
ISeCure
The ISC Int'l Journal of
Information Security

July 2021, Volume 13, Number 2 (pp. 157–162)

http://www.isecure-journal.org

An Obfuscation Method Based on CFGLUTs for Security of
FPGAs
Mansoureh Labafniya 1,∗ and Shahram Etemadi Borujeni 1
1Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

A R T I C L E I N F O.

Article history:
Received: June 11, 2020

Revised: February 23, 2021

Accepted: May 19, 2021

Published Online: June 19, 2021

Keywords:
Configurable Look Up Tables
(CFGLUTs), Hardware Trojan
Horses (HTHs), Obfuscation,
Hardware Security

Type: Short Paper

doi: 10.22042/isecure.2021.
234848.557

dor: 20.1001.1.20082045.2021.
13.2.6.1

Abstract

There are many different ways of securing FPGAs to prevent successful reverse
engineering. One of the common forms is obfuscation methods. In this paper, we
proposed an approach based on obfuscation to prevent FPGAs from successful
reverse engineering and, as a result, hardware trojan horses (HTHs) insertion.
Our obfuscation method is using configurable look up tables (CFGLUTs). We
suggest to insert CFGLUTs randomly or based on some optional parameters in
the design. In this way, some parts of the design are on a secure memory, which
contains the bitstream of the CFGLUTs so that the attacker does not have any
access to it. We program the CFGLUTs in run-time to complete the bitstream
of the FPGA and functionality of the design. If an attacker can reverse engineer
the bitstream of the FPGA, he cannot detect the design because some part of
it is composed of CFGLUTs, which their bitstream is on a secure memory. The
first article uses CFGLUTs for securing FPGAs against HTHs insertion, which
are results of reverse engineering. Our methods do not have any power and
hardware overhead but 32 clock cycles time overhead.

c© 2020 ISC. All rights reserved.

1 Introduction

Reconfigurable hardware platforms consist of an ar-
ray of distributed logic and interconnection blocks

for implementing digital circuits that can be pro-
grammed and reprogrammed. Field-programmable
gate arrays (FPGAs) are reconfigurable hardware
platforms commonly used in all types of applications,
including those that deal with secure data. This typ-
ical usage results in the security of an FPGA to be
noticeable for designers [1]. Security of an FPGA is
essential in all stages, from design/fabrication flow
until the developer and end-user uses it. Figure 2
shows the malicious alteration of the FPGA during

∗ Corresponding author.
Email addresses: mlabaf@eng.ui.ac.ir,
etemadi@eng.ui.ac.ir
ISSN: 2008-2045 c© 2020 ISC. All rights reserved.

the different phases in the design flow. The untrusted
foundry in FPGA’s life cycle is a potential place that
an attacker can insert its HTH in the design. Differ-
ent IPs and EDA tools used by the developer of the
system can work as an adversary and insert HTHs
in the system. The attacker can conflict in internal
nodes by inserting malicious code and changing bit-
stream when used by the end-user [2]. This attack
is available by reverse-engineering the bitstream. Re-
verse engineering is by reading the bitstream from
a nonvolatile external memory of the FPGA [2] us-
ing related tools that help extract the bitstream and
related netlist of the FPGA [3, 4]. The side-channel
attack, cloning, authentication attack, and radiation
attack are different attack models represented by
Drimer, which can be implemented in the untrusted
foundry, configured phase, or even when used with
end-user [5]. These mentioned attacks in the differ-

ISeCure



158 An Obfuscation Method Based on CFGLUTs for Security of FPGAs — Labafniya and Etemadi

ent stages can be defined both in FPGAs and ASICs.
To have a secure system, it must have a design for

