The ISC Int'l Journal of

Information Security

July 2022, Volume 14, Number 2 (pp. 181-192)

http://www.isecure-journal.org

Ransomware Detection Based on PE Header Using Convolutional

Neural Networks *

Farnoush Manavi »* and Ali Hamzeh *

1 Department of Computer Engineering and IT, Shiraz University, Shiraz, Iran.

ARTICLE INFO.

ABSTRACT

Article history:

Received: December 20, 2020
Revised: July 14, 2021

Accepted: July 17, 2021
Published Online: August 28, 2021

Keywords:

Convolution Neural Network,
Ransomware, Ransomware
Detection

Type: Research Article

doi: 10.22042/ISECURE.2021.
262846.595

dor: 20.1001.1.20082045.2022.
14.2.6.8

1 Introduction

With the spread of information technology in human life, data protection is
a critical task. On the other hand, malicious programs are developed, which
can manipulate sensitive and critical data and restrict access to this data.
Ransomware is an example of such a malicious program that encrypts data,
restricts users’ access to the system or their data, and then request a ransom
payment. Many types of research have been proposed for ransomware detection.
Most of these methods attempt to identify ransomware by relying on program
behavior during execution. The main weakness of these methods is that it is not
explicit how long the program should be monitored to show its real behavior.
Therefore, sometimes, these researches cannot detect ransomware early. In
this paper, a new method for ransomware detection is proposed that does not
need executing the program and uses the PE header of the executable file.
To extract effective features from the PE header file, an image is constructed
based on PE header. Then, according to the advantages of convolutional neural
networks (CNN) in extracting features from images and classifying them, CNN
is used. The proposed method achieves high detection rates. Our results indicate
the usefulness and practicality of our method for ransomware detection.

© 2020 ISC. All rights reserved.

threat to businesses, governments, and financial in-
stitutions worldwide [8, 9]. This malicious software

n recent years, the number of cybercrimes has grown

dramatically [1]. One of the most serious threats
to computer data and systems is ransomware [2],
which has increased with the proliferation of cryp-
tocurrencies such as bitcoin [3-5]. Ransomware is
a malicious program that encrypts data, restricts
users’ access to the system or their data, and then
requests a ransom payment [6, 7]. Ransomware is a

* Corresponding author.

**This article is an extended/revised version of an ISCISC’17
paper.

Email addresses: F.manavi@cse.shirazu.ac.ir,
Ali@cse.shirazu.ac.ir

ISSN: 2008-2045 © 2020 ISC. All rights reserved.

usually uses a strong cryptography algorithm such
as advanced encryption standard (AES) or Rivest-
Shamir-Adleman (RSA) to encrypt data [10-12]. Tt is
complicated to break these encryption algorithms and
find a decryption key. Therefore, before ransomware
is installed on the system, it must be detected [13].
There are several approaches to detect ransomware.
In general, three approaches can be used to extract
the features and then a detection model is trained [14].
These approaches are described below.

Approaches based on dynamic features. This
method requires program execution in a virtual en-
vironment to extract the features. In this method,
features are extracted according to the program activ-

ISeﬂure@

182

Ransomware Detection Based on PE Header Using CNN — Manavi and Hamzeh

ities at run time. For example, for each application,
dynamic linked libraries (DLLs), file system activities,
registry activities, and hardware events are consid-
ered [15-19]. In a virtual environment, some malicious
program does not show their real behavior after run-
ning [20]; thus, they bypass the detection system in
this way. Therefore, it is not clear how long each pro-
gram should be monitored to observe its real behavior.

Approaches based on static features. This cate-
gory does not require program execution to extract
features. In this category, each program’s file is de-
composed at the assembly level and features are ex-
tracted based on the obtained Opcodes [21-24]. In
some cases, the features are extracted from the file
bytes or the fields on file header [25, 26]. The disad-
vantage of these methods is that if the program file is
packed, extracting popular features such as Opcode
will not be efficient, and smart feature extraction al-
ternatives should be sought.

Approaches based on hybrid features. In this
category, features are extracted using static and dy-
namic approaches. In other words, the advantages of
the two previous methods are used together and a
set of features will be obtained [24, 27, 28]. In some
cases, due to the use of static and dynamic features
together, this approach will be very time-consuming.
After extracting the features, a model should be used
for classification. Machine learning classifiers such as
Random Forest, Adaboost, K-Nearest Neighbor, and
Support Vector Machine are the most common meth-
ods [21, 25-30]. Recently, neural networks are used to
classify the extracted features [31-34].

This article uses a static method that does not re-
quire a program execution to extract features. Each
application file consists of two parts, header and data.
Ransomware and benign programs are developed for
various targets, which results in variations in their
structure and header. The program header contains
useful data about each program. Therefore, in the pro-
posed method, relying on this subject, the portable
executable (PE) file header is used to extract the fea-
tures. The difference between the proposed method
and other static methods is the use of raw header
bytes. Like static methods which are based on Op-
codes, it does not require file preprocessing or domain
knowledge about the fields that make up the header.
If the program files are packed, the proposed method
can still detect ransomware with high accuracy, while
the previously presented static methods lose their ac-
curacy against packed files.

The remainder of this paper is organized as follows.
In Section 2, related works on ransomware detection
are discussed. In Section 3, the proposed method for
converting PE header to an image, and learning con-

18:0ured)

volutional neural network is explained. Section 4 de-
scribes the evaluation metrics, dataset, and obtained
results. Section 5 shows more experiments and dis-
cusses the results. Finally, in Section 6, the conclusion
is presented.

2 Related Work

In this section, some research on ransomware detection
will be discussed.

