
ISeCure
The ISC Int'l Journal of
Information Security

January 2023, Volume 15, Number 1 (pp. 59–71)

http://www.isecure-journal.org

A Machine Learning Approach for Detecting and Categorizing

Sensitive Methods in Android Malware ∗∗

Hayyan Salman Hasan 1,2,∗, Hasan Muhammad Deeb 3, and Behrouz Tork Ladani 2
1Albaath University, Faculty of Mechanical and Electrical Engineering, Homs, Syria.
2University of Isfahan, Faculty of Computer Engineering, MDSE Research Group, Isfahan, Iran.
3Albaath University, Faculty of Informatics Engineering, Homs, Syria.

A R T I C L E I N F O.

Article history:
Received: December 25, 2021

Revised: March 12, 2022

Accepted: June 18, 2022

Published Online: June 20, 2022

Keywords:

Sensitive Methods, Evasion

Methods, Payload Methods,
Dynamic Analysis, Machine

Learning

Type: Research Article

doi: 10.22042/ISECURE.2022.

321436.741

dor: 20.1001.1.20082045.2023.
15.1.1.8

A B S T R A C T

Sensitive methods are those that are commonly used by Android malware to

perform malicious behavior. These methods may be either evasion or malicious

payload methods. Although there are several approaches to handle these

methods for performing effective dynamic malware analysis, generally most of

them are based on a manually created list. However, the performance shown by

the selected approaches is based on the completeness of the manually created

list that is not almost a complete and up-to-date one. Missing some sensitive

methods causes to degrade the overall performance and affects the effectiveness

of analyzing Android malware. In this paper, we propose a machine learning

approach to predict new sensitive methods that might be used in Android

malware. We use a manually collected training dataset to train two classifiers:

the first one is used to detect the sensitivity nature of the Android methods,

and the second one is used to categorize the detected sensitive methods into

predefined categories. We applied the proposed approach to a large number of

methods extracted from Android API 27. The proposed approach is able to

predict hundreds of sensitive methods with the accuracy of 94.4% for the first

classifier and 92.8% for the second classifier. To evaluate the proposed approach,

we built a new list of the detected sensitive methods and used it in a number of

tools to perform dynamic malware analysis. The proposed model found various

sensitive methods that were not considered before by any other tools. Hence,

the effectiveness of these tools in performing dynamic analysis is increased.

© 2020 ISC. All rights reserved.

1 Introduction

Android OS is a dominant mobile operating system

∗ Corresponding author.
∗∗This article is an extended/revised version of an ISCISC’18
paper.

Email addresses: foo@gmail.com, foo@gmail.com,
foo@gmail.com

ISSN: 2008-2045 © 2020 ISC. All rights reserved.

with a market share of 83.8% in 2021 [1]. On the
one side, this is a motivation for malware applications
to appear and grow. On the other side, there is a sig-
nificant endeavor to find ways to detect and analyze
these malware applications. In general, an analysis
process is used to extract the required information
from the malware samples. Android malware (and
Android applications in general) can be analyzed us-
ing three approaches. Static analysis that extracts
the information from the sample under analysis with-

ISeCure

60 A ML Approach for Detecting and Categorizing SMs in Android Malware — Hasan, Deeb, and Tork

out running it [2][3], dynamic analysis that needs to
run the sample in order to extract its real behavior
[4] [5] [6] [7], and hybrid analysis that includes using
both static and dynamic analyses [8] [9].

Dynamic analysis is an approach that runs the sam-
ple inside a test environment to extract its real be-
havior. Hence, Dynamic analysis needs to execute the
sensitive methods that are used as malicious payload
to extract the real behavior of the sample under anal-
ysis. However, there are several evasion techniques
used by Android malware to hinder the dynamic anal-
ysis process. In general, many approaches have been
proposed to detect and defeat these evasions [10] [11]
to reach the payload location and execute the sensi-
tive methods that are used in this payload. To this
end, these approaches mainly use manually created
lists of evasions to detect and hence defeat the eva-
sions. Moreover, these approaches also use a manually
created list of sensitive methods that are considered
evidence of the malicious payload. As an important
consequence, the effectiveness of these approaches is
based on the completeness of both evasion and pay-
load method lists. In other words, if the lists are not
complete and do not contain every possible sensitive
method (evasion or payload method), the dynamic
analysis achieved by these approaches will not be ef-
fective. Hence, they may not be able to extract the
real behavior of the sample under analysis.

This work focuses on sensitive methods in Android
malware that are used either as evasion or payload
methods. Dynamic analysis approaches always use
some fixed lists to handle these sensitive methods in
Android malware in order to extract the malicious
behavior of the sample under analysis[10] [11] [12]
[13]. The number of defined methods in the Android
framework is very large, and there are many new
added methods in each update of the Android frame-
work. Hence, there is a big chance of deceit in these
approaches. That means, if the malware sample uses
some methods out of the lists, the analysis process
achieved by these approaches can be defeated. More-
over, the large number of defined methods in different
Android frameworks makes the manual detection and
classification of these sensitive methods infeasible. Fi-
nally, the newly defined methods in each update in
the Android framework impose a heavy load on the
analyzer to manually detect and classify the evasions,
which can be an error-prone task.

This paper proposes a machine learning approach
for identifying and categorizing various sensitive meth-
ods in all Android frameworks. The proposed ap-
proach uses the training dataset that was collected
in our previous works [6] [7]. This dataset includes
two types of methods: normal methods and sensitive

methods. The sensitive methods are categorized into
14 categories. These categories are obtained from our
analysis that we achieved on Android malware sam-
ples. Moreover, these categories are mostly used in
many dynamic analysis frameworks of Android mal-
ware [12][13]. The proposed approach uses two stages
of classification. The first stage uses a Support Vector
Machine (SVM) classifier to detect whether or not
the method is sensitive. The second stage uses a Gra-
dient Boosting classifier to classify the sensitive meth-
ods according to the categories defined in the trained
dataset. Our decision to use these two classifiers in
the proposed approach is based on the nature of the
data we deal with, as well as the effectiveness of these
classifiers and their high generalization performance.