Figure 1. FPGA design flow and potential insertion of HTHs

security (DFS). One of the most parameters in DFS
is prevention methods to avoid adversary to insert
HTHs in a system. Despite prevention methods, if
an adversary attacks the system and inserts HTHs
in it, detection methods can detect trojan’s presence
and retrieve it. There are not many articles that pro-
pose protection methods against HTH insertion in
FPGA. Mal-Sarkar et al. [6] introduced a new TMR
structure named adapted triple modular redundancy
(ATMR). ATMR uses a different structure for imple-
menting its module. This is highly unlikely that two
structure triggers simultaneously by HTH activation.
Both conventional TMR and proposed ATMR have
high area overhead and power consumption because
of its redundant structure. Filling unused space on
FPGA is another way to protect it from HTH in-
sertion. In [7], after identifying unused space, filling
them with dummy logic cells. This method imposes
no performance and power penalty. Besides, it has a
detection method if any attacker can insert HTHs in
dummy cells. Using physical and logical keys in [8] im-
proves the security of an FPGA system. It has priced
a time overhead as specialized FPGA is needed that
must be configured differently. Different techniques
are introduced to detect HTH insertion on an FPGA.
These detection techniques are categorized into two
classes: destructive and non-destructive. Destructive
methods consist of demetallization of the manufac-
tured circuit and imaging layer by layer. The proba-
ble existence of HTH will be revealed by analyzing
the images. Logic-based testing like automatic test
pattern generation (ATPG) and side-channel analysis
like power, temperature, timing, or electromagnetic
variation are non-destructive ways to detect HTHs
insertion [9]. In this paper, a new prevention method
based on obfuscation is presented to secure the FPGA
against HTHs insertion and reverse engineering. Our
proposed method is based on using CFGLUTs in the
design to increase the security of an FPGA. Our pro-
posed method prevents successful reverse engineering
of the FPGA bitstream and HTHs insertion on it.
Our obfuscated design, is a kind of bitstream con-
cealing or split manufacturing which makes direct

wire-tapping ineffective by integrating memory within
FPGA. The idea of split manufacturing technique
can be used for bitstream concealing. In this way the
key configuration bitstreams are stored in the flash
memory of the FPGA and other non-critical configu-
ration bitstreams are stored in the external memory.
In this way, only partial useless information about
FPGA mapping relationship will be leaked to eaves-
droppers, which significantly increases the difficulty
of bitstream reverse engineering [10]. In this paper,
during Section 2, we review different papers related
to the obfuscation method. We also describe the ap-
plication of CFGLUTs in security and related articles.
Section 3 describes our approach, which is based on
CFGLUTs to obfuscate the design. Implementation
results are explained in Section 4. In the last section,
we concluded the paper.

2 Previous Work

2.1 Obfuscation Methods

Many articles suggested different approaches to ob-
fuscate the design during various stages of the chip’s
lifecycle. The majority of them are based on obfus-
cation by inserting a switch box and LUTs in ASICs
chip design to secure them in the fabrication stage
[11, 12]. Some of the other articles obfuscate the
ASICs by inserting an extra gate in design and stab-
lishing a key to activate the chip before selling them
[13, 14]. These methods are named “logic encryption”.
By inserting extra gates in low controllable points in
design, in addition to establishing a key to activate
the chip, we decrease the chance of HTHs insertion
in design. The other place for inserting the encryp-
tion key is the point with positive slack time. At any
timing point, the slack time is the difference of its
required arrival time minus its arrival time. Inserting
extra gates at this point will not change the critical
delay of design [13, 15]. Logic encryption prevents
both reverse engineering at the fabrication level and
cloning/overbuilding. This method also increases the
controllability of some points in design in which their
activities are low. The other method is based on us-
ing the physical unclonable function (PUF) structure
for producing obfuscation in design [8, 16, 17]. In this
way, the PUF structure can produce a unique key
or identify a fake chip from a genuine one. IC cam-
ouflage technique is another obfuscation method by
inserting different redundant standard logic units in
some empty locations of the physical architecture of
ASICs to hide the correct circuit. In this technique,
even if the attacker can reverse engineer the netlist,
the right circuit function cannot be obtained [4]. The
mentioned papers are different methods to prevent
reverse engineering of ASICs by different obfuscation
ways. The different structure of FPGA, in compar-