Homayoun et al. [11] proposed a dynamic approach
for ransomware detection. Due to the program’s ac-
tivities on files, they extracted a sequence of logs
and used them to obtain features. Finally, they clas-
sified obtained features using long short-term mem-
ory (LSTM) and convolutional neural network (CNN).
Their method is a dynamic solution, and it is not
clear how long each program should be monitored to
extract features.

Azmoodeh et al. [6] proposed a method based on
energy consumption footprint. They used PowerTu-
tor to monitor and record the device processes’ power
usage (while running the benign applications and ran-
somware, separately) for five minutes. Specifically,
their proposed method monitors the energy consump-
tion patterns of different processes to classify ran-
somware from benign applications. They then used
Neural Networks, K-Nearest Neighbors, Support Vec-
tor Machine and Random Forest to train the detec-
tion model. This method also has the weakness of the
Homayoun method [11] and the malicious program
may be at rest in five minutes of monitoring and show
its destructive behavior after this time.

Bae et al. [35] proposed a ransomware detection
method based on machine learning algorithms. They
extracted Application Programming Interface (API)
invocation sequences using the Intel PIN tool in a dy-
namic analysis environment. For feature extraction,
they considered N-gram API sequences. Finally, they
applied Random Forest, K-Nearest Neighbor, Naive
Bayes, Support Vector Machine on the feature vector
and classified each program. Obtaining API sequences
needs resources and extends the detection time. Also,
some ransomware detects the dynamic analysis envi-
ronment.

Using N-gram Opcodes, Zhang et al. [30] proposed
a patch-based CNN and Self-Attention Network for
ransomware detection. They used IDA Pro software
to extract Opcodes from each application file. They
considered the N-gram Opcodes as a patch. Then
they fed these patches to the self-attention Network
and finally detected the ransomware program. The
patch size will be affected on the result and should be
specified according to the number of Opcodes obtained
for each dataset.

July 2022, Volume 14, Number 2 (pp. 181-192)

l Extracting header

[[[1 |

1023 1024

Constructing image l

l Feeding image to the Network

Classification l

B

Figure 1. The overall structure of the proposed method

Zhang et al. [21] used Opcodes for ransomware
detection, such as this approach [30]. They considered
the frequency of N-gram Opcode sequences as a feature.
Using Term Frequency-Inverse Document Frequency
(TF-IDF), they considered important N-grams as final
features. Then, they used machine learning algorithms
to classify the obtained features.

Baldwin and Dehghantanha [29] proposed a static

method for ransomware detection. Using nine feature
selection algorithms, they obtained effective Opcodes
for ransomware detection. Then, by considering the
frequency of these Opcodes and Support Vector Ma-
chine, they detected the ransomware.
Using static features in these three methods [21, 29, 30]
is an advantage, but it should be noted that when the
program file is packed, we will face a major challenge,
which requires unpacking the files.

Vidyarthi et al. [25] proposed a static method for
ransomware detection. Their method is based on the
PE header of executable files. For each program using
some values from the header fields of the executable
files, they extracted features. Finally, they applied
these features to train a model based on Naive Bayes,
J48, and Random Forest.

Ashraf et al. [24] proposed a hybrid approach for ran-
somware detection. In static analysis, they extracted

features from raw PE headers. In dynamic analysis,
they ran each program in the Cuckoo sandbox envi-
ronment [36] and constructed the binary feature vec-
tor from the Registry changes, Application Program-
ming Interface (API) calls, and DLL’s. Then, using
Principal Component Analysis (PCA), they reduced
the number of features. Finally, based on the selected
features, they used machine learning techniques and
Transfer Learning-based Deep convolutional neural
networks (res-net18) [37] to detect Ransomware. This
method has a time overhead and in the extraction
phase of dynamic features, some important properties
such as frequency of API calls and registry keys are
ignored.

Previous researches required a different amount
of preprocessing, time consumption, and resources
to extract features. Ransomware differs from benign
files in some respects due to its destructive nature.
For example, ransomware header file is different from
benign header file [25]. The header of the executable
file contains useful information about each program,
which can be used to detect the nature of the program.
Therefore, in the proposed method, the header of
executable files is used to detect ransomware. No
special pre-processing is required with this choice, and
ransomware detection is done in the shortest possible
time.

3 Proposed Method

Due to the damage that the ransomware inflicts on the
systems, they will cause irreparable damage to users
or organizations if they are not identified early. There-
fore, feature extraction is a critical step. The extracted
features should have low computational complexity
and time overhead and ability to identify ransomware
programs well. The executable file of each program
includes different sections. For example, executable
files in the Windows operating system, known as .exe,
consist of header and data sections. The header of exe-
cutable files shows much information about the struc-
ture of that file. Therefore, in this paper, the header
is used to extract the features. In recent years, several
techniques such as Independent Component Analysis,
Linear Filtering, Partial Differential Equations, Neu-
ral Networks have been presented for feature extrac-
tion. Neural Networks are among the most powerful
methods available to extract features from images and
finally categorize them [38, 39]. Thus, we convert the
problem of file classification and ransomware detec-
tion into a problem of image classification to use the
methods in this area and provide a ransomware de-
tection method with a low computational complexity
with high accuracy. Figure 1 shows a diagram of the
proposed method.

The main steps of our detection method described

1S¢0ured)

183

184

Ransomware Detection Based on PE Header Using CNN — Manavi and Hamzeh

124 0000 0>
1
215 l
Zigzag pattern

—_—
87 l
a3 Se——— =
206

Figure 2. Pattern for converting extracted header to grayscale
image

below:

e Extracting the header of executable files from
each program

e Constructing a grayscale image using the ex-
tracted header

e Training convolutional neural network based on
images

e Testing the model on unseen samples

3.1 Extracting the Header of Executable
Files

Today, the Windows operating system is widely used.
The PE is a format file in the Windows operating
system used for executable, DLL, and object code files.
Each file in this format consists of two main parts,
header and data. In each file, the header shows the
structure of that file, which has important information
about the nature of the executable file. Therefore, in
this paper, using the “pefile” library in the Python
programming language, the header of each executable
file is extracted and a vector with 1024 components
is obtained. Each element in this vector has a value
from 0 to 255.