The proposed approach can use the models ob-
tained from the training process to detect and clas-
sify a relatively large number of previously unknown
Android methods. For example, we applied the re-
sulted models to detect and classify 12759 methods
from Android API 27. The proposed approach could
detect many new methods that are unknown by the
currently available dynamic analysis approaches. As a
result, the proposed approach can provide the ability
to detect the newly used sensitive methods in An-
droid malware and hence provides a comprehensive
and more complete list of sensitive methods for the
dynamic analysis frameworks to deal with these sen-
sitive methods and extract the real behavior of the
sample under analysis.

To evaluate the proposed approach, we conducted
a series of experiments on the proposed classifiers to
prove their effectiveness. For the training purpose, we
used our collected dataset. The results showed that
the proposed approach provides 94.4% accuracy and
95.4% precision for the stage-1 classifier. Also, the
accuracy is 92.8, and precision is 92.6 for the stage-2
classifier, which means that using the proposed ap-
proach to identify sensitive methods can reduce the
risk of missing these sensitive methods by the dy-
namic analysis tools. Consequently, these dynamic
analysis tools can detect the usage of these sensitive
methods and extract the real behavior of the malware
samples. Moreover, to evaluate to which extent the
list of sensitive methods produced by the proposed
approach (after applying it to the methods from An-
droid API 27) are used by the real-world malware
samples, we used this list as an input for Droidmon
[14]. Then, we utilized 500 samples that are randomly
selected from AMD [15] [16] and Contigue Mobile
[17] datasets in the evaluation process. The exper-
imental results showed that the real-world samples
use the methods defined in the obtained list from the
proposed approach. Finally, we used the obtained list
in Ares [12], IntelliDroid [13], and Curious-Monkey

ISeCure

January 2023, Volume 15, Number 1 (pp. 59–71) 61

[18]. These three tools are used to perform dynamic
analysis of Android malware. We used samples from
AMD dataset [15] [16] and ran these tools with and
without the obtained list. The experimental results
show that using the obtained list from the proposed
approach increases the effectiveness of the aforemen-
tioned tools in detecting evasions and extracting more
malicious behavior from the used samples in the ex-
periments, which improves our hypothesis, that the
completeness of the list will affect the effectiveness
of these dynamic analysis frameworks. In summary,
the main contributions of this paper are as follows.

• A novel dataset of sensitive methods containing
186 methods was obtained from our previous
works on Android real-world samples.

• A machine learning based approach to detect
and classify various sensitive methods in An-
droid malware even in case of new and previ-
ously unseen Android versions and variants. We
released the source code of this approach in
[19].

• A list of potentially sensitive methods that in-
cludes 360 new automatically detected methods
obtained by applying the proposed approach to
the methods of Android API 27.

• Using the obtained list from the proposed ap-
proach by a number of dynamic analysis tools
for Android malware to evaluate these tools us-
ing real-world malware samples.

The remainder of this paper is as the following.
Section 2 discusses the related work to the proposed
approach. Section 3 provides a detailed description of
the proposed approach and the used features in each
classification stage. Section 4 includes the evaluation
process to evaluate the proposed approach. Finally,
we conclude the paper in Section 5.

2 Related Work

As far as we know, the proposed approach in this
paper is the first dedicated approach that focuses
on automatically detecting sensitive methods in the
Android framework. However, our approach has been
inspired by SUSI [20], which is a machine learning
approach to detect and classify sources and sinks used
by malware to leak information from Android devices.
SUSI (like our approach) uses the hand-noted list of
sources and sinks to predict more significant numbers
of sources and sinks from about 110000 methods in
the Android 4.2 framework. Merlin [21] is another
approach that uses an incomplete list of sources and
sinks and tries to generate a complete one. However,
both approaches try to predict the potentially used
source and sink methods to leak information from
the victim device by the malware, while our approach
tries to predict the used sensitive methods, either

evasion or payload methods by Android malware.
These sensitive methods are essential for performing
an effective dynamic analysis of Android malware.

Many approaches have been proposed to handle
evasion techniques and provide dynamic analysis of
evasive malware. DirectDroid [11] is a tool that uses a
manually created list of sensitive methods to provide
dynamic analysis of evasive malware. FuzzdDroid [10]
is another tool that uses hand noted list of evasion
methods. These methods are hooked whenever they
are invoked during the execution, and their returned
values are set to some other values to bypass them
and reach the payload methods. Ares [12] also uses
a fixed list to detect the evasions in the malware
samples. However, as we mentioned before, these ap-
proaches are effective only if their sensitive methods’
list is complete. In other words, if the list is not com-
plete, these approaches may not be able to provide
an effective dynamic analysis of Android malware.
The main difference between these approaches and
our approach is that our approach is used to predict
a complete list of sensitive methods, while these ap-
proaches use the resulted list to handle these sensitive
methods.

Different Artificial Intelligence (AI) approaches
(particularly machine learning) are used to detect
Android malware samples and automatically iden-
tify them from various Android markets. These ap-
proaches use statically or dynamically extracted fea-
tures to detect malicious applications and classify
them into different categories. For example, CANDY-
MAN [22] is a tool that classifies Android malware
families by combining dynamic analysis traces and
Markov chains. NATICUSdroid [23] is another ma-
chine learning approach that uses statically selected
native and custom Android permissions as features
to detect and classify malware applications from be-
nign applications. IntDroid [24] is another approach
that uses sensitive methods as features to detect mal-
ware applications and distinguish them from benign
applications. HinDroid [25] is another approach that
uses a structured Heterogeneous Information Network
(HIN) to represent the rich relationships between An-
droid applications and related APIs. Furthermore, it
uses multi-kernel learning to classify Android applica-
tions into malware or benign applications. DroidCat
[26] is a novel dynamic Android application classifier
that uses dynamic features such as calls and Inter
Component Communication (ICC) intents to do the
classification. The main difference between these ap-
proaches and our approach is that these approaches
use the sensitive methods as evidence to detect An-
droid malware, while our approach predicts the new
sensitive methods (either evasion or payload meth-
ods) from a hand-noted list of sensitive methods. In

ISeCure

62 A ML Approach for Detecting and Categorizing SMs in Android Malware — Hasan, Deeb, and Tork

other words, the proposed approach does not use sen-
sitive methods in the classification process but in the
prediction process.