ISeCure



July 2021, Volume 13, Number 2 (pp. 157–162) 159

ison to ASIC, produces other obfuscation methods
to protect them. On the otherhand, the existence of
bitstream for programming and finalizing FPGAs’
design causes various attacks on FPGAs. The obfus-
cation method on FPGAs tries to protect bitstream
from successful reverse engineering. Bitstream con-
cealing makes by integrating memory within FPGA
is bitstream protection. Flash memory FPGA and
antifuse FPGA do not need external configuration
memory to contain bitstream. Therefore, there is not
any external memory to be accessible to the attacker.
Compared with SRAM FPGAs, these FPGAs need
specific equipment for reverse engineering [10]. De-
spite that, SRAM FPGAs are more usually used. En-
crypting the bitstream by different encryption algo-
rithm is a method to protect bitstream in SRAM FP-
GAs. Obfuscation methods to protect bitstream from
successful reverse engineering are presented in [7, 18].
Filling unused space is a kind of obfuscation method
to prevent HTHs insertion by misleading the attacker
to detect between main gates and redundant ones.
This method is introduced for both ASICs and FP-
GAs [7, 18, 19]. Using evolvable hardware (EH) archi-
tectures is another method to change the configura-
tion of FPGAs and its behavior dynamically based on
inputs from the environment. In [20], the feasibility
of using EH to prevent hardware Trojan horses from
being inserted, activated, or propagated in a digital
electronic chip is investigated. Paper [20] presents an
obfuscation method based on changing the FPGAs’
configuration periodically using EH.

2.2 CFGLUT Structure

The CFGLUTs are LUTs that can be configured at
run-time from the FPGA. The structure of the CFG-
LUT5 in Virtex-5 consists of 5-input and 1-output
LUT or 4-input and 2-output LUT in addition to a
configuration input (CDI) and a configuration out-
put (CDO). This module can be used for partial re-
configuration of FPGAs in run-time instead of ma-
nipulating bitstream for reconfiguration. The internal
structure of CFGLUT consists of a 16-bit shift con-
figurable memory followed by the subsequent multi-
plexer stage. Its configuration memory size is 16 bits
so that four input is considered for this module. Each
RFGLUT is loaded with an INIT value that presents
the truth table of the LUT. It is allowable to change
LUT’s functionality by changing this INIT value in
run-time, which gives the user the power of partial
reconfiguration of the FPGAs internally. Reconfigu-
ration is done by activating CE port and simultane-
ously putting 1-bit reconfiguration data on the CDI
port. One bit is written in INIT register in each clock
cycle. Sixteen clocks are needed to reconfigure the
CFGLUT entirely. Figure 2 shows the structure of a
CFGLUT. The only paper that uses CFGLUTs for

Figure 2. CFGLUT structure

security is [21] in which a method for securing encryp-
tion algorithm against side-channel attacks (SCA) is
recommended.

3 The Proposed Obfuscated Design

Our proposed method prevents successful reverse en-
gineering of the FPGA bitstream and HTHs insertion
on it. We suggest two different methods to obfuscate
the bitstream using CFGLUTs. In the first proposed
method, the designer writes the HDL codes and then
simulate it to be ensured from its correct functional-
ity. In the next step, we select some part of the HDL
code to implement them by CFGLUTs. Choosing the
specified portion of the HDL code to substitute them
with CFGLUTs can be:

- randomly selected.
- some vulnerable parts of the HDL code, like
SBOX in encryption algorithms.

- based on some special parameters like the slack
time or middle point of paths [4, 13, 22, 23].

In our implementation, we select some parts of the
HDL code randomly to substitute with CFGLUTs.
Figure 3 shows our suggested method. We imagine
that the code is composed of different modules. We
can use CFGLUTs for implementing some parts of
the modules, whole the module, or only one gate. The
related bitstreams of CFGLUTs are saved in a secure
memory loaded dynamically on CFGLUTs in run
time. The attacker read the bitstream of the FPGA
to reverse engineering and inserting HTHs or some
other malicious purpose. But after reverse engineer-
ing, he will consider that some CFGLUTs obfuscate
the design that their codes do not exist in the pri-
mary bitstream of the FPGAs but separated secure
memory. In this way, the attack will not be success-
fully implemented. In this paper, we imagine that
the bitstream for the FPGA and the bitstream for
programming CFGLUTs are in different memory so
that the attacker is unaware of this. Most memories
have built-in error detection/correction mechanisms,
which is also the case for the block RAM (BRAM)
modules that can be used. Our method is a kind of
obfuscation method based on CFGLUTs to prevent

ISeCure



160 An Obfuscation Method Based on CFGLUTs for Security of FPGAs — Labafniya and Etemadi

HTHs insertion and successful reverse engineering at-
tack on FPGAs. The second proposed method to use