3.2 Constructing a grayscale image using
the extracted header

The header obtained from the previous step is a vector
with 1024 components, which can be processed with
many techniques. PE header includes different parts
such as DOS Header, PE Signature, COFF Header,
Optional Header, and Section Header, all of which do
not have the same value. For example, the PE Signa-
ture section contains 4 bytes, indicating the value of
“PE / 0 / 0”. This section specifies that a file is in PE
format, so the value of this field is always constant in
ransomware and benign files. In this research, to be
able to use raw header information more efficiently,
they are converted into an image. In this case, the
important and distinctive parts in the header of the
benign and ransomware files will show themselves as
different objects in the images. Finally, in the next
steps, Neural Networks’ capabilities are used to ex-

18:0ured)

(b)

(©) (d)

€:9) (h)

Figure 3. Examples of images generated by the proposed
method. Figures a, b, ¢, d are different family of ransomware,
and Figures e, f, g, h are benign samples.

tract features from these images and a method with
a high detection rate is presented. To construct an
image, header bytes can be placed side by side in dif-
ferent techniques. In order to increase the continuity
of the bytes, using the zigzag pattern shown in Fig-
ure 2, each header is converted into a 32*32 grayscale
image. Figure 3 shows eight images constructed in the
proposed method.

3.3 Training Convolutional Neural Network

Convolutional neural network (CNN) is a type of Deep
Neural Network widely used in pattern and image
recognition [40]. In this paper, CNN is used to cate-
gorize the images obtained from each executable file.
Each CNN has important layers under the name con-
volutional, pooling, and fully connected. The functions
of the convolutional layers and pooling are feature

July 2022, Volume 14, Number 2 (pp. 181-192) 185

Table 1. Parameters of the CNN

Layer number Parameters Number of parameter

Layer (type)
1 BatchNormalization - 4

Kernel'size= (3, 3), Filter= 64, Activation= ‘relu’,
2 Convolutional 640

padding="‘valid’

3 MaxPooling Pool'size= (2, 2) 0

4 Dropout Rate= 0.3 0

Kernel'size= (3, 3), Filter =128, Activation= ‘relu’,
5 Convolutional 73856

padding="‘valid’

6 MaxPooling Pool'size= (2, 2) 0
7 Flatten - 0
8 Dropout Rate= 0.5 0
9 Fully Connected utput Filter size= 16, Activation= ‘relu’ 73744
10 Batch Normalization - 64
11 Fully Connected Output Filter size= 2, Activation= ‘softmax’ 37

extraction. Fully connected layer takes the results of
convolutional and pooling processes and uses them to
label and classify images. As the number of layers in
the Network increases, the complexity and possibility
of over-fitting increases. Therefore, in this paper, with
the least possible number of layers, a model is trained
to extract the features and classify the samples.

In the proposed method, BatchNormalization is
used. BatchNormalization speeds up the learning pro-
cess. By using it, each layer of the Network is trained a
little bit more independently from other ones. Batch-
Normalization is required for increasing the stability
of a Neural Network. In the middle layers, due to the
operations applied to the input data, the effect of
BatchNormalization is neutralized, so in this paper,
it is used after the input layer and before the output
layer. In order for the Network to have more gener-
alization and to prevent overfitting, dropout is done
after several layers and some of the Network weights
are deactivated. Finally, using the Flatten layer, the
resulting features are converted into vectors and used
for the final layers of the Network. Table 1 shows
the specifications of the proposed Network in this pa-
per. During Network training, number-of-epochs= 100,
learning-rate= 0.001, and optimizer= "rmsprop’ are
considered. Other Network parameters not mentioned
in the article have the default value of Keras APL

3.4 Testing the Model on Unseen Samples

Using the trained Network disucussed in Section 3.3,
the classifier is evaluated on the test data. To this
aim, steps discussed in Section 3.1 and Section 3.2 are
repeated, and according to the header of the executable
files, a 32*32 image of the program is constructed.

Then, the trained Neural Network in the previous
step is used to detect the label of that image, and
the suspicious program is divided into two categories:
ransomware and benign.

4 Dataset and Result

In this section, the evaluation experiments of the
proposed method will be examined. For this purpose,
the dataset, evaluation metrics, and experimental
environment used in this paper are described.

4.1 Dataset 1

This dataset contains 2000 executable files in PE
format'. The non-malicious data used in this
dataset contains 1000 EXE files that have been
downloaded from FreewareFiles? , SnapFiles® and
PortableApps# sites. This dataset is scanned using
ESET NODE32 to ensure that they are non-malicious
software. The size of these files is from 1 KB to
165 MB. The ransomware files were downloaded from
the VirusShare® database. In this paper, 1000 ran-
somware have been randomly selected. These files
include different types of ransomware, such as Cerber,
Locky, Torrent, and Tesla. The size of the selected
files is between 1 KB and 18 MB.

4.2 Dataset 2 (Imbalanced dataset)

In the real world, the number of benign files is much
more than the number of ransomware files. Hence, it

L' In order to access the data, send an email to
f.manaviQcse.shirazu.ac.ir

2 www.freewarefiles.com

www.snapfiles.com

www.portableapps.com

3
4
5 ; h
Www.virussnare.com

1S¢0ured)

186

Ransomware Detection Based on PE Header Using CNN — Manavi and Hamzeh

Table 2. The number of samples in the various family in
dataset 3

TeslaCrypt Sage Wannacry Locky Cerber

97 137 213 219 211

is more realistic to evaluate the classifier on an im-
balanced dataset. Therefore, this dataset has been
collected to evaluate the proposed method and com-
petitor methods. This dataset contains 6000 benign
and 1000 ransomware files. Its ransomware files are
collected from VirusTotal® and VirusShare websites.
These files include various types of ransomware such
as Wannacry, Cerber, Locky, etc. Its benign files are
collected from ”System32” and ”Program Files” fold-
ers of standard Windows and programs available from
freewarefiles, snapfiles and portableapps websites.