3 The Proposed Approach

This section explains our proposed approach to au-
tomatically predict a new sensitive method that can
be used by Android malware. The prediction process
is done through learning from a hand noted and a
relatively small number of already known sensitive
methods. The proposed system addresses two classi-
fication problems. The goal of the first classifier is
to detect whether the method is considered a sensi-
tive method or not. The second classifier will identify
under which category the detected sensitive method
falls. Both classifiers are trained over an extended ver-
sion of the dataset obtained from our previous works
[6] [7]. In the following, the architecture of the pro-
posed approach, the features we used in each stage,
and the predefined categories are explained.

3.1 The Proposed Approach Architecture

Figure 1 represents the architecture of the proposed
approach. As shown in this figure, the proposed ap-
proach can take any method that belongs to the
Android API method as input and identify whether
it is sensitive or not. Then the proposed approach
will provide the potential category that this sensitive
method belongs. We used the dataset we obtained
from our previous work to train our two classifiers
in the training stage. Note that any method used as
input to the proposed system should pass through
various stages. First, the requested attributes will be
extracted from the input method (data preparation
stage). Then these attributes will be passed to the
stage-1 classifier. The stage-1 includes using the SVM
classifier to detect if the method is considered a sensi-
tive method or not. Another set of attributes will be
extracted from the same input method and passed to
the stage-2 classifier. In the stage-2 classifier, all the
methods that are classified as sensitive methods will
be categorized under a set of predefined categories.
A detailed description of each stage in the proposed
approach is provided in the following.

(1) Data preparation: The first stage of the sys-
tem is to prepare the raw input data and extract
all the features we need to train our classifiers.
This stage takes raw Java methods as input
and extracts all the features that can be useful
to differentiate between different input meth-
ods. A specific set of features extracted from
the input methods are used to train each of the
following classifiers at the training stage. In the
testing stage, most of the methods provided by

the Android API 27 are extracted and trans-
formed into vectors of features. In a nutshell,
the system is trained over our dataset and then
evaluated over the extracted attributes from
Android API 27.

In detail, our input data is a list of records
that represent Java methods. Each record has a
set of attributes including the method’s name,
package’s name, class’s name, the number of ar-
guments, type of arguments, return type, and
requested permissions. Based on the aforemen-
tioned attributes, we extracted a new set of at-
tributes that can be more meaningful for our
classifiers. As an example, if one of the method
arguments was an interface, we specified the
value of ’Parameter is an interface’ as true. Simi-
larly, if the return type of the method was ’void’,
we determined whether the value of ’Method is
returnable’ is true or false.

(2) Stage-1 classification: This stage takes the
extracted attributes (from the first stage) as in-
put and detects whether the method that these
attributes belong to is sensitive or not. In or-
der to do that, the SVM [27] classifier with the
Sigmoidal kernel is used. The SVM classifier
is very effective with high dimensional input
data where the number of dimensions is larger
than the number of samples. Furthermore, it
can effectively handle non-separable classifica-
tion problems using the kernel trick. Briefly,
SVM tries to find the optimal hyperplane that
best separates the classes and leads to low gen-
eralization error. We trained the SVM classifier
based on the dataset of 372 methods (186 sen-
sitive methods and 186 normal methods). Con-
sequently, the classifier is now ready to predict
any new sensitive method.

(3) Stage-2 classification: This stage takes the
Android API methods classified as sensitive
methods as inputs and categorizes them un-
der a set of predefined categories. The defined
categories are based on our collected dataset.
The used classifier in this stage is the Gradient
Boosting [28] classifier. This classifier is one of
the most popular classifiers that use ensemble
techniques. The learning process of this clas-
sifier starts by training a set of weak learners
in order to obtain a stronger model. Gradient
Boosting has three main components: loss func-
tion, weak learner, and additive model. The
loss function is used to estimate the learning
progress and it varies based on the problem.
the weak learner is a poor classifier who can at
least provide predictions better than random
guessing. The most common weak learners are
decision trees. Finally, the additive model is an

ISeCure

January 2023, Volume 15, Number 1 (pp. 59–71) 63

Figure 1. The architecture of the proposed approach

iterative model that tries to construct the final
model by sequentially adding the weak learners.
As we mentioned before, the Gradient Boost-
ing classifier will be trained over a specific set
of attributes extracted from the input methods
(different from the attributes used for the stage-
1 classifier). At the training stage, the Gradient
Boosting classifier will be trained over the whole
dataset to be able to discriminate between dif-
ferent categories. At the testing stage, only the
methods indicated as sensitive methods by the
stage-1 classifier will be passed to the stage-2
classifier.

3.2 The Collected Dataset of Sensitive
Methods

The dataset contains manually collected sensitive
methods that we obtained from our previous studies
[6] [7] (can be accessed via the IEEE data port [29]).
This dataset contains a set of evasion methods that
are used to hinder the dynamic analysis of Android
malware and a set of methods that are used in the
malicious payload. An example of the evasion meth-
ods that are used to hinder the dynamic analysis is
getDeviceID() that is used to get the ID of the device
where the sample runs. In the case of an emulator,
this method returns ”000000000000000”. Hence, it
can be used to detect the existence of the emulator

and hinder the execution accordingly. On the other
hand, some other methods, such as openConnection(),
are commonly used in the malicious payload to con-
nect with the C&C server. Therefore, we used these
methods (with their features) to predict any new sen-
sitive method from Android API. Moreover, we added
the same number of methods (with their features)
that are not considered sensitive methods to provide
a balanced training dataset and use it to train the
proposed approach.

The collected dataset contains 372 methods, 186
sensitive methods, and 186 normal methods extracted
from different Android APIs and categorized as sensi-
tive and normal classes. In our dataset, the sensitive
methods are categorized into 14 categories. Among
the massive number of features extracted from the
malicious applications, we are only interested in the
features that could help our classifiers to discrimi-
nate between different data samples and achieve high
detection accuracy. We use the following extracted
features to identify the sensitive and normal methods
(stage-1 classification process).

• Package name: This feature represents the
package name for each method. It affects the
classifier decision, especially for the popular
packages used as sensitive methods.

