
ISeCure
The ISC Int'l Journal of
Information Security

July 2019, Volume 11, Number 2 (pp. 145–158)

http://www.isecure-journal.org

NewFixed Point Attacks onGOST2Block Cipher withMemory

Complexity Improvements

Siavash Ahmadi 1, and Mohammad Reza Aref 1,∗
1Information Systems and Security Lab (ISSL), Department of Electrical Engineering, Sharif University of Technology

A R T I C L E I N F O.

Article history:

Received: 14 July 2018

Revised: 6 June 2019

Accepted: 26 June 2019

Published Online: 31 July 2019

Keywords:

Cryptanalysis, Fixed Point Attack,
GOST2 Block Cipher, Meet in the
Middle.

A B S T R A C T

GOST block cipher designed in the 1970s and published in 1989 as the Soviet

and Russian standard GOST 28147-89. In order to enhance the security of

GOST block cipher after proposing various attacks on it, designers published

a modified version of GOST, namely GOST2, in 2015 which has a new key

schedule and explicit choice for S-boxes. In this paper, by using three exactly

identical portions of GOST2 and fixed point idea, more enhanced fixed point

attacks for filtration of wrong keys are presented. More precisely, the focus

of the new attacks is on reducing memory complexity while keeping other

complexities unchanged as well. The results show a significant reduction in the

memory complexity of the attacks, while the time complexity slightly increased

in comparison to the previous fixed point attacks. To the best of our knowledge,

the lowest memory complexity for an attack on full-round GOST2 block cipher

is provided here.

c© 2019 ISC. All rights reserved.

1 Introduction

B Block ciphers are one of the most important build-
ing blocks of many security protocols and in some

situations, they are known as the security cornerstone
of communication or storage systems. Therefore, en-
suring the security of block ciphers is one of the most
important subjects in the designing phase of block
ciphers. Coincident with block cipher designing, crypt-
analysis of them is also an important issue. In fact,
the security provided by each block cipher can be mea-
sured by applying different methods of cryptanalysis
or attacks on it, each attack results in time, memory,
and data complexities for extracting the master key.
These attacks can be categorized into distinguishing-
based attacks such as linear and differential attacks [1–

∗ Corresponding author.

Email addresses: s ahmadi@ee.sharif.edu (S. Ahmadi),
arefsharif.edu (M.R. Aref)

ISSN: 2008-2045 c© 2019 ISC. All rights reserved.

4], or non-distinguishing-based attacks such as meet
in the middle (MITM) and biclique attacks [5–8] in
the single key model.

In this paper, by a combination of an enhanced
meet in the middle attack and fixed point property,
we focus on the cryptanalysis of the Russian block
cipher, GOST2, which is published after some secu-
rity threats were found in the previous version of this
block cipher, namely GOST. According to the litera-
ture, GOST block cipher was designed by the Soviet
Union in the 1970s as an alternative to DES block ci-
pher and accepted as a Russian standard block cipher
[11]. The particular aspect of GOST standardization
is the S-boxes which were not included in the stan-
dard, and hence anyone can deploy different sets of
S-boxes. However, numerous cryptanalysis for GOST
block cipher enforced the designers to publish the
modified version of this block cipher, namely GOST2,
and propose a new standard called ”Kuznyechik” [12].

A considerable amount of literature has been pub-

ISeCure

146 Trust-based Probabilistic Method for Verification in Database Outsourcing — S. Ahmadi and M.R. Aref

Table 1. Cryptanalysis results on full GOST2

Type of attack Time Data Memory Reference

Reflection† 2192 232KP 268.58 [28]

Impossible Reflection‡ 2254.34 263CP 2166.58 [28]

Impossible Reflection‡ 2255.34 264KP 2166.58 [28]

Fixed Point 2237 264KP 2138.15 [28]

Fixed Point 2233? 264KP 2196 [29]

Fixed Point (Attack 1) 2241.2 264KP 282 Section 4.1

Fixed Point (Attack 2) 2246.9 264KP 267 Section 4.2

† Attack on 2224 keys

‡ Attack on 2256 − 2224 keys

? The corrected time complexity is more than 2239 encryptions

lished for cryptanalysis of GOST. For instance, there
are some related key differential attacks [13], reflec-
tion cryptanalysis [14, 15], differential attacks [16–20],
self-similarity and black-box reduction attacks [21–
23], meet in the middle attacks [24, 25], and some
innovative attacks on GOST [26, 27]. However, the re-
sults on GOST2 are more limited and summarized in
Table 1, such as reflection, impossible reflection, and
fixed point attacks [28, 29]. To the best of our knowl-
edge, the most efficient attack on GOST2, thus far, is
the fixed point attack which can be applied on the full
round cipher. However, due to the high memory and
data complexities of this attack, it is not considered
as a serious threat for GOST2.

In [25], the concept of 2-dimensional partial filter-
ing for GOST is provided. Moreover, a new weakness
for the fixed point attack on GOST2 is proposed in
[28]. Here, by combining the concept of partial filter-
ing and the weakness found for the fixed point attack
on GOST2, new 3-dimensional fixed point attacks on
GOST2 block cipher are proposed. The main advan-
tage of the proposed attacks is their high reduction
in memory complexity (see Table 1). The main ideas
used for the new fixed point attacks on GOST2 are
as follows:

• Using small intermediate variables to reduce
time and memory complexities of the attack;

• Providing 8 parallel filters and paths by guessing
carries and some other related bits, and store
them in some hash tables;

• Considering an efficient precomputation phase
as a primary filter to take more wrong keys;

• Using proper indexing for hash tables to archive
an efficient implementation of the filtering parts;

• Using smart integration of parallel filters and
paths and the primary filter to reduce total time
complexity.