4.3 Dataset 3

This dataset contains 877 ransomware samples in 5
different families under the name Cerber, Locky, Wan-
nacry, Sage and TeslaCrypt. These files were obtained
by crawling on the VirusTotal and VirusShare sites.
Table 2 shows the number of files in the various family.

4.4 Evaluation Metrics

Common machine learning evaluation metrics such as
Precision, Recall, F-measure, and accuracy are used
to evaluate the results [41]. Relations 1-4 show how
to obtain these metrics.

e True positive (TP): Indicates the number of
samples that are correctly labeled as the benign
class.

e True negative (TIN): Indicates the number of
samples that are correctly labeled as the ran-
somware class.

e False positive (FP): Indicates the number of
samples which are incorrectly labeled to be in
the benign class.

e False negative (FN): Indicates the number of
samples which are incorrectly labeled as ran-
somware class.

e Precision: Precision for a specific class, is the
result of dividing the number of rightly predicted
samples of that class by the total number of
samples that are predicted as the same class [41].
Relation 1 shows how to obtain Precision.

TP
Precision = TP+ FP) (1)
e Recall: Recall for a specific class, is the result of
dividing the number of rightly predicted samples

6 www.virustotal.com

18:0ured)

of that class by the total number of class samples
[41]. Relation 2 shows how to obtain Recall.

TP
Recall = —————— 2
T TP Y FN) @)
e F-measure (F1): F-measure is the harmonic
mean of Precision and Recall [41]. Relation 3
shows how to obtain F-measure.

(Presision x Recall)
(Presision + Recall)

F — measure = 2 x (3)

e Accuracy: Accuracy is the total number of
samples that are correctly predicted, divided
by the total number of samples [41]. Relation 4
shows how to obtain accuracy.

(TP + FN) A
HP+FP+TN+FN)()

To detect overfitting, cross validation technique has
been used to evaluate the results. For this purpose,
the dataset is divided into 10 equal parts. Each time
one of the 10 parts is selected as a test set and the
remaining 9 parts are selected as the training data
set to build the model. This will be repeated 10 times
and the average result of all the steps are represented
as final result [42].

Accuracy =

4.5 Experimental Setup

The proposed method is programmed using Python
3.7, which runs on a Windows 10 system with Intel (R)
Core (TM) i5-2400 CPU specifications @ 3.10GHz
with 32GB RAM.

4.6 Experimental Results

4.6.1 Comparison of the Proposed Method
with Ransomware Detection Methods

To evaluate the performance of the proposed method,
the performance results will be compared with these
approaches [21, 24, 25, 29]. In this paper, a static
method for ransomware detection was proposed, so to
evaluate its performance, it is compared with static
methods such as [21, 25, 29]. These two methods
[21, 29] extracted features according to Opcodes from
the executable files and then used machine learn-
ing methods for the classification task. In Vidyarthi
method [25], as in the proposed method, the header
is employed for the detection model. The difference is
that in this method, according to the fields that make
up the header of the executable files, several features
are extracted. Then, these features are classified using
Random Forest. To compare the proposed method
with a dynamic method, Ashraf method [24] has been
selected. In this method, two types of static and dy-
namic features are extracted from the programs. The
combination of these features is used as input in the

July 2022, Volume 14, Number 2 (pp. 181-192)

Table 3. Compare the proposed method with other methods on dataset 1

Precision (%) Recall (%) F-measure (%) Accuracy (%) Metric/Approach
93.40 93.33 93.34 93.33 Proposed method
92.78 92.75 92.74 92.75 Zhang et al. [21]
92.08 91.93 91.92 91.93 Ashraf et al. [24]
90.67 90.43 90.40 90.43 Vidyarthi et al. [25]
90.21 90.17 90.12 90.17 Baldwin and Dehghantanha [29]

Table 4. Compare the proposed method with other methods on dataset 2

Precision (%) Recall (%) F-measure (%) Accuracy (%) Metric/Approach
94.99 95.11 95.00 95.11 Proposed method
94.22 94.38 94.26 94.38 Zhang et al. [21]
93.95 94.13 94.01 94.13 Ashraf et al. [24]
93.86 94.08 93.90 94.08 Vidyarthi et al. [25]
92.10 92.37 91.58 92.37 Baldwin and Dehghantanha [29]

Table 5. Compare executing time of proposed method with other methods on dataset 1

Test time (s)

Training time (s)

Time/Approach

63.44 571.32
373.47 3798.85
24300.23 218000.54
65.60 590.65
366.42 3322.67

Proposed method

Zhang et al. [21]

Ashraf et al. [24)]

Vidyarthi et al. [25]

Baldwin and Dehghantanha [29]

Table 6. Compare executing time of proposed

method with other methods on dataset 2

Test time (s)

Training time (s)

Time/Approach

190.02 1894.78
1403.77 13336.18
84950.58 761023.949
216.06 2389.20
1699.01 15498.37

Proposed method

Zhang et al. [21]

Ashraf et al. [24]

Vidyarthi et al. [25]

Baldwin and Dehghantanha [29]

resnet18 [37] and finally, the ransomware is detected.
Table 3 and Table 4 show the average accuracy, F-
measure, Recall and Precision of ransomware and be-
nign instances. Table 5 and Table 6 show the average
execution time of model training and test in 10-fold
cross validation.