Figure 3. Schematic of our proposed method for securing the
FPGA

CFGLUTs is to insert them like a logic encryption
method. In this way, besides, to have a key for increas-
ing the security, which is necessary for the circuit’s
proper working, we have obfuscation in the bitstream
that prevents the attacker from reversing engineer the
circuit successfully. In this way, we decrease the low
controllable points in the design by inserting these
CFGLUTs in proper places in the netlist. Figure 4
shows a circuit secured in Figure 5 by inserting CFG-
LUTs randomly in some nodes. Each CFGLUT can
implement one of the AND, OR, NAND, NOR, XOR,
XNOR, or NOT gate. It must be selected according
to the key and keeping the correct functionality of
the final output. For the proper working of the design,
first, the right key must be entered. Besides, by sav-
ing the bitstream of CFGLUTs in a separated secure
memory, we prevent successful reverse engineering of
the design’s bitstream.

Figure 4. Original circuit

Figure 5. Secured circuit

4 Attack Analysis

The proposed obfuscate structure can protect against
HTH insertion by uploading a portion of the circuit
configuration at run-time. That means we protect
against: (1) When EDA tools manipulate the design:
We have two separated bitstream to upload on the
FPGAs. One of them is the final bitstream without
CFGLUTs related bitstream, and the other one is the
bitstream of CFGLUs. EDA tools cannot reverse en-
gineer or successfully insert any HTHs in the FPGAs
as they do not have a final bitstream, which consists
of the content of CFGLUTs. (2) When a design is in
run-time mode: we have two separate memories for
saving the two bitsrtreams that complete each other
to produce the final bitstream. One of them is more
secure so that attackers do not have access or capa-
bility to read it. So attackers cannot reverse engineer
the bitstream successfully.

4.1 Implementation Results

We use the “mem-ctrl” sample code from the IWLS
benchmark to evaluate our proposed work. We
use the Vivado2018.2 version for synthesis and im-
plementation. First, we synthesis and implement
the code without any CFGLUT insertion, then we
randomly select some statements and modules to
substitute them with CFGLUTs. Figure 6 shows a
portion of the netlist, which is the result of "mem-
ctrl" implementation. Figure 7 shows the LUT,
which implements the below instruction: “assign
init_ack_fe= init_ack_r & !init_ack” (1) Figure 5
shows the CFGLUT5, which implements the below
statement: ”CFGLUT5(.INIT(32’h00000000))inst0
(.O5(init_ack_fe),.CDI(CDI0),.CE(CE),.CLK(clk),
.I0(init_ack),.I1(!init_ack_r),.I2(0),.I3(0),.I4(0))”
(2) We write statement2 instead of the statement1
in the HDL code. “init_ack_r”, “init_ack” and
“init_ack_fe” are some internal signals in the HDL
code. The stream of bits equal to “32’h0000100" in-
dicates the functionality of the statement1 is stored
in a secure memory, separated from memory, which
contains the bitstream of the FPGA. This stream
is imposed on CDI0 input pin of CFGLUT to pro-
gram it in run time. Simulation results show that
by substituting one CFGLUT with one LUT, the
number of LUTs decrease from 1081 to 1080, and
one CFGLUT is added to used resources of the
FPGA. Time overhead is equal to 32 clock cycles for
programming all CFGLUTs in parallel to each other.
Static and dynamic power is equal to 0.006w and
0,242w, respectively, both with and without inserting
CFGLUT to code.

ISeCure



July 2021, Volume 13, Number 2 (pp. 157–162) 161

Figure 6. The netlist of the design (the primary netlist)

Figure 7. The netlist of the design (the CFGLUT5 which is
inserted instead of the LUT)

Table 1. Comparison of different obfuscation method in FP-
GAs

Paper Used method Overhead

[10] encrypting
bitstream bitstream

[7, 18] filling space bitstream

[20] EA hardware/time/power

proposed
method

using
CFGLUTs memory

4.2 Comparison

This section compares our proposed method with re-
lated articles that used the obfuscation method to
secure the FPGA in Table 1. Paper [10] encrypt the
bitstream to secure the design. This method has an
overhead of time to encrypt and decrypt the bitsream,
although this method is broken. Paper [7] fill all re-
sources of the FPGA to secure it. This method has
overhead in code. Overhead in resource consumption,
power and time is the result of using EA in [20]. In
this paper’s proposed method, we have a time over-
head of 16/32 clock cycles to program the CFGLUTs,
although if we program them in the spare time of the
chip, we can ignore the overhead. Also, we need an
extra memory to save the CFGLUTs’ bitstream. We
do not have any power and hardware overhead. The
designer can select each of the mentioned methods to
obfuscate the design according to sacrified parameters.
The method selection is based on the application.

