign and malicious samples. However, supervised techniques usually do not

perform well against zero-day malware. Semi-supervised and unsupervised

deep malware detection techniques have more potential to detect previously

unseen malware. In this paper, we present MalGAE, a novel end-to-end deep

malware detection technique that leverages one-class graph neural networks

to detect Android malware in a semi-supervised manner. MalGAE represents

each Android application with an attributed function call graph (AFCG) to

benefit the ability of graphs to model complex relationships between data.

It builds a deep one-class classifier by training a stacked graph autoencoder

with graph convolutional layers on benign AFCGs. Experimental results show

that MalGAE can achieve good detection performance in terms of different

evaluation measures.
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1 Introduction

Malware is a malicious program designed to com-
promise a computer system. Malware attacks

have a wide range and can interfere with the normal
operation of the computer system in various ways.
For example, they can lead to stealing confidential
information, gaining unauthorized access to system
resources, bringing down servers, and damaging files.
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There are different types of malware, such as viruses,
backdoors, rootkits, and ransomware.

Android is the dominant mobile operating system
worldwide, leading the market with more than 70%
market share in August 2022 [1]. The popularity of
Android is growing exponentially, and this, along with
openness, has made it an attractive target for a large
number of malware authors. According to a recent
report, more than 3 million new malware samples
targeting Android devices were discovered in 2021 [2].
There is an urgent demand for developing malware
detection techniques to deal with the massive growth
of Android malware. Traditional malware detection
techniques cannot cope with this problem due to the
rapid evolution of complex malware or the emergence
of zero-day malware.

Generally, zero-day malware is previously unseen
malware that often exploits zero-day vulnerabilities.
Zero-day vulnerabilities are exploited in the wild be-
fore the patch is released or widely deployed. Among
the various malware, zero-day malware is the most
dangerous one that can cause considerable and ir-
reparable damage. This is because zero-day malware
commonly has a newly-encountered behavior that
has not been seen before; therefore, there is no pre-
designed and documented defense mechanism against
its malicious activities. As a result, zero-day malware
detection is a critical and problematic issue and is
the highest priority of malware detection techniques.

Most of the existing malware detection techniques
use stored malware characteristics. For example,
signature-based malware detection is a proven and
widely-used technique that simply works by identify-
ing signatures related to previously known malware.
However, an obvious weakness of such techniques is
that they are inherently limited to detecting already
known malware. As a result, they often fail to detect
zero-day exploits or advanced and complex threats
that circumvent known signatures [3].

In recent years, deep learning has become a pop-
ular and dominant machine learning technique and
can achieve outstanding achievements in various do-
mains. The multi-layered and in-depth structure of
deep learning models helps to capture the intrin-
sic properties of complex and highly nonlinear data
and allows the features to be automatically learned
with multiple levels of abstraction. However, tradi-
tional machine learning techniques are limited by the
manually-crafted features from the raw data [4, 5].
Thus, deep learning techniques are more suitable than
traditional machine learning techniques for various
applications, including malware detection. In this re-
gard, research focusing on deep learning to detect
malware has attracted more attention. Meanwhile,

some deep-learning studies have addressed zero-day
malware detection.

Generally, deep learning algorithms can be classi-
fied into three categories: supervised, semi-supervised,
and unsupervised. Supervised deep learning algo-
rithms summarize complex relationships among fea-
tures in a labeled training dataset that discrimi-
nate between data samples. The main disadvantage
of these algorithms is that they often require a lot
of labeled data samples to train the model. Semi-
supervised deep learning algorithms usually combine
both labeled and unlabeled data samples to build
a model from them. Unsupervised deep learning al-
gorithms capture the high-level correlation of input
data samples without knowing their labels. Gather-
ing a large number of labeled data samples usually
takes a lot of time and labor. Especially in the case of
zero-day malware, which is still unknown, collecting
labeled data samples does not seem possible. Hence,
semi-supervised and unsupervised techniques have
more potential to detect previously unknown mal-
ware. However, few deep learning techniques adopt
semi-supervised and unsupervised learning for mal-
ware detection.