Our proposed method has a higher detection rate
than the mentioned methods and performs model
training and testing of suspicious samples in less time.
One of the reasons for the better results of the pro-
posed method lies in the fact that it uses the PE
header. Each benign and ransomware file has a differ-
ent header depending on its performance, so header
information can effectively detect ransomware’s ma-
licious nature. The executable file header consists of

different sections such as DOS Header, PE Signature,
COFF Header, Optional Header, and Section Header,
all of which do not have the same value. In the pro-
posed method, to better process header information
and extract more effective features from it, header
bytes are converted into images. In this case, the impor-
tant and distinctive parts in the header of the benign
and ransomware files will show themselves as differ-
ent objects in the images. Therefore, in the proposed
method, 1024 bytes of the header will be placed next
to each other using the zigzag pattern. The proposed
method uses a Neural Network to extract the features
in the images. Convolutional neural network has the
ability to extract local and global features in images
and use them for the categorization phase. Therefore,

1S¢0ured)

188

Ransomware Detection Based on PE Header Using CNN — Manavi and Hamzeh

the proposed method has been able to identify ran-
somware programs with a higher detection rate.

4.6.2 Comparison of the Proposed Method
with Malware Detection Methods

Given that ransomware is a type of malware, in the
following, we will compare our proposed method with
several methods that have been presented for the
classification of malware. Since the proposed method
statically extracts features from program files, we
chose three methods [43-45] that statically detect
malicious programs.

Gibert et al. [43] use executable file bytes to detect
malware. They construct a grayscale image from the
whole byte of the file. Then, they convert this image to
a fixed size of 256*256 pixel using the downsampling
technique. Finally, they classify these images using
CNN.

Le et al. [44], using the downsampling technique,
extract a vector with 10,000 components from the file’s
whole bytes. Then, they feed this vector to LSTM and
CNN for classification.

Kumar et al. [45] extract two types of features (Raw
features and Derived features) based on PE header
fields. Then, they apply the obtained features to ma-
chine learning classifiers such as K-Nearest Neighbor,
Naive Bayes, and Random Forrest.

Table 7 shows the average accuracy, F-measure,
Recall and Precision on ransomware and benign in-
stances of the proposed method and these methods.
Table 8 shows the average execution time of model
training and test in 10-fold cross validation.

As the results of Table 8 illustrates, the proposed
method, with the proper use of raw bytes of header,
specifies the label of a program in less time than the
methods mentioned. In Gibert [43] and Le [44] method,
all bytes of the program are reviewed. Then, using the
downsampling technique, features are extracted from
all bytes of the program, which increases the training
and testing time of the model. Kumar method [45] uses
only header bytes to extract the feature and according
to them, it extracts two types of features, which makes
the training and testing time of a sample less. In this
method, to extract features from header bytes, domain
knowledge about the executable file header structure
is required. In contrast, in the proposed method, it is
not necessary to specify the different header sections.

5 Discussion

In this section, three experiments are discussed to
examine the proposed method further.

18:0ured)

5.1 Testing the proposed Network on whole
bytes of the file

In the proposed method, 1024 bytes of the header are
converted into a 32*23 pixel image and then CNN is
used to extract features and classify samples. This
time, to determine the header’s effect in the proposed
Network, the whole bytes of the file are used to create
the images, and to train, these images will be fed to
the Network designed in Section 3.3. The number of
bytes of each program file will be different from other
programs. Therefore, the downsampling technique [43]
is used to create images of the same size. Each program
file will have an average size of a few megabytes, and
the use of downsampling technique to create a 32%32
pixel image of each program file will cause a large
amount of data to be lost. Therefore, for a fairer
comparison with whole bytes of the file, a 320*320 pixel
image is be created; hence other parts of the executable
file and header are effective in image construction.
Table 9, Table 10, Table 11 and Table 12 show the
result of executing the proposed Network using the
images obtained from the whole file and header bytes.

As the results show, the use of header bytes alone
will show higher accuracy in ransomware detection.
Table 9 and Table 10 show the Network’s train time
in two modes of constructing images from the whole
file and header bytes. As a result, using the header
alone, will greatly reduce the training time of the
model. Henceforth, selecting a header for ransomware
detection will be a wise choice, and the accuracy and
time consumption of detection will change optimally
with this selection.

5.2 Testing the Proposed Method for the
Ransomware Family Categorization

In this section, the proposed method will be tested to
identity different families of ransomware. The third
dataset will be used for this purpose. As mentioned
in section 4.3, this dataset includes five important
families of ransomware. In the last layer of the pro-
posed Network, five neurons will be used to identify
these five families instead of two neurons. Table 13
shows the results of executing the proposed method
for ransomware categorization on the third dataset.

As the results in Table 13 indicate, the proposed
method for ransomware categorization is also very ac-
curate. These results show that converting headers to
32*32 pixel images is a wise choice that will summa-
rize the nature of each file in these images. Finally,
by using the designed network, the nature of each
program can be well detected.