5 Conclusion

In this paper, we proposed a prevention method for
the security of the FPGA based on obfuscation. Our
first proposed method is to use CFGLUTs for imple-
menting some parts of modules or the whole of a mod-
ule to prevent successful reverse engineering attacks.
Saving the bitstream of CFGLUTs in separated and
secure memory made obfuscation in the bitstream
of the design. In this method, we replace the LUTs
with CFGLUTs. The second suggestion method is to
use the CFGLUT in the logic encryption structure.
In this method, we insert extra gates instead of sub-
stituting them. Adding additional gates to decrease
the potential nodes for HTHs insertion and having a
key to secure the design is the second proposed ap-
plication of CFGLUTs in this paper. It is the first
article that is using CFGLUTs for securing FPGAs
against HTHs insertion and reverse engineering. Our
methods do not have any power and hardware over-
head if we substitute each LUT with one CFGLUT
but 32 clock cycles time overhead. Despite that, if we
insert extra CFGLUTs as a logic encryption method,
we have hardware overhead equal to the number of
added gates.

References

[1] Steve Trimberger. Trusted design in fpgas. In
Proceedings of the 44th Annual Design Automa-
tion Conference, DAC ’07, pages 5–8, New York,
NY, USA, 2007. ACM.

[2] Hoyoung Yu, Hansol Lee, Sangil Lee, Youngmin
Kim, and Hyung-Min Lee. Recent advances in
fpga reverse engineering. Electronics, 7(10):246,
2018.

[3] Jean-Baptiste Note and Éric Rannaud. From
the bitstream to the netlist. In FPGA, volume 8,
pages 264–264, 2008.

[4] Jeyavijayan Rajendran, Michael Sam, Ozgur
Sinanoglu, and Ramesh Karri. Security analy-
sis of integrated circuit camouflaging. In Pro-
ceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages
709–720, 2013.

[5] Saar Drimer. Volatile fpga design security–a
survey. IEEE Computer Society Annual Volume,
pages 292–297, 2008.

[6] Sanchita Mal-Sarkar, Robert Karam, Seetharam
Narasimhan, Anandaroop Ghosh, Aswin Kr-
ishna, and Swarup Bhunia. Design and valida-
tion for fpga trust under hardware trojan attacks.
IEEE Transactions on Multi-Scale Computing
Systems, 2(3):186–198, 2016.

[7] Mansoureh Labbafniya and Roghaye Saeidi.
Secure fpga design by filling unused spaces.
ISeCure-The ISC International Journal of Infor-

ISeCure



162 An Obfuscation Method Based on CFGLUTs for Security of FPGAs — Labafniya and Etemadi

mation Security, 11(1):47–56, 2019.
[8] Greg Stitt, Robert Karam, Kai Yang, and

Swarup Bhunia. A uniquified virtualization ap-
proach to hardware security. IEEE Embedded
Systems Letters, 9(3):53–56, 2017.

[9] Mohammad Tehranipoor and Cliff Wang. Intro-
duction to hardware security and trust. Springer
Science & Business Media, 2011.

[10] Jiliang Zhang and Gang Qu. Recent attacks and
defenses on fpga-based systems. ACM Transac-
tions on Reconfigurable Technology and Systems
(TRETS), 12(3):1–24, 2019.

[11] Sharareh Zamanzadeh and Ali Jahanian. Au-
tomatic netlist scrambling methodology in asic
design flow to hinder the reverse engineering. In
2013 IFIP/IEEE 21st International Conference
on Very Large Scale Integration (VLSI-SoC),
pages 52–53. IEEE, 2013.

[12] Soroush Khaleghi, Kai Da Zhao, and Wenjing
Rao. Ic piracy prevention via design withholding
and entanglement. In The 20th asia and south
pacific design automation conference, pages 821–
826. IEEE, 2015.

[13] Sophie Dupuis, Papa-Sidi Ba, Giorgio Di Na-
tale, Marie-Lise Flottes, and Bruno Rouzeyre.
A novel hardware logic encryption technique for
thwarting illegal overproduction and hardware
trojans. In 2014 IEEE 20th International On-
Line Testing Symposium (IOLTS), pages 49–54.
IEEE, 2014.