Graph neural networks (GNNs) [6] have emerged
as a flexible and powerful model for machine learn-
ing and an effective framework for representation
learning over graph-structured data. They follow a
convolutional architecture that allows them to in-
herit the desired properties of convolutional neural
networks (CNNs) while applying directly to graph-
structured data. GNNs use a message-passing frame-
work in which the representation vector (embedding)
of a node is recursively calculated by aggregating
the representation vectors of its neighbors. The main
idea is to combine graph structure and node features
to better learn how to represent graph-structured
data. Due to their remarkable performance and high
interpretability in various graph-based tasks at the
node, edge, and graph level, GNNs have become a
widely used graph analysis tool. In particular, in re-
cent years, they have gained popularity in cyberse-
curity, especially in malware detection tasks [7–10].
Many malware detection models [11, 12] emphasize
graph-structured data to describe the malware’s be-
havior, thanks to the ability of graphs to model com-
plex relationships between data. But almost all of
these models rely on supervised deep learning algo-
rithms to detect malware.

Autoencoders are neural networks that learn a new
representation of the input data, usually known as the
latent representation. An autoencoder is composed of
an encoder and a decoder. The encoder compresses
the input data by learning its latent representation,
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while the decoder tries to reconstruct the original
input data from the latent representation. The graph
autoencoder is a GNN framework for semi-supervised
and unsupervised learning on graph-structured data.
Recently, graph autoencoders have attracted more
attention for graph embedding due to their great
potential for dimensionality reduction. However, it is
not straightforward to apply the idea of autoencoder
to graph-structured data because of their irregular
structure. In particular, graph-structured data have
rich and complex information on which content and
structure are dependent. Therefore, it is challenging
to effectively integrate both structure and content
information into a unified framework.

In this paper, we present MalGAE, a novel end-
to-end malware detection technique that leverages
attributed function call graphs (AFCGs) and semi-
supervised deep learning to detect previously un-
known Android malware. MalGAE stacks multiple
graph convolutional layers in the autoencoder ar-
chitecture to distinguish between benign and mali-
cious Android applications. This is done in a semi-
supervised manner where there is no need to access
the labels of malicious samples, and the training is
done only with a small set of benign samples. In other
words, MalGAE builds a deep one-class classifier by
training a stacked graph autoencoder on benign sam-
ples and then uses it to detect Android malware.

In the following, we list the main contributions of
this paper:

• To the best of our knowledge, we are the first to
apply semi-supervised deep learning to graph
neural networks (GNNs) for Android malware
detection.

• We present MalGAE, an end-to-end malware
detection technique that trains a stacked graph
autoencoder with graph convolutional layers to
distinguish between benign and malicious An-
droid applications in a semi-supervised manner.
We represent each Android application with
an attributed function call graph (AFCG) to
benefit the ability of graphs to model complex
relationships between data.

• Through experiments on an Android malware
dataset, we show that, despite being semi-
supervised, MalGAE can achieve good detec-
tion performance in terms of different evalua-
tion measures. Especially, MalGAE achieves a
recall of 81.99 and a false positive rate of 3.27.

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews related work, and Section 3
introduces some background information about An-
droid. Section 4 introduces MalGAE and describes
how it detects Android malware in a semi-supervised

manner. Section 5 reports our experimental results,
and finally, Section 6 summarizes and concludes the
paper.

2 Related Work

The concept of GNNs was first introduced by Gori et
al. [13] in 2005 and further elaborated by Scarselli et
al. [14] in 2009. In recent years, GNNs have received
more attention for malware detection [7–10, 15, 16].
In this section, we review the latest state-of-the-art
techniques for malware detection using GNNs.

Yan et al. [7] proposed a malware classification sys-
tem that uses the deep graph convolutional neural net-
work (DGCNN) [17] to embed structural information
inherent in control flow graphs (CFGs) for classify-
ing malware programs. Then, Xu et al. [8] introduced
a graph embedding technique for Android malware
detection and categorization. They represented An-
droid applications based on their function call graph
(FCG) and designed the opcode2vec, function2vec,
and graph2vec components to represent instruction,
function, and the whole application’s information
with vectors. They then fed the obtained vectors into
an MLP classifier and trained it to distinguish ma-
licious from benign applications and finally identify
the Android malware families. Later, Li et al. [9] de-
veloped GSFDroid, a system for familial analysis of
Android malware. They first constructed an FCG for
each malware sample and embedded the nodes of all
FCGs into a continuous and low-dimensional space us-
ing graph convolutional networks (GCNs). They then
employed a two-phase familial analysis technique to
improve the overall performance. For this purpose, an
MLP classifier was trained to predict the family of un-
labeled malware samples, and a pre-defined threshold
was set for its confidence score. The samples with a
high uncertainty score were given to an unsupervised
clustering algorithm that performed familial analysis
to discover new malware families. The malware sam-
ples grouped in a cluster were considered the same
family.