July 2022, Volume 14, Number 2 (pp. 181-192) 189

Table 7. Compare the proposed method with malware detection methods on dataset 1

Precision (%) Recall (%) F-measure (%) Accuracy (%) Metric/Approach

93.40 93.33 93.34 93.33 Proposed method
90.01 89.95 89.94 89.95 Gibert et al. [43]
91.10 90.95 90.94 90.95 Le et al. [44]

92.92 92.89 92.88 92.89 Kumar et al. [45]

Table 8. Compare executing time of proposed method with
malware detection methods on dataset 1

Test time (s) Training time (s) Time/Approach

63.44 571.32 Proposed method
8771.51 94188.73 Gibert et al. [43]
4210.56 44712.36 Le et al. [44]

93.73 2745.98 Kumar et al. [45]

Table 9. Executing time of the proposed Network in two modes of constructing
images from whole file and header bytes on dataset 1

Test time (s) Training time (s) Time/Approach

1608.51 79791.92 Proposed network whole file
63.44 571.32 Proposed network with header bytes

Table 10. Executing time of the proposed Network in two modes of constructing
images from whole file and header bytes on dataset 2

Test time (s) Training time (s) Time/Approach

3807.32 250175.78 Proposed network whole file
190.02 1894.78 Proposed network with header bytes

Table 11. The result of proposed Network with whole file and header bytes on dataset 1

Precision (%) Recall (%) F-measure (%) Accuracy (%) Metric/Approach

90.69 90.50 90.48 90.50 Proposed network with whole file
93.40 93.33 93.34 93.33 Proposed network with header bytes

Table 12. The result of proposed Network with whole file and header bytes on dataset 2

Precision (%) Recall (%) F-measure (%) Accuracy (%) Metric/Approach

92.64 92.85 92.17 92.85 Proposed network with whole file
94.99 95.11 95.00 95.11 Proposed network with header bytes

Table 13. The result of proposed Network for ransomware categorization

Precision (%) Recall (%) F-measure (%) Accuracy (%) Metric/Approach

Proposed method for ransomware
94.59 94.41 94.39 94.41
categorization

1S¢0ured)

Ransomware Detection Based on PE Header Using CNN — Manavi and Hamzeh

Table 14. Compare the proposed method with other methods on packed dataset

Precision (%) Recall (%) F-measure (%) Accuracy (%) Metric/Approach
83.35 82.93 82.88 82.93 Proposed method
63.99 62.24 61.02 62.24 Zhang et al. [21]
80.50 80.27 80.23 80.27 Vidyarthi et al. [25]
61.23 60.71 60.23 60.71 Baldwin and Dehghantanha [29]

5.3 Testing the Proposed Method on the
Packed Dataset

If the executable file of the program is packed, in most
cases, the static methods of ransomware detection
will have problems and their accuracy will be reduced.
In this section, the effect of packing the program file
on the proposed method and other static mentioned
methods will be examined. For this purpose, the train-
ing data of the first dataset is fed to the Network same
as before; only the test data is packed using the UPX
tool. These packed test samples are then used to eval-
uate the performance of the methods. The results of
this experiment are presented in Table 14. In this ex-
periment, only static ransomware detection methods
have been investigated.

As the results show, the two methods [21, 29] that
use the program’s Opcodes, are less accurate than the
packed test files. Since the program executable file
is packed, when the program Opcodes are extracted,
they will not be the main Opcodes, and these Opcodes
are to take the program out of the pack format and
run the program. Therefore, static methods based on
Opcodes are not resistant to packed files and lose their
accuracy. To improve the accuracy of these methods,
one must first look for solutions to unpacked the file,
which in some cases is not simple.

Vidyarthi [25] method, which extracted features
from some header fields, is still resistant to packed
files and shows that extracting attributes from the
header is an accurate choice. However, this method’s
disadvantage is that it extracts features only from some
header fields and some important fields are ignored.
In the proposed method, the first 1024 bytes of the file
that make up the executable file header are required
to extract the features. If the program files are also
packed, accessing these 1024 bytes will not be difficult.
The results in Table 14 show that if the program files
are also packed, the proposed method will still detect
ransomware with proper accuracy.

6 Conclusion

In this paper, a static method based on feature extrac-
tion from the PE header was proposed. Ransomware
is structurally different from benign files due to their
destructive nature. This difference is evident in the

18:0ured)

header. The program header contains useful data
about each program that can be used to detect ran-
somware. The raw header bytes are converted into an
image in the proposed method to show the header’s
important parts in benign and ransomware files as
different objects in their images. Using these images,
a convolutional neural network is trained, and the
ransomware files are identified. In this paper, the pro-
posed method is fairly compared with other methods,
and the result shows the efficiency and accuracy of
the proposed method. The advantage of the proposed
method is that it does not need to run the program to
extract the feature, and each file, regardless of its size,
is summarized in the form of a 32*32 pixel image.

References

[1] Nabie Y Conteh and Paul J Schmick. Cybersecu-
rity risks, vulnerabilities, and countermeasures
to prevent social engineering attacks. In Ethi-
cal Hacking Techniques and Countermeasures for
Cybercrime Prevention, pages 19-31. IGI Global,
2021.

[2] Fakhroddin Noorbehbahani, Farzaneh Rasouli,
and Mohammad Saberi. Analysis of machine
learning techniques for ransomware detection. In
2019 16th International ISC (Iranian Society of
Cryptology) Conference on Information Security
and Cryptology (ISCISC), pages 128-133. IEEE,
2019.

[3] Kim-Kwang Raymond Choo. Cryptocurrency
and virtual currency: Corruption and money laun-
dering/terrorism financing risks? In Handbook of
digital currency, pages 283-307. Elsevier, 2015.

[4] Masarah Paquet-Clouston, Bernhard Haslhofer,
and Benoit Dupont. Ransomware payments in
the bitcoin ecosystem. Journal of Cybersecurity,
5(1):tyz003, 2019.

[5] Abbas Yazdinejad, Hamed HaddadPajouh, Ali
Dehghantanha, Reza M Parizi, Gautam Srivas-
tava, and Mu-Yen Chen. Cryptocurrency mal-
ware hunting: A deep recurrent neural network
approach. Applied Soft Computing, 96:106630,
2020.

[6] Amin Azmoodeh, Ali Dehghantanha, Mauro
Conti, and Kim-Kwang Raymond Choo. De-
tecting crypto-ransomware in iot networks based

[12]

[14]

[15]

[16]

July 2022, Volume 14, Number 2 (pp. 181-192)

on energy consumption footprint. Journal of
Ambient Intelligence and Humanized Computing,
9(4):1141-1152, 2018.