• Class modifier: This feature identifies whether
the class is protected or an abstract class. In

ISeCure

64 A ML Approach for Detecting and Categorizing SMs in Android Malware — Hasan, Deeb, and Tork

general, methods from protected classes are not
used as sensitive methods.

• Parts of method name: A particular part of
the method name is taken and used to identify
the method names into six cases: get, set, put,
is, request, and other.

• Method access modifier: This feature con-
trols the access to the specified method from
other classes or its subclasses. It could be pub-
lic/private/protected. In general, the sensitive
methods have public access.

• Method is returnable: This feature deter-
mines if the method has a return value or not.
In general, the sensitive methods return values.

• Parameter is an interface: This feature indi-
cates whether the method accepts a parameter
of an interface type or not. In general, this kind
of method belongs to the not-sensitive category
since they do not perform direct operations over
the data.

• Parameter type: This feature indicates the
type of the parameter that the method accepts.
The parameters could be of a concrete type or
belong to a specific package. For instance, the
methods that accept parameters of the package
“java.io” are mostly sources of sensitive meth-
ods.

• Request permission or not: This feature
identifies whether the method requires specific
permission to be executed. Most sensitive meth-
ods request permissions in order to get system
services.

On the other hand, the features used to categorize
the sensitive methods to their corresponding category
(stage-2 classifier) are illustrated in the following.

• Package name: This feature represents the
package name for each method. It affects the
classifier decision, especially for the popular
packages used in the sensitive methods.

• Class name: The name of the class can play a
vital role in categorizing the sensitive methods.
For example, methods from Build class are cate-
gorized as Anti-emulation evasions because they
are used to detect the used test environment.

• Return value type: This feature identifies the
type of the method returned values. For exam-
ple, the Anti-emulation methods return strings
in most cases, while the Location methods re-
turn double types in most cases.

• Parameters number: This feature represents
the number of arguments the method takes as
input. For example, the Time methods get 0 or
1 argument, while the File access methods get
more than 3 arguments as input.

• Permission type: This feature identifies the

type of permission the method could request
if it exists. Otherwise, it will take the “None”
value.

It should be noted that all of the features are cat-
egorical features except arguments number, which
holds numerical data. This fact encouraged us to
choose a tree-based classifier to construct the stage-2
classifier because of its well-known performance for
this kind of data.

3.3 The Predefined Categories

We define 14 categories based on the empirical study
that we achieved on AMD [15] [16] dataset. These
categories include all the methods that are consid-
ered sensitive methods (either evasions or payload
methods). In our empirical study on AMD dataset we
could extract many sensitive methods manually then
we categorize these methods according to their usage
by the malware into 14 categories. Some of these cat-
egories are commonly used by malware and contain
many methods like Anti-emulation and network ac-
cess categories. Other categories are commonly used
but contain a few methods like the Integrity check
category. Finally, some categories are rarely used and
contain a few methods like the Binary category. we
describe these categories in the following.

• File access: This category includes any
method used to read special contents from files
or databases.

• Integrity check: This category includes any
method used to check if the malware code is
manipulated.

• Location: This category includes any method
used to detect the location of the test environ-
ment.

• SMS: This category includes any method used
to read special addresses and contents from
incoming messages.

• Time: This category includes any method used
to delay the execution of the sample.

• Anti-emulation: This category includes any
method used to detect whether the test envi-
ronment is an emulator or a real device.

• Binary: This category includes any method
that is used to kill some running processes in
the device, such as anti-malware.

• Blocking SMS: This category includes any
method that is used to block some received
SMSs, such as SMSs from banks.

• Deleting SMS: This category includes any
method that is used to delete the sent SMSs.

• Sending SMS : This category includes any
method that is used to send SMSs to some
specific numbers without the user’s realization.

ISeCure

January 2023, Volume 15, Number 1 (pp. 59–71) 65

• Network access: This category includes any
method that is used to communicate via the
internet.

• Web view attack: This category includes any
method that uses WebView to perform some
java script based attacks.

• Wake lock: This category includes any method
that is used to prevent the device from going
to sleep in order to do malicious behavior.

• Dynamic code loading: This category in-
cludes any method that is used to download the
malicious payload after running the sample.

4 Experimental Evaluation

Since the proposed approach is the first dedicated
approach to predicate sensitive methods, there is no
way to compare it with other works. Hence, we used
metrics like accuracy, precision, and recall to evalu-
ate the effectiveness of the proposed approach. Then
to evaluate the impact of the resulted list from the
proposed approach, we used this resulted list in some
well-known dynamic analysis frameworks, and evalu-
ate the effectiveness of these frameworks when using
the resulted list. To conclude, we perform a series of
experiments to evaluate the effectiveness of the pro-
posed approach and to evaluate the impact of the
obtained list from this approach. First, we used our
collected dataset which contains 372 methods divided
into sensitive and normal methods for the training
purpose. Furthermore, we utilized 500 samples ran-
domly selected from AMD [15] [16] and Contigue
Mobile [17] datasets to evaluate the existence of the
obtained methods from the proposed approach in the
real-world samples. Finally, we used the resulted list
in three dynamic analysis tools, i.e., Ares, IntelliDroid,
and Curious-Monkey, and ran them to analyze real-
world samples from AMD dataset to evaluate the im-
pact of the obtained list on the effectiveness of these
tools.

The experiments were conducted on a laptop run-
ning Windows 10 OS with a Core i7 processor and
8 GB RAM. The proposed approach is implemented
using Python version 3.7.4. To measure the quality of
the classifiers, we use the accuracy, precision, recall,
and f1-measure as our classification metrics. To get
better insight into the generalization performance of
our classifiers, 10-fold cross-validation was employed
for both classifiers. Our experiments and evaluations
try to answer the following research questions.

(1) Can the proposed approach be used to find
sensitive methods in Android malware?

(2) Can the proposed approach be used to catego-
rize the detected sensitive methods?

(3) Is the obtained list of sensitive methods from the
proposed approach used by real-world malware?

(4) What is the impact of the obtained list of sensi-
tive methods from the proposed approach on the
state-of-the-art dynamic analysis frameworks?