The rest of the paper is organized as follows. In Sec-

tion 2, the preliminaries for basics of the fixed point
attack, description of the GOST2 block cipher, and no-
tations are provided. The main ideas of previous fixed
point attacks on GOST2 are described in Section 3.
Section 4 begins by summarizing the new ideas which
can be utilized in a new fixed point attack. Afterward,
the details of two new fixed point attacks on GOST2
block cipher are introduced and some discussions are
provided. Finally, the work is concluded in Section 5.

2 Preliminaries

2.1 Basics of the fixed point property

Definition of fixed point property is as follows:

Definition 1. [Fixed point property]Let p :

{0, 1}b → {0, 1}b be a pseudorandom permutation.
The fixed point property states that there is an input
x ∈ {0, 1}b by which x = p(x), namely fixed point.

Suppose any reduced-round encryption/decryption
starting from an arbitrary internal state of round i to
another internal state of round j is called a portion of
a block cipher. According to Definition 1, considering
any portion of a block cipher with b bits block length
as a pseudorandom permutation g, with respect to
the fixed point property, there will be a specific value
x, with high probability, such that x = g(x). This
property is useful when some successive portions of a
block cipher are identical to each other. In such cases,
if the input of the first portion is the fixed point, then
the output of that portion would be also the fixed
point which is the input to the next portion, and so on.
Therefore, the fixed point goes through these portions
without any change until the final portion.

In the case of block ciphers, according to the ran-
domness of the master key, we can consider the out-
put of partial encryption as a random permutation.
Therefore, when a block cipher cryptosystem with an
unknown master key is provided, there will be a fixed
point with high probability. Although, since the input
strings are of size b bits the probability of finding such
an input is 2−b. Hence, one must consider all the 2b

inputs to ensure, one of them is the fixed point. By us-
ing this idea, the fixed point attacks on GOST2 block
cipher are proposed.

2.2 GOST2 block cipher description

GOST2 is a 32-round Feistel block cipher with 64-
bit block and 256-bit key sizes. Every 64-bit state
of GOST2 is divided into two 32-bit left and right
words, and each round of GOST2 consists of a round
function followed by a swap. The equations for one
round GOST2 are:

ISeCure

July 2019, Volume 11, Number 2 (pp. 145–158) 147

<<<
11

𝐾12
7

<<<
11

𝐾13
0

<<<
11

𝐾14
1

<<<
11

𝐾15
2

𝑀𝑉2[11,26]

𝑀𝑉1[11,18]

𝑆12

𝑆16

[0,7]
[11,31]

[0,7]

[20,31]
[0,18]

[0,15]

[11,26]

[0,7]

[0,15]
[11,26]

[16,31]

[11,26]

[0,18]

[11,26] [0,18]

[11,26] [0,31]

[11,18]

[11,18]

[11,18]

[11,18]

[11,26]

[11,26]

<<<
11

7
6
5
4
3
2
1
0

𝐾𝑗

𝑀𝑉2
𝑢𝑝
[11,26]

𝑀𝑉1
𝑢𝑝
[11,18]

𝑀𝑉1
𝑑𝑜𝑤𝑛[11,18]

𝑀𝑉2
𝑑𝑜𝑤𝑛[11,26]

𝑆𝑗
𝐿 𝑆𝑗

𝑅

𝑆′𝑗
𝐿

𝑆′𝑗
𝑅

𝑆𝑗+1
𝐿 𝑆𝑗+1

𝑅

Figure 1. One round of GOST and GOST2 block cipher

SL
j ||SR

j = Sj

SR
j+1 = S′

L
j = F (SR

j ,Kj)⊕ SL
j

SL
j+1 = S′

R
j = SR

j

Sj+1 = SL
j+1||SR

j+1 (1)

in which j is the round number starting from 0, Sj is
the input state of the jth round, SR

j (SL
j) is the right

(left) 32-bit word of jth round input state, S′
R
j (S′

L
j)

is the right (left) 32-bit word of jth round output state
before the swap, F is the round function, Kj is the
jth round key, and || denotes the concatenation. It
should be noted that the last round does not have
the swap. Also, the round function of GOST2 consists
of a modular addition with the round key, passing
through eight 4× 4 S-boxes and an 11-bit left cyclic
shift, which is shown in Figure 1.

GOST2 key schedule is simple. Consider the 256-bit
master key K = K0||K1||K2||K3||K4||K5||K6||K7

with equal size ofKi, 0 ≤ i ≤ 7. Then, the key schedule
of GOST2 is just a permutation of subkeys used in
the master key as described in Table 2.

It is worthy to note that the S-boxes of GOST2
are concrete in contrast to the original GOST which
left the choice of S-boxes open. Since our attack is
independent of the structure of the S-boxes, we do not
concentrate on their details. Interested readers can
find details in [28].

2.3 Notations

The following notations are used in the rest of the
paper:

• Xj , (0 ≤ j ≤ 31) is utilized to emphasize that

Table 2. Key schedule of GOST2

Round Key Round Key Round Key Round Key

0 K0 8 K3 16 K5 24 K6

1 K1 9 K4 17 K6 25 K5

2 K2 10 K5 18 K7 26 K4

3 K3 11 K6 19 K0 27 K3

4 K4 12 K7 20 K1 28 K2

5 K5 13 K0 21 K2 29 K1

6 K6 14 K1 22 K3 30 K0

7 K7 15 K2 23 K4 31 K7

the round number of the variable X is j. In
addition, Xj1,j2 means (Xj1 , Xj2). Also Xj1−j2
means (Xj1 , Xj1+1, ..., Xj2).