[14] Jeyavijayan Rajendran, Huan Zhang, Chi Zhang,
Garrett S Rose, Youngok Pino, Ozgur Sinanoglu,
and Ramesh Karri. Fault analysis-based logic
encryption. IEEE Transactions on computers,
64(2):410–424, 2015.

[15] Andrea Marcelli, Marco Restifo, Ernesto
Sanchez, and Giovanni Squillero. An evolution-
ary approach to hardware encryption and trojan-
horse mitigation. In Design, Automation & Test
in Europe Conference & Exhibition (DATE),
2017, pages 1593–1598. IEEE, 2017.

[16] Sharareh Zamanzadeh and Ali Jahanian. Asic
design protection against reverse engineering
during the fabrication process using automatic
netlist obfuscation design flow. ISeCure, 8(2),
2016.

[17] Ghobad Zarrinchian and Morteza Saheb Za-
mani. Latch-based structure: A high resolution
and self-reference technique for hardware trojan
detection. IEEE Transactions on Computers,
66(1):100–113, 2016.

[18] Behnam Khaleghi, Ali Ahari, Hossein Asadi, and
Siavash Bayat-Sarmadi. Fpga-based protection
scheme against hardware trojan horse insertion
using dummy logic. IEEE Embedded Systems
Letters, 7(2):46–50, 2015.

[19] Kan Xiao and Mohammed Tehranipoor. Bisa:
Built-in self-authentication for preventing hard-
ware trojan insertion. In 2013 IEEE interna-
tional symposium on hardware-oriented security
and trust (HOST), pages 45–50. IEEE, 2013.

[20] Mansoureh Labafniya, Stjepan Picek,
Shahram Etemadi Borujeni, and Nele Mentens.
On the feasibility of using evolvable hardware
for hardware trojan detection and prevention.
Applied Soft Computing, page 106247, 2020.

[21] Pascal Sasdrich, Amir Moradi, Oliver Mischke,
and Tim Güneysu. Achieving side-channel pro-
tection with dynamic logic reconfiguration on
modern fpgas. In 2015 IEEE International Sym-
posium on Hardware Oriented Security and Trust
(HOST), pages 130–136. IEEE, 2015.

[22] Jie Li and John Lach. At-speed delay charac-
terization for ic authentication and trojan horse
detection. In 2008 IEEE International Work-
shop on Hardware-Oriented Security and Trust,
pages 8–14. IEEE, 2008.

[23] Mohammad Saleh Samimi, Ehsan Aerabi, Zahra
Kazemi, Mahdi Fazeli, and Ahmad Patooghy.
Hardware enlightening: No where to hide your
hardware trojans! In 2016 IEEE 22nd Inter-
national Symposium on On-Line Testing and
Robust System Design (IOLTS), pages 251–256.
IEEE, 2016.

Mansoureh Labafniya received her
B.S. in hardware computer engineer-
ing from Islamic Azad University,
South Tehran branch, Tehran, Iran
in 2008. Her first M.S. degree is in
computer architecture in 2010 and
her second M.S. degree is in mecha-

tronic Engineering from Sharif University of Tech-
nology, Tehran, Iran in 2012. She was a visiting re-
searcher at KU Leuven for six months in 2018 and
2019. She got his Ph.D. degree in Computer Archi-
tecture Engineering at University of Isfahan, Iran in
2020. Her research interests include Hardware security,
Digital system design and Residue number system.

Shahram Etemadi Borujeni is
born in Borujen, Iran in 1964. He
got his B.Sc. in electrical engineer-
ing from Iranian University of Sci-
ence and Technology in 1987, and his
M.Tech. degree in Radar and Com-
munication Engineering from Indian

Institute of Technology, Delhi in 1992. He got his
Ph.D. degree in computer architecture engineering at
Shahid Beheshti University, Iran in 2010. He is now
with computer engineering faculty at University of
Isfahan, Iran. His research interest includes Image
encryption, Design for test and Hardware security.

ISeCure


	1 Introduction
	2 Previous Work
	2.1 Obfuscation Methods
	2.2 CFGLUT Structure 

	3 The Proposed Obfuscated Design 
	4 Attack Analysis
	4.1 Implementation Results
	4.2 Comparison

	5 Conclusion