Subsequently, Gao et al. [15] proposed GDroid, an
approach for Android malware detection and familial
classification based on GNNs. They mapped Android
applications and APIs into a heterogeneous graph in
which the App-to-API edges were established by the
invocation relationships, and the API-to-API edges
were built by the API usage patterns. The hetero-
geneous graph was then fed into a GCN model [18],
iteratively generating node embeddings that incor-
porate topological structure and node features. The
unlabeled applications were eventually classified by
their final embeddings. Then, Zhang et al. [10] pro-
posed HyGNN-Mal, an Android malware detection
technique based on a hybrid GNN. They analyzed
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Android applications at the source code level and
used abstract syntax trees (ASTs) to represent their
structure information. Meanwhile, they extracted typ-
ical static features, permissions, and APIs at the
program level. They also used a deep traversal tree
neural network (Deep-TNN) to process ASTs and a
bidirectional GRU to handle permissions and API se-
quences. Later, Wu et al. [16] proposed DeepCatra, a
multi-view deep learning model for Android malware
detection that consists of a bidirectional LSTM and
a GNN layer. They extracted a set of critical APIs
from the known vulnerability repositories. They then
constructed a call graph for each Android application
and computed call traces reaching the critical APIs.
Based on the call traces of each application, they built
the data embedding for each view of learning. They
also selected the nearest opcode sequences leading to
the critical API calls for the embedding of bidirec-
tional LSTM and extended the critical edges with the
edges related to inter-component communications to
build the global abstract flow graph for the embed-
ding of GNN. The output vectors of the bidirectional
LSTM and GNN layers were merged with a fully con-
nected layer to produce the classification results.

All the techniques described above use a supervised
training process in which input samples are labeled as
benign or malicious. However, supervised techniques
usually cannot perform well in detecting previously
unseen malware. In this paper, we present a semi-
supervised deep learning technique for Android mal-
ware detection that utilizes the power of one-class
GNNs along with AFCGs to increase detection per-
formance. Since only benign Android applications are
involved in the training process of our technique, it
can be effective in detecting previously unseen An-
droid malware as well.

3 Android

Android is an open-source mobile operating system
based on the Linux kernel. One major component
of the Android platform is the Android runtime
(ART). It introduces an ahead-of-time (AOT) com-
pilation that compiles entire applications into native
machine code upon installation. Most Android ap-
plications are written in Java. The written code is
first compiled into Java bytecode. Then, a DEX com-
piler converts the Java bytecode to Dalvik bytecode.
Further, ART translates the Dalvik bytecode into
native machine code. Each Android application is
packaged into an Android package kit (APK) with
the .apk file extension. This packed file is a zipped
archive that includes the Dalvik bytecode, resources,
assets, certificates, and Android configuration file
(AndroidManifest.XML).

Each Android application includes four types of

components: activity, service, broadcast receiver, and
content provider. The activity component is a Java
class that works in the foreground and interacts with
the user. The service component is invisible to the
user and makes the application run in the background.
The broadcast receiver component mainly receives
broadcast events from the operating system. The con-
tent provider component is a database that provides
a structured access interface for data sharing across
applications.

4 MalGAE

In this section, we present MalGAE, a novel deep
malware detection technique that leverages one-class
graph neural networks (GNNs) to detect Android
malware in a semi-supervised manner. MalGAE first
extracts an attributed function call graph (AFCG)
for each Android application in the preprocessing
step. Then, in the model construction step, it builds
a deep one-class classifier by training a stacked graph
autoencoder to detect malicious AFCGs. In the fol-
lowing, we describe the details of MalGAE.