4.1 Effectiveness of the Proposed Approach
in Finding Sensitive Methods

In this section, we will answer the first research ques-
tion and evaluate the ability of the first classifier to
find the sensitive methods. The main goal of the first
classifier is to identify whether the method is used
to perform sensitive behavior or not. To train this
classifier, we used the collected dataset. In order to
obtain the most accurate estimation of this model,
we employed 10-fold cross-validation. We evaluated
the performance of the classifier in terms of precision
(the rate of positive identifications was classified cor-
rectly), recall (the rate of correctly classified positive
samples), accuracy (the rate of correctly classified
samples), F1-score (the harmonic means of precision
and recall). The confusion matrix of the stage-1 clas-
sifier is depicted in Figure 2. This figure shows that
the SVM classifier achieved high detection accuracy
through the high value of the true positive (0.95) and
true negative (0.93). On the one hand, the small val-
ues of false positive and false negative indicate that
the SVM classifier has a relatively small number of
misclassified samples, and there is no bias toward any
specific class. On the other hand, the SVM classifier
seems to have some degrade in the performance in
terms of classifying Normal methods. This indicates
that we may need to enhance the attribute set used
to train this classifier and provide more attributes
that could help the classifier predict the correct class.

Figure 2. Confusion matrix of the stage-1 classifier

The classification metrics resulting from training
the stage-1 classifier over the input dataset are shown
in Table 1. As can be seen from the Table, the stage-1
classifier achieved outstanding performance over our
dataset. The average accuracy is 94.4%, with high
and close precision and recall. The results indicate

ISeCure

66 A ML Approach for Detecting and Categorizing SMs in Android Malware — Hasan, Deeb, and Tork

that the classifier has no bias towards any class, which
shows the effectiveness of the stage-1 classifier in
detecting the sensitive methods from the samples
under analysis.

Table 1. Classification results of the stage-1 classifier

AUCAccuracy F1 Precision Recall

Stage-1 classifier 0.974 0.944 0.952 0.954 0.950

4.2 Effectiveness of the Proposed Approach
in Categorizing the Detected Sensitive
Methods

In this section, we will answer the second research
question and evaluate the ability of the second classi-
fier to categorize the sensitive methods. The goal of
the stage-2 classifier is to identify the category of the
detected sensitive methods. We extracted all the sam-
ples from the training dataset and used them to train
the stage-2 classifier. To verify the classifier perfor-
mance, 10-fold cross-validation is used while training
the stage-2 classifier. The resulted confusion matrix
is depicted in Figure 3. As shown from this figure, the
stage-2 classifier provides accuracy larger than 90.0%
in classifying almost all different categories. On the
other hand, the accuracies for some other categories
were not good enough. The main reason behind that
is the high similarity between the methods belonging
to these categories (in terms of extracted attributes).
Furthermore, the small number of samples belong to
some categories (i.e., Integrity Check, Dynamic code
loading, and Binary categories), making it difficult for
the classifier to understand the relationship between
their extracted attributes.

Moreover, some methods from the TelephonyMan-
ager class can be used to get the location of the test
environment, such as getNetworkOperator() method,
which prevents the classifier from distinguishing be-
tween the Anti-emulation and Location categories
in some cases. On the other hand, the number of
methods belonging to the Integrity check category
is relatively small. This prevents the classifier from
understanding the correct pattern of their features.
Another conclusion we can obtain from Figure 3 is
that the stage-2 classifier deals with unbalanced data.
This kind of data will result in a high bias toward a
specific class, which can be seen in the results. We
employed 10-fold cross-validation to deal with this
issue in our work. The classification metrics resulting
from training the stage-2 classifier over our dataset
are shown in detail in Table 2.

As can be seen from Table 2, the resulted accuracy
is around 92.8%. The general performance of the clas-
sifier is good and it succeeds to obtain outstanding
results over various categories. Since the number of

Figure 3. Confusion matrix of the stage-2 classifier

samples is not large enough and the data is not bal-
anced. Some bias may appear in the classifier results,
which degrade its performance. However, according to
the results we obtained, the stage-2 classifier performs
well in categorizing the detected sensitive methods.

Table 2. Classification results of the stage-2 classifier

AUCAccuracy F1 Precision Recall

Stage-2 classifier 0.986 0.928 0.922 0.926 0.918

4.3 The Existence of the Obtained Sensitive
Methods in the Real-World Malware
Samples

In this section, we will answer the third research ques-
tion and evaluate the existence of the obtained meth-
ods from the proposed approach in the real-world
samples. For this purpose, we used 500 samples that
are randomly selected from AMD and Contigue Mo-
bile datasets. We used the obtained sensitive method
list as an input to the Droidmon [14]. In general, the
Droidmon takes this list and captures the defined
methods in this list whenever they are invoked during
the execution. Hence, we ran the selected 500 samples
using the framework proposed in [7] and waited for
Droidmon to capture the predefined methods. Inter-
estingly, Droidmon was able to detect many potential
new sensitive methods that were not recognized by
currently available tools [11] [12] [13]. For example,
queryUsageStats() method from UsageStatsManager
class. This method is used to get the usage states
for all the applications in a specific period. Another
example is the getMnc() method from CellIdenti-
tyGsm class. This method is used to get the mobile
network code. The first method can be used as an

ISeCure

January 2023, Volume 15, Number 1 (pp. 59–71) 67

Anti-emulation evasion to detect some applications
commonly used by normal users, such as WhatsApp.
The latter method can be used as a Location eva-
sion to detect the location of the test environment
based on the mobile network code. After analyzing
500 samples, we found that the number of samples
that use sensitive methods was 487 samples overall.
Moreover, the number of sensitive methods detected
by Droidmon was 26330 sensitive methods. Figure 4
represents the number of the detected methods for
each predefined category.

Figure 4. The number of the detected sensitive methods in
each category

As shown in Figure 4, the most detected category
is the Anti-emulation category, which emphasizes the
experimental evaluation we have achieved manually.
The methods in this category are commonly used
by the malware either to detect the type of the test
environment or to steal some sensitive information
such as the device IMEI. Furthermore, this category
includes a wide range of methods that can be used to
detect the test environment, unlike the Integrity check
category which can include a very limited number of
methods.