• MVj is the matching variable placed in round
j and it is equal to the right word of the round
input state (or equivalently, stands for input of

the jth round function; MVj = SR
j = S′

R
j as

shown in Figure 1).
• X[i1−i2] denotes ith1 to ith2 bits of the variable X,

starting from zero and counting from right (LSB)
to left (MSB). Hence, it is clear that the 11-bit
left cyclic shift of the round function results in
incrementing the values of bit numbers by 11.
Also, X[i1− i2] means X[i1− 31] and X[0− i2],
if i1 > i2. In addition, if i1 or i2 > 31, then it
should be considered modulo 32.

• X[i1 − i2]+w denotes X[(i1 + w)− (i2 + w)].
• Ki1−i2 denotes (Ki1 ,Ki1+1, ...,Ki2).
• aij is the input carry bit for ith (0 ≤ i ≤ 7)

nibble/S-box in round j (see Figure 1). In addi-
tion, aij1,j2 means (aij1 , a

i
j2

), and aij1−j2 means

(aij1 , a
i
j2
, ..., aij2). Also if i > 7 then it should be

considered modulo 8. It is obvious that a0j is
always zero.

3 An overview of prior fixed point
attacks on GOST2

In [28], a fixed point attack is proposed by Ashur et al.
on GOST2 block cipher. This attack uses the following
two main observations:

Observation 1. GOST2 rounds 10 to 15 are identi-
cal to the rounds 16 to 21 which allows an adversary
to use fixed point property for the input internal
states of rounds 10,16 and 22 (which are shown by
S10, S16, and S22).

Observation 2. Having input and output of a 3-
round Feistel structure, an adversary can check if they
match in the middle round to filter out the wrong keys.

ISeCure

148 Trust-based Probabilistic Method for Verification in Database Outsourcing — S. Ahmadi and M.R. Aref

The main ideas of this attack are precomputing
some first and last part of the GOST2 in a hash
table (first phase of the attack), and then continue by
filtering some key bits between two respective fixed
point, and finally, filtering the other key bits in the
rest of the GOST2 encryption algorithm by using the
precomputed table (second phase of the attack).

The total time complexity of the fixed point attack
in [28] is 2237 as there are 2237 candidate keys left for
exhaustive search in line 17 of Ashur’s algorithm (see
Appendix, Algorithm 1). However, the memory access
of the attack hasn’t been computed in [28]. Anyway,
our investigations show that the memory access of
the fixed point attack in [28] is not a dominant part
for time complexity and it can be correctly ignored.
The memory access (MA) method which is used in
this paper is based on B-Tree implementation [30].
According to this implementation, for a table T with
the number of n rows, the cost of access to a specific
row is equal to log2(n).

Another fixed point attack on GOST2 is also pro-
posed in [29] with similar observations. The goal was
the reduction of the time complexity by some mem-
ory complexity penalties. However, it has not also
taken the memory access of the attack into account.
More precisely, there are two filtering parts in the
attack (lines 32 and 34 of Algorithm 1 in [29], re-
spectively) in which memory access cannot be ig-
nored. According to our computations, the total mem-
ory access of these filterings is more than 2249MAs
(2224 × 28 × 20log2(28) = 2236MAs for the first filter
and 2208× 216× 28× 213log2(216) = 2249MAs for the
second filter, assuming that the huge table T is im-
plemented by B-Tree method and pre-sorted by S3,
S28, K7[0−31], K2[0−7], K0[0−7], and K1[0−15]).
Hence, the total time complexity of the attack is at
least 2233 encryptions and 2249MAs. The effect of this
huge memory access on time complexity is reflected
in the footnote of Table 1. In addition, the memory
complexity of the attack is too much high (2196 bytes).

4 New fixed point attacks on GOST2

Here, we not only utilize the first observation in [28]
but also add a new observation as follows: Obser-
vation 3. There are three 3-round portions with
the exact same reduced-round encryption algorithm
and subkeys. These portions are rounds 15 to 13, 2
to 0 and 28 to 30, all with three ordered subkeys of
(K2,K1,K0).

Suppose that any partial encryption/decryption
starting from an arbitrary intermediate state of
round i to another intermediate state of round j is
called a parallel path. Therefore, a portion may be

a union of distinct parallel paths. By this defini-
tion, according to the Observation 3 along with the
others mentioned in [28], two fixed point attacks on
GOST2 with similar procedures are expressed by the
following main steps:

• Step 1: a simple precomputation (to make a pri-
mary filter);

• Step 2: building parallel filters;
• Step 3: making parallel paths by using parallel

filters;
• Step 4: integration of parallel filters and paths

with nested loops and filters by proper use of the
precomputation phase, carries and other sepa-
rator bits.

These attacks are slightly different in the pre-
computation and integration phases. Anyway and
roughly, the master key in both attacks is recovered
by the following procedure: during the first steps,
a precomputation phase runs to build the primary
filter, and 5 out of 8 subkeys are guessed (namely
K3 to K7). To recover K0, K1, and K2, the attacker
uses 3 portions of the cipher where these keys are
used: the first 3 rounds, rounds 13 to 15 (between
two fixed points) and rounds 28 to 30. The main
idea is to build tables (parallel filters and paths) cor-
responding to each nibble/S-box at a time, so that
the time complexity is limited (only a few bits are
guessed at a time) and so is the memory complexity
(each table contains few elements). Since the key is
incorporated by a modular addition, the nibbles en-
tering the S-boxes are not completely independent
and some bits corresponding to carries also have to
be guessed. Once these tables are built for rounds 13
to 15 (building parallel filters), they are used with
respect to rounds 0 to 2 and 28 to 30 to filter out
the wrong keys by some nested loops and using the
primary filter (the common bits are also checked)
(making parallel paths by using parallel filters, and
the integration phase) and finally the possible keys
are obtained. These illustrations for GOST2 are
summarized in Figure 2.