4.1 Preprocessing

We represent each Android application with an AFCG
to preserve its structural and functional characteris-
tics and examine how its various functions interact
with each other. We consider an AFCG as a directed
graph G = (V,E), where each node in V represents
a function, and each edge in E represents the calling
relationship between two functions. We denote the
adjacency matrix of G as A ∈ Zn×n, where n = |V |
is the number of nodes in G. The nodes in V repre-
sent internal and API functions in the application.
We assume that each node in V is associated with a
c-dimensional feature vector. Therefore, we use X ∈
Rn×c to denote the feature matrix for all the nodes in
G. The feature vector of each API node (i.e., nodes
corresponding to API functions) is obtained by ap-
plying one-hot encoding to its corresponding function
name. All non-API nodes (i.e., nodes corresponding
to internal functions written by the developer to im-
plement specific functionality) are assigned the same
one-hot encoded feature vector.

4.2 Model Construction

Among the various deep learning models, autoen-
coders are the most commonly used model for ap-
plications where the label information of data sam-
ples is not available. Due to their reconstruction na-
ture, autoencoders have the potential to be used for
anomaly-based malware detection.

Anomaly-based malware detection techniques typi-
cally use one-class classification that builds one-class
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Figure 1. A stacked graph autoencoder with four graph convolutional layers

classifiers only from benign samples. Since these tech-
niques do not require labeled malicious samples and
utilize only a small set of benign samples, they are
semi-supervised malware detection techniques. They
mainly detect malware by finding abnormal behavior
compared to the benign class. The key advantage of
such malware detection techniques is their ability to
detect zero-day malware.

MalGAE leverages a stacked graph autoencoder
with graph convolutional layers to distinguish be-
tween benign and malware samples. It takes a set of
AFCGs as input, learns their latent representations,
and finally reconstructs their feature matrices. The
main goal is to encode each AFCG G = (V,E) into
an embedding vector in such a way that the recon-
structed feature matrix X̂ is as close as possible to
the original feature matrix X.

MalGAE reconstructs each input AFCG based on
reconstructing its feature matrix. Graph reconstruc-
tion can also be performed by reconstructing the ad-
jacency matrix. In this case, the decoder does not use
the feature matrix at all and cannot be trained. How-
ever, this can sometimes lead to a reduction in the
efficiency of graph reconstruction [19, 20]. Therefore,
we reconstruct each AFCG based on reconstructing
the feature matrix to overcome this limitation. In
this case, the decoder does the opposite of what the
encoder does.

The graph encoder stacks multiple graph convolu-
tional layers, which can be recursively defined as

Z(l) = f (l)
(
D̃− 1

2 ÃD̃− 1
2Z(l−1)W(l)

)
, (1)

where Ã = A+In is the augmented adjacency matrix
of G with added self-loops, In is the identity matrix of
order n, and D̃ is the augmented diagonal degree ma-
trix of G with D̃ii =

∑
j Ãij . Also, W(l) ∈ Rcl−1×cl

is the trainable weight matrix, f (l)(·) is the activa-
tion function, and Z(l) ∈ Rn×cl is the output of layer
l with Z(0) = X, where cl is the output dimension of
layer l.

The output of the graph encoder, called the latent
representation, is given to the graph decoder to recon-
struct X. The graph decoder stacks the same number
of graph convolutional layers as the graph encoder,
arranged in the reverse order of the graph encoder.
More specifically, the graph decoder behaves the op-
posite of the graph encoder as it works to reconstruct
the feature matrix X as closely as possible. By doing
so, the stacked graph autoencoder uses both graph
structure and node features in the encoding and de-
coding steps. Assuming that the stacked graph au-
toencoder has k layers, the latent representation Y
is represented as

Y = Z(k/2). (2)

We define the reconstruction loss of the stacked
graph autoencoder as

L(G) =
1

n
∥X− X̂∥2F +λ

k∑
i=1

∥W(i)∥2F , (3)

where X̂ is the reconstructed feature matrix of nodes
and ∥·∥F denotes the Frobenius norm. The second
term is a weight decay regularizer with hyperparame-
ter λ > 0. Figure 1 shows a simple stacked graph au-
toencoder with four graph convolutional layers. There
are two layers for the graph encoder and two layers
for the graph decoder.

After the training process of the stacked graph
autoencoder is completed, the latent representation
contains the embedding vectors of all nodes. The em-
bedding vector of the AFCG is obtained by applying
an average pooling layer to the latent representation,
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which averages all embedding vectors of its nodes.
Formally, the output of the average pooling layer, rep-
resented by y, is an embedding vector of length ck/2
calculated as

y =
1

n

n∑
i=1

Yi, (4)

where Yi denotes the ith row of Y.