4.4 The Impact of the Obtained List from
the Proposed Approach on the State-Of-
Art Dynamic Analysis Framework

In this section, we answer the fourth research question
and evaluate the impact of the obtained list from
the proposed approach on the effectiveness of a state-
of-the-art dynamic analysis framework. For that, we
used Ares [12], IntelliDroid [13], and Curious-Monkey
[18]. We used samples from AMD dataset in this
experiment and ran these tools in two scenarios, with
their defined lists and with the obtained list from the
proposed approach, and compared the results. In the
following, we will present the results obtained from
each tool.

4.4.1 The Impact of the Obtained List on
Ares Effectiveness

Ares [12] is a dynamic analysis framework that uses
static analysis to detect the evasions along the paths
to the payloads. Then it runs the sample and uses
forced execution to flip the condition in each evasion
to reach the payload location. Ares uses a fixed list
of evasion sources to detect the existence of the eva-
sions in the sample code by using the static informa-
tion flow analysis. Hence, the effectiveness of Ares is
based on the completeness of the used evasion list. In
this experiment, we evaluate the effectiveness of Ares
in detecting new evasions when using the obtained
list from the proposed approach. We used 300 sam-
ples randomly selected from all the families of AMD
dataset and ran Ares in two scenarios: when using
the default list of Ares and when using our obtained
list. Figure 5 represents the detected evasions by Ares
in the aforementioned scenarios.

Figure 5. The number of the detected evasions by Ares: with
the default list vs. the new list

As can be seen from Figure 5. The number of
detected evasions by Ares when using the obtained
list from the proposed approach increases in most
cases. The most noticeable increase is in the file access
category. This is because many methods were added
to the Ares default list, such as reading information
from different databases like SQLite and Firebase.
On the other hand, the number of detected evasions
in the integrity check category was the same in both
scenarios. This is because there is no added method
by the obtained list in this category.

4.4.2 The Impact of the Obtained List on
IntelliDroid Effectiveness

IntelliDroid [13] is another dynamic analysis frame-
work for Android malware. This tool uses a fixed list
of target instructions (the payload methods in our def-
inition) that are considered payload evidence. First,
it detects the existence of these target instructions
statically. Then it detects the execution paths that

ISeCure

68 A ML Approach for Detecting and Categorizing SMs in Android Malware — Hasan, Deeb, and Tork

lead to these instructions and all the constraints (the
evasions in our definition) along the paths statically.
After that, it runs the sample under analysis and tries
to solve the constraints along the paths to reach the
target instructions. However, if the constraints along
the paths to the target instruction are not defined, In-
telliDroid will not solve these constraints, and hence
the target instructions will not be reached. Moreover,
IntelliDroid uses the list of four categories (of our de-
fined payload method categories) to detect the target
instructions, i.e., it only uses blocking SMSs, deleting
SMSs, sending SMSs, and network access. Hence the
other categories, i.e., binary, web view attack, wake
lock, and dynamic code loading, are not supported
by IntelliDroid. In this experiment, we used our list
of payload methods in IntelliDroid, and adjusted In-
telliDroid to solve more constraints according to the
obtained list of evasions from the proposed approach.
Then we ran IntelliDroid in two scenarios, i.e., with
its default list of target instructions and constraints
and with the new list obtained from the proposed ap-
proach. We only used 142 samples (two samples ran-
domly selected from each family) from AMD dataset
to do the experiment. This is because IntelliDroid
is not fully automated and requires human interac-
tion to insert the inputs that are used to solve the
constraints. Figure 6 represents the obtained target
instructions by IntelliDroid in the aforementioned
scenarios.

As can be seen from Figure 6, IntelliDroid could
reach target instructions from the newly defined cat-
egories, i.e., binary, web view attack, wake lock, and
dynamic code loading. Moreover, it could reach more
target instructions from its defined categories. There
are two reasons for these results: first, more instruc-
tions are added to the defined categories in Intel-
liDroid. For example, the method java.net.URL.set()
in the network access category is not defined in the de-
fault list of IntelliDroid but is defined in the obtained
list of the proposed approach. Second, the number of
supported constraints to be solved increases accord-
ing to the obtained list from the proposed approach.
For example, the time evasions were not supported
by IntelliDroid. Hence, if the time evasions are used
along the path to the target instruction, IntelliDroid
could not bypass this type of evasion, and as a result,
it could not reach the target instructions. However,
whenever we used the evasions list obtained by the
proposed approach, IntelliDroid could defeat many
new evasions, like time evasions, and consequently, it
could reach more target instructions.

4.4.3 The Impact of the Obtained List on
Curious-Monkey Effectiveness

Curious-Monkey [18] is an extended version of Mon-
key [30]. This tool provides the ability to generate

Figure 6. The number of the detected target method by
IntelliDroid: with the default list vs. the new list

both UI and system events and tackle the evasions
along the paths to the payload dynamically by using
Xposed module. However, the used Xposed module
in Curious-monkey uses a predefined list of the most
used evasion methods by Android malware. It hooks
the defined evasion methods and sets their returned
results to some predefined values. In this way, the
evasions can be defeated dynamically, and the pay-
load can be reached. Moreover, Curious-monkey uses
Droidmon [14] to capture the defined methods as ev-
idence of the malicious payloads whenever they are
invoked during the execution.

In this experiment, we used 300 samples randomly
selected from all the families of AMD dataset. We
updated the list of Xposed module methods used in
Curious-monkey with the evasions obtained by the
proposed approach. Moreover, we updated the list of
Droidmon with all the sensitive methods, i.e., both
evasions and payload methods, obtained from the pro-
posed approach to capture them whenever they are
invoked during the execution. Finally, we ran Curious-
monkey in two scenarios, i.e., with the default list and
with the newly obtained list (as we describe), and cap-
tured both evasions and payload methods to evaluate
the effectiveness of Curious-monkey. Figure 7 repre-
sents the captured sensitive methods by Droidmon
when we ran Curious-monkey in the aforementioned
two scenarios.