It should be noted that for both attacks, we guess
the subkey K7 for all of its 232 values at the begin-
ning. Also, we consider an encryption and a byte as
the units of time and memory complexities, respec-
tively. Hence, the computation of each S-box can be
considered as a 2−8 encryption since each encryption
of GOST2 has 256 S-boxes. In addition, as each S-
box of GOST2 has a dimension of 4, each look-up for
an S-box could be considered as log2(24) = 22MA
in look-up table implementation according to B-Tree
method. So, each MA can also be considered as a
2−10 encryption.

The details of our attacks are explained in the fol-

ISeCure

July 2019, Volume 11, Number 2 (pp. 145–158) 149

0 1 2 3 4 5 6 7 3 4 5 6 7 0 1 2 5 6 7 0 1 2 3 4 6 5 4 3 2 1 0 7

P
lain

text

C
ip

h
ertext

Fixe
d

 Po
in

t

Fixed
 Po

in
t

Fixe
d

 Po
in

t

P
rim

ary Filter

P
rim

ary Filter

P
reco

m
p

u
tatio

n
s

P
reco

m
p

u
tatio

n
s

Subkeys:

Parallel Filters

Parallel Path
s

Parallel Path
s

Step 1 Step 3 Step 3Step 2 Step 1

Figure 2. New fixed point attacks procedure on GOST2 (∀i ∈ {0, 1, ..., 7}, Ki is shown by i for simplicity. In addition, each round
function of GOST2 is shown by only its subkey); step 1 shows the precomputation phase, step 2 shows building parallel filters, and

step 3 shows making parallel paths by using parallel filters; the integration phase is going to be done after these steps at the green
skewed lines.

lowing subsections and the exact algorithms are pre-
sented in Algorithm 2 and 3 of the Appendix.

4.1 Attack 1 details

Simple Precomputation Phase. At the first step,
some precomputations must be performed from plain-
text (resp. ciphertext) to certain intermediate states
of early (resp. last) rounds. The chosen intermediate
states for Attack 1 are (PR = SR

0 , SR
1 [11 − 26]) for

early rounds and (S′
R
29[11− 16], S′

R
30) for last rounds.

Therefore, assuming a known K7, we should also
guess 16 bits of K0[0 − 15] in addition to all pairs
of (P,C) to obtain the chosen intermediate states.
These intermediate states are a part of parallel paths
ending points in the later steps (see step 1 and skewed
lines in Figure 2). Hence, the intermediate states of

SR1 [11−26], S′
R29 [11−26] and S′

R30 should be com-
puted and saved together with PR and K0[0−15] in a
hash table of U , namely primary filter, with a proper
argumentation (the details are reflected in Algorithm
2, lines 2 to 6). The total number of arguments bits is
chosen in a way that it will be equal to total guessed
values for the primary filter. More precisely, the total
number of arguments bits in U is equal to 80, and also
there are exactly 264 plaintext-ciphertext pairs and
216 subkey bits of K1[0 − 15] that must be guessed.
Therefore, it can be seen that each argument of U
has one row on average. Indeed, the argumentation is

utilized to reduce the memory complexity by choos-
ing a pre-defined index for each row. As there are 16
S-boxes computations and a 32-bit saved value (see
line 5 in Algorithm 2) for each guess in this step, the
time and memory complexities to construct the table

for a fixed K7 are
16× 280

256
= 276 encryptions and

280 × 32

8
= 282 bytes, respectively.

Building Parallel Filters. After obtaining the
primary filter, the next step is building parallel fil-
ters. Therefore, we should continue by guessing the
fixed point value of S10 = S16 = S22. After choos-
ing the fixed point value, there are two portions
that should be used for the attack: one is between
two successive fixed points (see step 2 in Figure 2),
and the other is between the first/last fixed points

and {(SL
0 [27 − 10], SR

0 , SR
1 [11 − 26]), (S′

R
29[11 −

26], S′
L
30[27−10], S′

R
30)}, the ending points of parallel

paths (the green skewed lines in Figure 2). In this
step, we consider the rounds between two successive
fixed points for building parallel filters and then in
the next step, we continue by other rounds for mak-
ing parallel paths. As one can see in Table 2, the
K5 and K6 subkeys are in both parts and so they
should be guessed along with the fixed point. Hence,
we should guess 128 bits of S10 = S16 = S22,K

5,K6.
It should be mentioned that there are 160 bits with
determined values until now, because of considering

ISeCure

150 Trust-based Probabilistic Method for Verification in Database Outsourcing — S. Ahmadi and M.R. Aref

a fixed value for K7. Therefore, the time complexity
of any computations from now on has an increasing
factor of 2160.

Here, we are looking to build parallel filters be-
tween any two successive fixed points, for example,
S10 and S16. In order to do that, first, we can eas-
ily compute 3-round states according to the known
values of K5,K6,K7, and S10. Hence, we calculate
S13 with time complexity of only 3-round encryption.
Then, for rounds between S13 and S16, as the subkeys
are K0, K1 and K2, we can build a 3-round parallel
filter for ith (0 ≤ i ≤ 7) nibble of them by guessing
three carries (ai13,15, a

i+3
14) and a related separator bit

(MV14[15]+4i) (see Figure 3) in a new hash table Hi

with proper indexes. The details are again reflected
in Algorithm 2, lines 8 to 12. These hash tables are
the results of building parallel filters step.

It can be seen that all of the hash tables Hi with
0 ≤ i ≤ 7 are independent of each other by con-
sidering fixed values of carries and other separator
bits. Due to the 8 bits guessed values of (MV14[11−
15]+4i, ai13,15, a

i+3
14) for computing eachHi, each hash

tableHi has exactly 28 rows. Also, there are only 3 S-
boxes computations (see Figure 3) and a 16-bit saved
value (see lines 10 and 11 in Algorithm 2) for each
guess in this step. Therefore, the time and memory
complexities of building all eight hash tables Hi are
8× 28 × 3

256
≈ 24.6 encryptions and

8× 28 × 16

8
= 212

bytes, respectively.