4.3 Malware Detection

We use only benign AFCGs in the model construction
step. Therefore, the reconstruction loss can be inter-
preted as an anomaly score, where AFCGs incurring
a larger reconstruction loss are more likely to be ma-
licious. In more detail, we divide the training dataset,
which contains only benign AFCGs, into two parts,
and use the first part for training the stacked graph
autoencoder. After the training process is completed,
we give the second part as input to the trained model
and calculate the anomaly score of each AFCG. We
then sort these anomaly scores in descending order
and select the νth percentile of these values as the re-
jection threshold δ, where ν > 0 is a hyperparameter.
We refer to ν as the training rejection rate or simply
the rejection rate.

The rejection threshold δ is used to decide whether
an input AFCG is malicious or benign. Each AFCG
is first given to the trained model, and its anomaly
score is calculated. If this anomaly score is less than
or equal to δ, that AFCG is labeled as benign and
otherwise as malicious.

5 Experiments

In this section, we discuss the detection performance
of MalGAE for different parameter settings and com-
pare it to a baseline case that uses a simple stacked
autoencoder instead of a stacked graph autoencoder.

5.1 Dataset

In our experiments, we used the dataset provided by
Chew et al. [21]. We selected 141 Android malware
samples and 498 benign Android applications from
this dataset. The malware samples belonged to five
different families of crypto-ransomware. We converted
the APK file of each application to an FCG using
Androguard [22]. We then generated an AFCG by as-
sociating a feature vector with each node. The feature
vector of each API node was obtained by applying
one-hot encoding to its corresponding function name.
Since there were about 7200 different API functions
in the Android applications of this dataset, the length
of each feature vector was about 7200.

5.2 Evaluation Measures

We evaluated the detection performance of MalGAE
using five common measures: precision (PR), recall
(RE), accuracy (ACC), F1-score (FS), and false pos-
itive rate (FPR). These measures are derived from
the true positive (TP), false positive (FP), true nega-
tive (TN), and false negative (FN) metrics. TP de-
notes the number of samples correctly detected as
malicious. FP denotes the number of samples incor-
rectly detected as malicious. TN denotes the number
of samples correctly detected as benign. FN denotes
the number of samples incorrectly detected as benign.
Formally, the above measures are calculated as

ACC =
TP + TN

TP + FP + TN + FN
, (5)

PR =
TP

TP + FP
, (6)

RE =
TP

TP + FN
, (7)

FS = 2 × PR×RE

PR + RE
, (8)

FPR =
FP

FP + TN
. (9)

Obviously, for ACC, PR, RE, and FS being close to
one and for FPR being close to zero indicates better
detection performance.

5.3 Experimental Results

We conducted a 5-fold cross-validation to measure the
detection performance of MalGAE. For this purpose,
we shuffled the 498 benign applications, selected 400
of them for training, and left the rest for testing. So
the testing dataset contained 239 Android applica-
tions, 98 of which were benign, and the rest were mali-
cious. Then, we divided the training dataset into five
equal-sized subsets. To provide better generalization,
MalGAE was trained and tested in five rounds. In
each round, four subsets were treated as the training
set, and one subset was considered as the validation
set for selecting the rejection threshold. The training
of each round was done in 50 epochs, and after the
training process was completed, the detection perfor-
mance of the trained model was measured using the
testing dataset.

In the basic experimental setup, we trained a
stacked graph autoencoder with four layers (a 2-layer
graph encoder followed by a 2-layer graph decoder).
The hidden layer sizes were 128, 32, 32, and 128. We
added a dropout layer of rate 0.1 and a ReLU acti-
vation function after each graph convolutional layer.
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Table 1. Evaluation measures of MalGAE (in percent) for

different values of ν (The results are averaged over five folds)

ννν ACC PR RE FS FPR

0.01 78.33 78.72 64.40 70.72 1.63

0.03 88.03 97.35 81.99 88.87 3.27

0.05 87.70 96.15 82.55 88.68 4.90

0.10 87.78 91.73 87.23 89.39 11.43

0.20 84.35 84.37 90.21 87.18 24.08

The trained model was optimized by the AdamW
optimizer [23] with a learning rate of 0.001 and a
weight decay of 0.0005. We also set the rejection rate
ν to 0.03. It should be noted that when we studied
the impact of one parameter, we fixed the others to
be the same as in the basic experimental setup.