As shown from Figure 7, Curious-monkey could
detect more evasions and reach more payload meth-
ods when it uses the list generated by the proposed
approach in most cases. In the case of integrity check
and binary categories, Curious-monkey could detect
the same number of methods in both scenarios. The
reason for that is in these two categories, there
are no added methods to the default list used in
Curious-monkey. Moreover, in the case of dynamic
code loading, the number of detected methods by
Curious-monkey when it uses the new list is slightly
increased. This is because in this category only one

ISeCure

January 2023, Volume 15, Number 1 (pp. 59–71) 69

Figure 7. The number of the detected sensitive method by

curious-monkey: with the default list vs. the new list

method is added to the default method, which is
dalvik.system.BaseDexClassLoader.findResource()
method. Finally, the number of detected methods is
noticeably increased in some categories, such as file
access and network access. There are two reasons:
first, the number of added methods to these cate-
gories is big, and second, the number of detected,
and hence defeated evasions along the path to the
payload methods are increased. In other words, if
some evasions located along the path to the pay-
load methods are not defined in the default list of
Curious-monkey, the evasions will not be bypassed,
and the payload methods will not be reached. While,
if these evasions are defined in the obtained list,
Curious-monkey will be able to bypass these evasions
and hence reach the payload method.

5 Conclusion

In this paper, we introduced a machine learning ap-
proach to detect sensitive methods used by Android
malware and categorize them into 14 general cate-
gories. The proposed approach includes two stages of
classification. The stage-1 classification includes us-
ing the SVM classifier, and the stage-2 classification
uses the Gradient Boosting classifier. We used the
results from our previous works to provide a hand
noted dataset to train the two classifiers. The stage-
1 classifier provides 94.4% accuracy with high and
close precision and recall, and the stage-2 classifier
provides 92.8% accuracy. We applied the resulted
models to the 12759 methods extracted from Android
API 27 to find new sensitive methods. To ensure
that the real-world malware samples actually use the
resulting methods from the prediction process, we
used 500 malware samples that are randomly selected
from AMD and Contigue Mobile datasets. The results
showed that real-world malware samples actually use
the sensitive methods detected by the proposed ap-
proach. Finally, we used the generated list by the pro-
posed approach in three well-known dynamic analysis

frameworks for Android malware and used samples
from AMD dataset to evaluate the impact of the ob-
tained list on their effectiveness. The results show
that the obtained list increases the effectiveness of
these frameworks in detecting both evasions and pay-
load methods, which emphasizes our hypothesis that
completing the list of sensitive methods increases the
effectiveness of the dynamic analysis frameworks.

The proposed approach has some difficulty in iden-
tifying the correct category of some sensitive meth-
ods. Anyway, the nature of the input data and the
distribution of the sample significantly affect the clas-
sification process. Hence, we aim to use other classifi-
cation features along with more flexible and robust
classifiers in our future work. Finally, the proposed
approach can be extended to generate live evasion at-
tack traffic cases to evaluate the effectiveness of this
approach for real-time applications.

References

[1] Android Dominating Mobile Market, 2021 (ac-
cessed June 4, 2021).

[2] Hamid Bagheri, Alireza Sadeghi, Joshua Garcia,
and Sam Malek. Covert: Compositional analysis
of android inter-app permission leakage. IEEE
transactions on Software Engineering, 41(9):866–
886, 2015.

[3] Michael I Gordon, Deokhwan Kim, Jeff H
Perkins, Limei Gilham, Nguyen Nguyen, and
Martin C Rinard. Information flow analysis of
android applications in droidsafe. In NDSS, vol-
ume 15, page 110, 2015.

[4] Chani Jindal, Christopher Salls, Hojjat
Aghakhani, Keith Long, Christopher Kruegel,
and Giovanni Vigna. Neurlux: dynamic malware
analysis without feature engineering. In Pro-
ceedings of the 35th Annual Computer Security
Applications Conference, pages 444–455, 2019.

[5] Mario Faiella, Antonio La Marra, Fabio Mar-
tinelli, Francesco Mercaldo, Andrea Saracino,
and Mina Sheikhalishahi. A distributed frame-
work for collaborative and dynamic analysis of
android malware. In 2017 25th Euromicro In-
ternational Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 321–
328. IEEE, 2017.

[6] Hayyan Hasan, Behrouz Tork-Ladani, and Bah-
man Zamani. Megdroid: A model-driven event
generation framework for dynamic android mal-
ware analysis. Information and Software Tech-

ISeCure

70 A ML Approach for Detecting and Categorizing SMs in Android Malware — Hasan, Deeb, and Tork

nology, 135:106569, 2021.
[7] Hayyan Hasan, Behrouz Tork-Ladani, and Bah-

man Zamani. Enhancing monkey to trigger ma-
licious payloads in android malware. In 17th
International ISC Conference on Information
Security and Cryptology (ISCISC), pages 65–72.
IEEE, 2020.

[8] Raden Budiarto Hadiprakoso, Herman Kabetta,
and I Komang Setia Buana. Hybrid-based mal-
ware analysis for effective and efficiency android
malware detection. In 2020 International Confer-
ence on Informatics, Multimedia, Cyber and In-
formation System (ICIMCIS), pages 8–12. IEEE,
2020.

[9] Yung-Ching Shyong, Tzung-Han Jeng, and Yi-
Ming Chen. Combining static permissions and
dynamic packet analysis to improve android mal-
ware detection. In 2020 2nd International Con-
ference on Computer Communication and the
Internet (ICCCI), pages 75–81. IEEE, 2020.

[10] Siegfried Rasthofer, Steven Arzt, Stefan Triller,
and Michael Pradel. Making malory behave ma-
liciously: Targeted fuzzing of android execution
environments. In 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering
(ICSE), pages 300–311. IEEE, 2017.

[11] Xiaolei Wang, Yuexiang Yang, and Sencun Zhu.
Automated hybrid analysis of android malware
through augmenting fuzzing with forced execu-
tion. IEEE Transactions on Mobile Computing,
18(12):2768–2782, 2018.

[12] Luciano Bello and Marco Pistoia. Ares: trig-
gering payload of evasive android malware. In
2018 IEEE/ACM 5th International Conference
on Mobile Software Engineering and Systems
(MOBILESoft), pages 2–12. IEEE, 2018.

[13] Michelle Y Wong and David Lie. Intellidroid: A
targeted input generator for the dynamic anal-
ysis of android malware. In NDSS, volume 16,
pages 21–24, 2016.