Making Parallel Paths by using Parallel Filters.
Now we go through the second part, from fixed points
to ending points of parallel paths. In this step, the
final goal is to extract a combination result for each
parallel filter and the corresponding path in a new
hash table Q. In order to do that, first, we should cal-
culate the starting points of parallel paths, which are
S′2 and S28. For this purpose, the subkeys K3 and K4

are also required. So, they should be guessed. There-
fore, any computations from now has an increasing
factor of 2160 × 264 = 2224. Also, it is clear that the
time complexity of calculating both S′2 and S28 is 13-
round encryption for each guess.

With having the starting points (it means S′2, S28),
making each parallel path is possible. The hash ta-
bles Hi, 0 ≤ i ≤ 7 should also be used to make them.
Each parallel path made by its corresponding paral-
lel filter is shown by a hash table Qi which can be
computed by all 28 rows of Hi and also 26 values of
ai2,28, a

i+3
1,29,MV1,29[15]+4i when i changes from 0 to

7 (see Figure 4). Hence, each hash table Qi has 214

rows. Again, the details are shown in Algorithm 2,
lines 15 to 18. According to line 17 of Algorithm 2,
the argumentation used for ith parallel path consists

<<<
11

𝐾13
0

<<<
11

𝐾14
1

<<<
11

𝐾15
2

𝑀
𝑉
1
4

1
1
+
4
𝑖
−

1
4
+
4
𝑖

,𝑀
𝑉
1
4
1
5
+
4
𝑖

𝑆13

𝑆′15

[12 − 15]

[0 − 3]

𝑎14
𝑖

𝑏14
𝑖

𝑎13
𝑖

𝑏13
𝑖

𝑎15
𝑖

𝑏15
𝑖

𝑀
𝑉
1
4 ′

2
3
+
4
𝑖
−

2
6
+
4
𝑖

𝑀
𝑉
1
3 𝐸
[(2

3
+
4
𝑖)
−
(2
6
+
4
𝑖)]

𝑀
𝑉
1
5 𝐷
[(2

3
+
4
𝑖)
−
(2
6
+
4
𝑖)]

[0 − 3]

𝒊
𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

𝒊
𝟒
𝟑
𝟐
𝟏
𝟎
𝟕
𝟔
𝟓

𝒊
𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

<<<
11

𝐾13
0

<<<
11

𝐾14
1

<<<
11

𝐾15
2

𝑀
𝑉
1
4
1
1
−
1
4

+
4
𝑖,𝑀

𝑉
1
4
1
5

+
4
𝑖

𝑆13

𝑆′15

[12 − 15]

[0 − 3]

𝑎14
𝑖+3

𝑎14
𝑖+4

𝑎13
𝑖

𝑎13
𝑖+1

𝑎15
𝑖

𝑎15
𝑖+1

[0 − 3]

𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

Figure 3. Building parallel filters by guessing three carries

and another separator bit.

of 10 bits as Qi[a
i
2,13,15,28, a

i+3
1,14,29,MV1,14,29[11]+4i].

The reason of choosing this argumentation is re-
turned to the variables stored in that hash ta-
ble, which are {MV0,30[23 − 26]+4i,MV1,29[12 −
15]+4i,MV14[15]+4i,K0,2[0 − 3]+4i,K1[12 − 15]+4i,
ai+1
2,13,15,28, a

i+4
1,14,29}. It means that the outputs ob-

tained from Qi can be directly used as the inputs for
Qi+1. This property will be used in the integration
phase of the attack.

As there are only 4 S-boxes computations (see
Figure 4) and a 36-bit saved value (see line 17 in
Algorithm 2) for each guess in this step, the total
time and memory complexities of making all eight

hash tables Qi are
8× 214 × 4

256
= 211 encryptions

and
8× 214 × 36

8
≈ 219.2 bytes, respectively. In the

next step, we have to integrate these hash tables
(Qi, 0 ≤ i ≤ 7) with nested loops and filters so that

ISeCure

July 2019, Volume 11, Number 2 (pp. 145–158) 151

we can find a candidate key.

Integration Phase. In order to integrate all of the
hash tablesQi, 0 ≤ i ≤ 7, we need to consider all rows
in each Qi along with dependencies to the next hash
table Qi+1. This results in some nested loops, which
can be seen in the Algorithm 2, lines 19 to 36. Now,
the exact integration phase is going to be illustrated.

The integration phase is begun with Q0. For this
particular hash table, four bits of arguments are equal
to zero which are a02,13,15,28 = (0, 0, 0, 0). As it is
mentioned before, each hash table Qi has 214 rows.
Hence, considering a02,13,15,28 = (0, 0, 0, 0), 210 rows
have been left for Q0. Now, according to the previ-
ous step, having any row of Qi, all input arguments
of Qi+1 are also obtained. As Qi+1 has 10 argument
bits, it can be concluded that for each row ofQi, there
are only 214−10 = 24 chances for rows in Qi+1. This
can be continued until i = 3. Hence, for the first loop,
we need to consider 210 rows of tableQ0, while for the
next three loops, there are only 24 rows for each table.
After passing through four first loops (or equivalently
integration of all Qi, 0 ≤ i ≤ 3), the primary filter
U can be used to extract full intermediate states for
ending points of parallel paths. Therefore, using the
other hash tables Qi, 4 ≤ i ≤ 7 results in filtering the
wrong keys until the final tableQ7 will be considered.
By performing an exact investigation on Q4 after ap-
plying the primary filter, it can be found that a 2−4

filtration is obtained by considering Q4. In addition,
hash tables Q5 and Q6 have similar effects. But the
hash table Q7 should be consistent with both Q6 and
Q0. This leads to a 2−10 filtration of wrong guesses
when the hash table Q7 is checked.