Mamoona Humayun, NZ Jhanjhi, Ahmed Al-
sayat, and Vasaki Ponnusamy. Internet of things
and ransomware: Evolution, mitigation and pre-
vention. Egyptian Informatics Journal, 22(1):105—
117, 2021.

Wira Zanoramy A Zakaria, Mohd Faizal Abdol-
lah, Othman Mohd, and Aswami Fadillah Mohd
Ariffin. The rise of ransomware. In Proceedings
of the 2017 International Conference on Software
and e-Business, pages 6670, 2017.

Pierre-Luc Pomerleau and David L. Lowery. The
evolution of the threats to canadian financial
institutions, the actual state of public and private
partnerships in canada. In Countering Cyber
Threats to Financial Institutions, pages 47-85.
Springer, 2020.

K Savage, P Coogan, and H Lau. The evolution of
ransomware, symantec security response. Syman-
tec Corporation, Mountain View, CA, 2015.
Sajad Homayoun, Ali Dehghantanha, Marzieh
Ahmadzadeh, Sattar Hashemi, and Raouf
Khayami. Know abnormal, find evil: frequent
pattern mining for ransomware threat hunting
and intelligence. IEEFE transactions on emerging
topics in computing, 8(2):341-351, 2017.

Bander Ali Saleh Al-Rimy, Mohd Aizaini Maarof,
Mamoun Alazab, Syed Zainudeen Mohd Shaid,
Fuad A Ghaleb, Abdulmohsen Almalawi, Abdul-
lah Marish Ali, and Tawfik Al-Hadhrami. Redun-
dancy coefficient gradual up-weighting-based mu-
tual information feature selection technique for
crypto-ransomware early detection. Future Gen-
eration Computer Systems, 115:641-658, 2021.
Ala Bahrani and Amir Jalaly Bidgly. Ran-
somware detection using process mining and
classification algorithms. In 2019 16th Interna-
tional ISC (Iranian Society of Cryptology) Con-
ference on Information Security and Cryptology
(ISCISC), pages 73-77. IEEE, 2019.

Laxmi B Bhagwat and Balaji M Patil. Detection
of ransomware attack: A review. In Proceeding
of International Conference on Computational
Science and Applications, pages 15—22. Springer,
2020.

Amir Afianian, Salman Niksefat, Babak
Sadeghiyan, and David Baptiste. Malware
dynamic analysis evasion techniques: A survey.
ACM Computing Surveys (CSUR), 52(6):1-28,
2019.

Daniele Sgandurra, Luis Munoz-Gonzalez, Ra-
bih Mohsen, and Emil C Lupu. Automated
dynamic analysis of ransomware: Benefits, lim-
itations and use for detection. arXiv preprint

[19]

[20]

[21]

arXiv:1609.03020, 2016.

Manuel Egele, Theodoor Scholte, Engin Kirda,
and Christopher Kruegel. A survey on auto-
mated dynamic malware-analysis techniques and
tools. ACM computing surveys (CSUR), 44(2):1-
42, 2008.

Mahboobe Ghiasi, Ashkan Sami, and Zahra
Salehi. Dyvsor: dynamic malware detection based
on extracting patterns from value sets of registers.
The ISC International Journal of Information
Security, 5(1):71-82, 2013.

Ibrahim Bello, Haruna Chiroma, Usman A Ab-
dullahi, Abdulsalam Ya’u Gital, Fatsuma Jauro,
Abdullah Khan, Julius O Okesola, and M Ab-
dulhamid Shafi’i. Detecting ransomware attacks
using intelligent algorithms: recent development
and next direction from deep learning and big
data perspectives. Journal of Ambient Intelli-
gence and Humanized Computing, pages 1-19,
2020.

Martina Lindorfer, Clemens Kolbitsch, and
Paolo Milani Comparetti. Detecting environment-
sensitive malware. In International Workshop on
Recent Advances in Intrusion Detection, pages
338-357. Springer, 2011.

Hanqi Zhang, Xi Xiao, Francesco Mercaldo,
Shiguang Ni, Fabio Martinelli, and Arun Kumar
Sangaiah. Classification of ransomware families
with machine learning based on n-gram of op-
codes. Future Generation Computer Systems,
90:211-221, 2019.

Jeong Kyu Lee, Seo Yeon Moon, and Jong Hyuk
Park. Cloudrps: a cloud analysis based enhanced
ransomware prevention system. The Journal of
Supercomputing, 73(7):3065-3084, 2017.

Juan A Herrera Silva, Lorena Isabel
Barona Lépez, Angel Leonardo Val-
divieso Caraguay, and Myriam Hernandez-
Alvarez. A survey on situational awareness of
ransomware attacks—detection and prevention
parameters. Remote Sensing, 11(10):1168, 2019.
Arslan Ashraf, Abdul Aziz, Umme Zahoora,
Muttukrishnan Rajarajan, and Asifullah Khan.
Ransomware analysis using feature engineer-
ing and deep neural networks. arXiv preprint
arXiw:1910.00286, 2019.

Deepti Vidyarthi, CRS Kumar, Subrata Rak-
shit, and Shailesh Chansarkar. Static malware
analysis to identify ransomware properties. In-
ternational Journal of Computer Science Issues
(1JCSI), 16(3):10-17, 2019.

Ban Mohammed Khammas. Ransomware detec-
tion using random forest technique. ICT Ezpress,
6(4):325-331, 2020.

Alberto Ferrante, Miroslaw Malek, Fabio Mar-
tinelli, Francesco Mercaldo, and Jelena Milosevic.