[14] Droidmon, 2021 (accessed April 18, 2021).
[15] Yuping Li, Jiyong Jang, Xin Hu, and Xinming

Ou. Android malware clustering through ma-
licious payload mining. In International sym-
posium on research in attacks, intrusions, and
defenses, pages 192–214. Springer, 2017.

[16] Fengguo Wei, Yuping Li, Sankardas Roy, Xin-
ming Ou, and Wu Zhou. Deep ground truth
analysis of current android malware. In Interna-
tional Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages
252–276. Springer, 2017.

[17] Contagio Mobile Malware, 2021 (accessed Jan-
uary 11, 2021).

[18] Hayyan Hasan, Behrouz Tork Ladani, and Bah-
man Zamani. Curious-monkey: Evolved monkey

for triggering malicious payloads in android mal-
ware. ISeCure, 13(2), 2021.

[19] android-sensitive-methods-detection, 2022 (ac-
cessed March 5, 2022).

[20] Siegfried Rasthofer, Steven Arzt, and Eric Bod-
den. A machine-learning approach for classifying
and categorizing android sources and sinks. In
NDSS, volume 14, page 1125, 2014.

[21] Benjamin Livshits, Aditya V Nori, Sriram K Ra-
jamani, and Anindya Banerjee. Merlin: Speci-
fication inference for explicit information flow
problems. ACM Sigplan Notices, 44(6):75–86,
2009.

[22] Alejandro Mart́ın, Vı́ctor Rodŕıguez-Fernández,
and David Camacho. Candyman: Classifying
android malware families by modelling dynamic
traces with markov chains. Engineering Applica-
tions of Artificial Intelligence, 74:121–133, 2018.

[23] Akshay Mathur, Laxmi Mounika Podila, Keyur
Kulkarni, Quamar Niyaz, and Ahmad Y Javaid.
Naticusdroid: A malware detection framework
for android using native and custom permissions.
Journal of Information Security and Applica-
tions, 58:102696, 2021.

[24] Deqing Zou, Yueming Wu, Siru Yang, Anki
Chauhan, Wei Yang, Jiangying Zhong, Shihan
Dou, and Hai Jin. Intdroid: Android mal-
ware detection based on api intimacy analysis.
ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(3):1–32, 2021.

[25] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih
Abdulhayoglu. Hindroid: An intelligent android
malware detection system based on structured
heterogeneous information network. In Proceed-
ings of the 23rd ACM SIGKDD International
conference on knowledge discovery and data min-
ing, pages 1507–1515, 2017.

[26] Haipeng Cai, Na Meng, Barbara Ryder, and
Daphne Yao. Droidcat: Effective android mal-
ware detection and categorization via app-level
profiling. IEEE Transactions on Information
Forensics and Security, 14(6):1455–1470, 2018.

[27] Madan Somvanshi, Pranjali Chavan, Shital Tam-
bade, and SV Shinde. A review of machine learn-
ing techniques using decision tree and support
vector machine. In 2016 International Confer-
ence on Computing Communication Control and
automation (ICCUBEA), pages 1–7. IEEE, 2016.

[28] Zhiyuan He, Danchen Lin, Thomas Lau, and
Mike Wu. Gradient boosting machine: a survey.
arXiv preprint arXiv:1908.06951, 2019.

[29] Hayyan Hasan, Hasan Deeb, Behrouz Tork-
Ladani, and Bahman Zamani. Android malware
dynamic evasions, 2021.

[30] Android Developers, 2021 (accessed April 18,
2021).

ISeCure

January 2023, Volume 15, Number 1 (pp. 59–71) 71

Hayyan Salman Hasan received
his B.Sc. in Automatic Control
and Computer Engineering from Al-
Baath University, Homs, Syria in
2011, and M.Sc. in Software Engi-
neering from Imam-Khomeini Inter-
national University (IKIU), Qazvin,

Iran in 2016, and Ph.D. in Computer Engineering
from University of Isfahan (UI), Isfahan, Iran in 2021.
His Ph.D. research focused on Model-Driven Devel-
opment and Android Malware analysis. He is now an
intern professor in the Automatic Control and Com-
puter Engineering department at Al-Baath Univer-
sity, Homs, Syria.

Hasan Muhammad Deeb received
his B.Sc. in Software Engineering
and Information Technology from
Al-Baath University, Homs, Syria in
2015, and M.Sc. in Computer Sci-
ence and Engineering from Siksha
’O’ Anusandhan University (SOA),

Bhubaneswar, Odisha, India in 2021. His M.Sc. re-

search focused on meta-heuristic optimization algo-
rithms and their applications in clustering and facial
emotions detection. He is now a software engineer at
OSOSS Company, Kuwait.

Behrouz Tork Ladani received his
B.Sc. in Software Engineering from
the University of Isfahan, Isfahan,
Iran in 1996, and M.Sc. in Software
Engineering from Amir-Kabir Uni-
versity of Technology, Tehran, Iran in
1998. He received his Ph.D. in Com-

puter Engineering from Tarbiat-Modarres University,
Tehran, Iran in 2005. He is currently a full professor
and Dean of the Faculty of Computer Engineering at
the University of Isfahan. Dr. Ladani is a member of
the Iranian Society of Cryptology (ISC). He is also
the managing editor of the Journal of Computing and
Security (JCS) and a member of the editorial board of
the International Journal of Information Security Sci-
ence (IJISS). Dr. Ladani’s research interests include
Security Modeling and Analysis, Software Security,
Computational Trust, and Soft Security.

ISeCure

	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 The Proposed Approach Architecture
	3.2 The Collected Dataset of Sensitive Methods
	3.3 The Predefined Categories

	4 Experimental Evaluation
	4.1 Effectiveness of the Proposed Approach in Finding Sensitive Methods
	4.2 Effectiveness of the Proposed Approach in Categorizing the Detected Sensitive Methods
	4.3 The Existence of the Obtained Sensitive Methods in the Real-World Malware Samples
	4.4 The Impact of the Obtained List from the Proposed Approach on the State-Of-Art Dynamic Analysis Framework

	5 Conclusion