The time complexity of the integration phase has
both types ofMA and computations. Because here we
only lookup tables and extract the proper values and
finally check the candidate key. According to lines be-
tween 19 to 36 and the above mentioned, for the first
four loops, we need to consider 210 × 24 × 24 × 24 =
222 iterations. Afterward, the intermediate variables
of endpoints of parallel paths are extracted from pri-
mary filter U . It is worthy to be noted that by pass-
ing through each loop, 20 bits of indexes of table U
are obtained. So, the memory access for line 23 of Al-
gorithm 2 can be reduced to access a table with 220

rows. After attaining the values of endpoints of the
other parallel paths (PR[7 − 22] and S′

R
30[7 − 22]),

looking ups on hash tablesQ4 toQ7 result in filtering
the wrong values. So, passing through each filter for
the first three one results in 2−4 reduction of itera-
tions and the final filter also reduce the iterations 2−10

times. Therefore, the total reduction of iterations is
equal to 2−4 × 2−4 × 2−4 × 2−10 = 2−22. Finally, it
is clear that only one (222 × 2−22 = 1) candidate key

Table 3. Dominant memory access calculations for integration

phase of the Attack 1

Line Memory access

After line 21
218(log2(220))

? Third partial memory access of primary

filter U

Line 22
218(log2(210) + 24)

Memory access of Q3 and choosing 24

rows from that

Line 23
222(log2(220))

Fourth (last) partial memory access of
primary filter U

Line 24
222(log2(214))

Memory access of of Q4

Line 25
218(log2(214))

Memory access of of Q5

Total MA

MA ≈ 218(log2(220) + log2(210) + 24)

+222(log2(220) + log2(214)) + 218log2(214)

= 218 × 60 + 222 × 34 ≈ 227.2

? First, second and third partial memory access of primary

filter U are not shown in the Algorithm 2

K = K0−7 left for trying to find the master key.

According to these explanations, the time complex-
ity for lines between 19 to 36 is only 1 encryption,
while the dominant memory access of these lines is
calculated in Table 3.

The memory complexity of this step is negligible
and can be ignored. At the end of this step, a can-
didate key is checked and after performing all proce-
dures, the master key should be extracted.

Total Attack Complexities. Up to now, all the
steps of the Attack 1 are introduced. Here, we focus
on computing the total time and memory complex-
ities of the attack. For this, we should sum all the
dominated complexities achieved by all steps. Hence,
the total normalized complexities are:

Ctime ' 2224 × 211 = 2235 encryptions

CMA ' 2224 × 227.2 = 2251.2MA

Cmemory ' 282 bytes (2)

For better comparison of our result and the best
previous one in [28], one can change memory access
to encryption complexity. With this modification, At-
tack 1 complexities are 2235 + 2251.2 × 2−10 ' 2241.2

encryptions and 282 bytes, while the Ashur’s attack
complexities are 2237.5 + 2244.1 × 2−10 ' 2237.6 en-
cryptions and 2138.15 bytes. It means Attack 1 results

ISeCure

152 Trust-based Probabilistic Method for Verification in Database Outsourcing — S. Ahmadi and M.R. Aref

<<<
11

𝐾0
0

<<<
11

𝐾1
1

<<<
11

𝐾2
2

𝑀
𝑉
1
1
1
−
1
4

+
4
𝑖,𝑀

𝑉
1
1
5

4
𝑖

𝑆0

𝑆′2

[12 − 15]

[0 − 3]

𝑎1
𝑖+3

𝑎1
𝑖+4

𝑀
𝑉
0
2
3
−
2
6

+
4
𝑖

𝑎2
𝑖

𝑎2
𝑖+1

𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

<<<
11

𝐾28
2

<<<
11

𝐾29
1

<<<
11

𝐾30
0

𝑀
𝑉
2
9
1
1
−
1
4

+
4
𝑖,𝑀

𝑉
2
9
1
5

+
4
𝑖

𝑆28

𝑆′30

[12 − 15]

[0 − 3]

𝑎29
𝑖+3

𝑎29
𝑖+4

𝑀
𝑉
3
0
2
3
−
2
6

+
4
𝑖

𝑎28
𝑖

𝑎28
𝑖+1

𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

𝟕
𝟔
𝟓
𝟒
𝟑
𝟐
𝟏
𝟎

Figure 4. Making parallel paths

in increasing 4.2-bit in time complexity while reduc-
ing 56-bit in memory complexity. It should be noted
that the data complexity of both attacks is 264.

4.2 Attack 2 details

As the general procedure of Attack 2 is similar to
Attack 1, we just briefly explain the attack procedure
and have more concentrate on the differences here.

Simple Precomputation Phase. Here, we only
precompute internal states of S0 and S′30 by known
K7 bits and all pairs of (P,C). Therefore, the pre-
computations are much simpler than Attack 1, while
in order to show how to use these precomputations
(or the primary filter), we used different argumenta-
tion for hash table U (see Algorithm 3, lines 2 to 5).
The arguments of U are chosen in a way that could
be simply utilized in the integration phase of the
attack. According to this precomputation phase, the

memory complexity is equal to
264 × 64

8
= 267 bytes,

while the time complexity is negligible in comparison
to the other steps of the attack.

Building Parallel Filters and Parallel Paths.
Steps 2 and 3 are exactly the same as Attack 1, with
equal complexities. The most important output of
these steps are Qi, 0 ≤ i ≤ 7 hash tables.