1S¢0ured)

191

197

Ransomware Detection Based on PE Header Using CNN — Manavi and Hamzeh

Extinguishing ransomware-a hybrid approach to
android ransomware detection. In International
Symposium on Foundations and Practice of Secu-
rity, pages 242—-258. Springer, 2017.

[28] Suyeon Yoo, Sungjin Kim, Seungjae Kim, and

Brent Byunghoon Kang. Ai-hydra: Advanced

hybrid approach using random forest and deep

learning for malware classification. Information

Sciences, 546:420-435, 2021.

James Baldwin and Ali Dehghantanha. Leverag-

ing support vector machine for opcode density

based detection of crypto-ransomware. In Cyber

threat intelligence, pages 107-136. Springer, 2018.

[30] Bin Zhang, Wentao Xiao, Xi Xiao, Arun Kumar
Sangaiah, Weizhe Zhang, and Jiajia Zhang. Ran-
somware classification using patch-based cnn and
self-attention network on embedded n-grams of
opcodes. Future Generation Computer Systems,
110:708-720, 2020.

[31] Hyunji Kim, Jaehoon Park, Hyeokdong Kwon,
Kyoungbae Jang, and Hwajeong Seo. Convolu-
tional neural network-based cryptography ran-
somware detection for low-end embedded proces-
sors. Mathematics, 9(7):705, 2021.

[32] G Radhakrishnan, K Srinivasan, S Maheswaran,
K Mohanasundaram, D Palanikkumar, and Ab-
hay Vidyarthi. A deep-rnn and meta-heuristic
feature selection approach for iot malware detec-
tion. Materials Today: Proceedings, 2021.

[33] Muna Al-Hawawreh and Elena Sitnikova. Lever-
aging deep learning models for ransomware de-
tection in the industrial internet of things envi-
ronment. In 2019 Military Communications and
Information Systems Conference (MilCIS), pages
1-6. IEEE, 2019.

[34] Farnoush Manavi and Ali Hamzeh. Static de-
tection of ransomware using lstm network and
pe header. In 2021 26th International Computer
Conference, Computer Society of Iran (CSICC),
pages 1-5. IEEE, 2021.

[35] Seong Il Bae, Gyu Bin Lee, and Eul Gyu Im. Ran-
somware detection using machine learning algo-
rithms. Concurrency and Computation: Practice
and Experience, 32(18):e5422, 2020.

[36] Digit Oktavianto and Igbal Muhardianto. Cuckoo
malware analysis. Packt Publishing Ltd, 2013.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages
770-778, 2016.

[38] Asifullah Khan, Anabia Sohail, Umme Zahoora,
and Agsa Saeed Qureshi. A survey of the recent
architectures of deep convolutional neural net-
works. Artificial Intelligence Review, 53(8):5455—
5516, 2020.

18:0ured)

[29

[39] Neha Sharma, Vibhor Jain, and Anju Mishra.
An analysis of convolutional neural networks for
image classification. Procedia computer science,
132:377-384, 2018.

[40] Dmytro Mishkin, Nikolay Sergievskiy, and Jiri
Matas. Systematic evaluation of convolution neu-
ral network advances on the imagenet. Com-
puter Vision and Image Understanding, 161:11—
19, 2017.

[41] David MW Powers. Evaluation: from preci-
sion, recall and f-measure to roc, informedness,
markedness and correlation. arXiv preprint
arXiw:2010.16061, 2020.

[42] Ron Kohavi et al. A study of cross-validation
and bootstrap for accuracy estimation and model
selection. In [jcai, volume 14, pages 1137-1145.
Montreal, Canada, 1995.

[43] Daniel Gibert, Carles Mateu, Jordi Planes, and
Ramon Vicens. Using convolutional neural net-
works for classification of malware represented
as images. Journal of Computer Virology and
Hacking Techniques, 15(1):15-28, 2019.

[44] Quan Le, Oisin Boydell, Brian Mac Namee, and
Mark Scanlon. Deep learning at the shallow end:
Malware classification for non-domain experts.
Digital Investigation, 26:5118-S126, 2018.

[45] Ajit Kumar, KS Kuppusamy, and G Aghila. A
learning model to detect maliciousness of portable
executable using integrated feature set. Journal
of King Saud University-Computer and Informa-
tion Sciences, 31(2):252-265, 2019.

Farnoush Manavi is a Ph.D candi-
date of artificial intelligence at Shiraz
University since 2017. She also has
a master’s degree in information se-
curity from Shiraz University and a
bachelor’s degree in information tech-
nology. She is currently working as a
lecturer at Technical and Vocational College, Shiraz,
Iran. Her research interests are cyber security, ma-
chine learning applications in computer security and
computer networks.

Ali Hamzeh is currently a full pro-
fessor at Electrical and Computer En-
gineering School, Shiraz University,
Shiraz, Iran. He received the Ph.D
degree in artificial intelligence from
Iran University of Science and Tech-
nology in 2007. He received his B.S.
and M.Sc. degrees in computer engineering and arti-
ficial intelligence from Shiraz University in Iran. His
research interests include malware detection, machine
learning and social networks.

	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Extracting the Header of Executable Files
	3.2 Constructing a grayscale image using the extracted header
	3.3 Training Convolutional Neural Network
	3.4 Testing the Model on Unseen Samples

	4 Dataset and Result
	4.1 Dataset 1
	4.2 Dataset 2 (Imbalanced dataset)
	4.3 Dataset 3
	4.4 Evaluation Metrics
	4.5 Experimental Setup
	4.6 Experimental Results

	5 Discussion
	5.1 Testing the proposed Network on whole bytes of the file
	5.2 Testing the Proposed Method for the Ransomware Family Categorization
	5.3 Testing the Proposed Method on the Packed Dataset

	6 Conclusion