Impact of rejection rate. In the first set of experi-
ments, we evaluated the impact of the rejection rate
ν on the detection performance of MalGAE. Table 1
shows the obtained results under different values of
ν. From the table, we see that increasing ν increases
RE at the expense of increasing FPR, which may be
undesirable. This is because the higher the value of
ν, the more Android applications are detected as ma-
licious. Among these applications, some have been
correctly detected as malicious, which increases RE,
and others have been incorrectly detected as mali-
cious, which increases FPR. We also observe that
MalGAE achieves a good trade-off between different
evaluation measures by choosing ν = 0.03. This set-
ting, while keeping FPR at about 3%, can achieve an
RE of about 82% and a PR as high as 97.35%.

Impact of graph convolutional layers. In the second
set of experiments, we evaluated the impact of the
number of convolutional layers k on the detection
performance of MalGAE. Table 2 shows the obtained
results under different values of k. The first row of
this table shows the results for a 2-layer model (one
layer for the graph encoder and one layer for the
graph decoder) with hidden layer sizes of 32 and 32.
In fact, in this case, the stacked graph autoencoder is
converted to a graph autoencoder. As can be seen, the
2-layer model has lower detection performance than
the 4-layer model. This is because a stack of graph
autoencoders is usually better than a simple graph
autoencoder in reducing the feature vector dimension
and extracting the latent representation. The third
row of Table 2 shows the results for a 6-layer model
(three layers for the graph encoder and three layers
for the graph decoder) with the hidden layer sizes of
256, 128, 32, 32, 128, and 256. As can be seen, the 6-
layer model does not cause a noteworthy increase in
detection performance compared to the 4-layer model.
However, it requires more training time. Therefore,

Table 2. Evaluation measures of MalGAE (in percent) for

different values of k (The results are averaged over five folds)

kkk ACC PR RE FS FPR

2 72.55 93.14 57.02 69.23 5.10

4 88.03 97.35 81.99 88.87 3.27

6 88.62 97.02 83.26 89.61 3.67

we conclude that the 4-layer model can provide a
better trade-off between detection performance and
training time than other models.

5.4 Comparison

Here we compare MalGAE with a baseline model that
uses a simple stacked autoencoder instead of a stacked
graph autoencoder. In other words, the architecture
of this baseline model (hereafter referred to as SAE) is
similar to MalGAE, except that graph convolutional
layers are not used. Figure 2 shows this comparison
for different evaluation measures under two rejection
rates of 0.03 and 0.05. From the figure, we observe
that MalGAE significantly outperforms SAE for all
evaluation measures. The reason is that MalGAE
leverages graph convolutional layers in which each
node collects information from its neighbors; thus, the
graph structure and node features are combined to
better learn the representation of AFCGs. Therefore,
autoencoders with graph convolutional layers can
better reconstruct AFCGs due to the power of GNNs
in building end-to-end deep learning models on graph-
structured data.

6 Conclusion

In this paper, we have presented MalGAE, a semi-
supervised Android malware detection technique that
does not require access to the labels of malicious sam-
ples during the training process. Such techniques have
good potential for detecting previously unseen or zero-
day malware. MalGAE uses graph convolutional lay-
ers to build a stacked graph autoencoder. This allows
it to work directly on the graph-structured data in an
end-to-end manner. Thanks to the ability of graphs
to model complex relationships between data, graph-
structured data have become increasingly popular in
recent years to represent malware. MalGAE repre-
sents each Android application with an AFCG, where
each node represents a function, and each edge repre-
sents the calling relationship between two functions.
The nodes represent internal and API functions in
the application and are associated with a feature ma-
trix. The feature vector of each API node is obtained
by applying one-hot encoding to its corresponding
function name. All non-API nodes are assigned the
same one-hot encoded feature vector.
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Figure 2. Comparison of SAE and MalGAE for different evaluation measures under two rejection rates: (a) ν = 0.03, (b) ν = 0.05

We have performed empirical experiments to evalu-
ate the detection performance of MalGAE in terms of
different evaluation measures. Experimental results
have shown that, despite being semi-supervised, Mal-
GAE can achieve good detection performance. In the
future, we plan to explore more graph structures and
node features to improve the detection performance
of semi-supervised and unsupervised deep malware
detection techniques.
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