Integration Phase. The general procedure of this
phase is also the same as Attack 2. However, accord-
ing to the different primary filter obtained here, the
nested loops should be considered in a manner that
the primary filter could be utilized as soon as possi-
ble. As the primary filter only contains S0 and S′30
bits, it translates to compute more bits of S0 and
S′30 by using known bits of K0 when it is possible.
Again, the procedure is started with hash table Q0

with a02,13,15,28 = (0, 0, 0, 0) (210 rows), and continued
with Q1 and Q2 (each with 24 rows) with the same
manner as Attack 1. However, in the third loop, by
guessing two more bits of MV0,30[3], all the variables
needed for computing more 8 bits of S0, S

′
30 are also

ISeCure

July 2019, Volume 11, Number 2 (pp. 145–158) 153

known. Hence, they are considered to compute these 8
bits according to line 21 of Algorithm 3. So, the third
loop contains 26 iterations for the total procedure of
the attack instead of 24. But it should be noted that
the two guessed bits MV0,30[3] are also in the outputs
of Q3. Therefore, the number of iterations for the re-
maining loops will not change (and they are equal to
24). From now on, in each loop, computing more 8
bits of (S0, S

′
30) by guessing two more bits and going

throughout two S-boxes is possible. So, the integra-
tion phase continues in the same way for hash tables
Q3 and Q4. After the fifth loop, all the input indexes
of primary filter U are attained and so, all the bits of
(S0, S

′
30) can be achieved by the primary filter. It is

worthy to be noted that by passing through each loop
after the third loop, 16 bits of indexes of hash table
U are obtained. So, the memory access for using the
primary filter (line 26 of Algorithm 2) can be reduced
to access a hash table with 216 rows. Now, it is the
time to use the other hash tables of Qi, 5 ≤ i ≤ 7 to
filter out the wrong values in a straightforward man-
ner. All the procedures are reflected in Algorithm 3,
from lines 18 to 40.

According to these lines and the above-mentioned
illustrations, there are five nested loops followed by
four nested filters. These five loops have 210, 24, 26, 24,
and 24 iterations, respectively, while the four nested
filters have 2−2, 2−4, 2−4, and 2−10 filtrations, respec-
tively. Hence, the normalized time complexity of the
integration phase by considering dominant parts can
be obtained according to Table 4.

Again, the memory complexity of this step is neg-
ligible and can be ignored. At the end of this step,
a candidate key is checked and after performing all
procedures, the master key should be extracted.

Total Attack Complexities. For computing the
complexities of the Attack 2, we should sum all the
dominated complexities achieved by all four steps.
Hence the total normalized complexities are:

Ctime ' 2224 × 221.1 = 2245.1 encryptions

CMA ' 2224 × 232.4 = 2256.4MA

Cmemory ' 267 bytes (3)

Again, one can change memory access to encryp-
tion complexity. With this modification, Attack 2
complexities are 2245.1 + 2256.4 × 2−10 ' 2246.9 en-
cryptions and 267 bytes. It means that Attack 2 re-
sults in more increasing of 5.7-bit in time complexity
while reducing more 15-bit in memory complexity in
comparison to Attack 1. It should be noted that the
data complexity of this attack is also 264.

Table 4. Dominant time complexities for integration phase of

the Attack 2

Line Memory access Computations

Line 21
- 220 × 2

Can be ignored S-boxes

After 220 × (log2(216)) -

line 21 ? Third partial MA -

Line 22
220(log2(212) + 22) -

MA of Q3 and choosing 22 rows from

that
-

Line 23
- 224 × 2

Can be ignored S-boxes

After 224 × (log2(216)) -

line 23 ? Fourth partial MA -

Line 24
224(log2(212) + 22) -

MA of Q4 and choosing 22 rows from

that
-

Line 25
- 228 × 2

Can be ignored S-boxes

Line 26
228 × (log2(216)) -

Fifth (last) partial MA -

Line 27
- -

Doesn’t need any MA -

Line 28
226 × (log2(214)) -

MA of Q5 -

Line 29
222 × (log2(214)) -

MA of Q6 -

Line 30
218 × (log2(214)) -

MA of Q7 -

Line 31
- 28 × 256

- S-boxes

Total

MA ≈ 220(log2(216) + log2(212) + 22)
221

256
+

225

256

+224(log2(216) + log2(212) + 22)

+228log2(216) + 226log2(214)
229

256
+

216

256

+222log2(214) + 218log2(214)

≈ 225+229+232+229.8+225.8+221.8 ≈
232.4

≈ 221.1 enc.

? First to fourth partial memory access of primary filter U are

not shown in the Algorithm 3

ISeCure

154 Trust-based Probabilistic Method for Verification in Database Outsourcing — S. Ahmadi and M.R. Aref

5 Conclusion

Efficient division of 3-round GOST2 encryption into
8 smaller parallel filters and paths along with three
identical 3-round encryptions in rounds 2 to 0, 15 to
13, and 28 to 39 made an attacker stronger to apply
a fixed point attack on GOST2 with lower memory
complexity. For this purpose, the attacker should first
compute a primary filter as a precomputation phase.
Then she should check inside of the two successive
fixed points to extract parallel filters. Next, the rest of
the cipher should be considered for obtaining paral-
lel paths. Finally, with the integration of all previous
steps, the attacker could filter out the wrong keys. In
this paper, two new fixed point attacks are provided
with this approach. The results show a significant re-
duction in memory complexity while preserving the
time complexity near the previous results. Though
the new attacks do not threaten GOST2 block cipher,
they opened a new area for enhancing memory com-
plexity of the fixed point attack.

Acknowledgement

This work was partially supported by the Iranian Na-
tional Science Foundation (INSF) under contract no.
96.53979 and INSF cryptography chair and by the Of-
fice of Vice-President for the Science and Technology,
I. R. Iran.

References

[1] Matsui, M.: Linear Cryptoanalysis Method for
DES Cipher. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 386397.
Springer (1994)

[2] Bogdanov, A., Rijmen, V.: Zero-correlation linear
cryptanalysis of block ciphers. Accepted to De-
signs, Codes and Cryptography, 2012

[3] E. Biham, A. Shamir, Differential Cryptanalysis
of DESlike Cryptosystems, Journal of Cryptology,
Vols.4, no.1, pp. 3-72 (1991)

[4] E. Biham, A. Biryukov, A. Shamir, Cryptanalysis
of Skipjack Reduced to 31 Rounds using Impossi-
ble Differentials,” in Advances in Cryptology: EU-
ROCRYPT’99 LNCS 1592, pp. 12-23, Springer
Verlag (1999)

[5] W. Diffie and M. Hellman. Exhaustive cryptanal-
ysis of the NBS data encryption standard. Com-
puter, 10(6):7484, (1977)

[6] Canteaut, A., Naya-Plasencia, M., and Vayssire,
B. Sieve-in-the-middle: Improved MITM attacks.
In CRYPTO (2013), R. Canetti and J. Garay,
Eds., vol. 8042 of Lecture Notes in Computer Sci-
ence, Springer, pp. 222240.

[7] Bogdanov, A., Khovratovich, D., Rechberger, C.:
Biclique Cryptanalysis of the Full AES. ASI-
ACRYPT 2011, LNCS, vol. 7073, pp. 344-371.

Springer, Heidelberg (2011)
[8] Ahmadi, Siavash, et al. Low-data complexity bi-

clique cryptanalysis of block ciphers with applica-
tion to piccolo and hight. IEEE Transactions on
Information Forensics and Security 9.10 (2014):
1641-1652 (2014)

[9] Dunkelman, O., Keller, N., and Shamir, A. Im-
proved single-key attacks on 8-round AES-192
and AES-256. In ASIACRYPT (2010), M. Abe,
Ed., vol. 6477 of Lecture Notes in Computer Sci-
ence, Springer, pp. 158176.

[10] Derbez, P., Fouque, P.-A., and Jean, J. Improved
key recovery attacks on reduced-round AES in
the single-key setting. In EUROCRYPT (2013),
T. Johansson and P. Nguyen, Eds., vol. 7881 of
Lecture Notes in Computer Science, Springer, pp.
371387.

[11] Russian National Bureau of Standards. Federal
Information Processing Standard-Cryptographic
Protection - Cryptographic Algorithm. GOST
28147-89, 1989

[12] Dolmatov, Vasily. ”GOST R 34.12-2015: Block
Cipher Kuznyechik. Transformation 50 (2016):
10.

[13] Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin
Lee, and Ju-Sung Kang. Related Key Differen-
tial Attacks on 27 Rounds of XTEA and Full-
Round GOST. In Bimal K. Roy and Willi Meier,
editors, Fast Software Encryption, 11th Interna-
tional Workshop, FSE 2004, Delhi, India, Febru-
ary 5-7, 2004, Revised Papers, volume 3017 of Lec-
ture Notes in Computer Science, pages 299316.
Springer, 2004.

[14] Takanori Isobe: A Single-Key Attack on the Full
GOST Block Cipher, In FSE 2011, pp. 290-305,
Springer LNCS 6733, 2011

[15] Nicolas Courtois: On Multiple Symmetric Fixed
Points in GOST, In Cryptologia, Volume 39, Issue
4, 2015, pp. 322-334.

[16] Haruki Seki and Toshinobu Kaneko: Differen-
tial Cryptanalysis of Reduced Rounds of GOST.
In SAC 2000, LNCS 2012, pp. 315-323, Springer,
2000

[17] Nicolas Courtois, Micha Misztal: First Differen-
tial Attack On Full 32-Round GOST, in ICICS’11,
pp. 216-227, Springer LNCS 7043, 2011.

[18] Nicolas Courtois, Micha Misztal: Aggregated
Differentials and Cryptanalysis of PP-1 and
GOST, In CECC 2011, 11th Central European
Conference on Cryptology. In Periodica Mathe-
matica Hungarica Vol. 65 (2), 2012, pp. 1126,
Springer.

[19] Nicolas T. Courtois, Theodosis Mourouzis,
Micha Misztal, Jean-Jacques Quisquater,
Guangyan Song: Can GOST Be Made Secure
Against Differential Cryptanalysis? In Cryptolo-

ISeCure

July 2019, Volume 11, Number 2 (pp. 145–158) 155

gia, vol. 39, Iss. 2, 2015, pp. 145-156.
[20] Nicolas Courtois, Theodosis Mourouzis, Ad-

vanced Truncated Differential Attacks Against
GOST Block Cipher and Its Variants, In Com-
putation, Cryptography, and Network Security,
Springer, pp. 351-380, 2015.

[21] Nicolas Courtois: Security Evaluation of GOST
28147-89 In View Of International Standardisa-
tion, in Cryptologia, Volume 36, Issue 1, pp. 2-13,
2012.

[22] Nicolas T. Courtois: Cryptanalysis of GOST in
the Multiple Key Scenario, In postproceedings
of CECC 2013, Tatra Mountains Mathematical
Publications. Vol. 57, no. 4 (2013), p. 45-63.

[23] Nicolas Courtois: On Multiple Symmetric Fixed
Points in GOST, In Cryptologia, Volume 39, Issue
4, 2015, pp. 322-334

[24] Takanori Isobe: A Single-Key Attack on the Full
GOST Block Cipher, In FSE 2011, pp. 290-305,
Springer LNCS 6733, 2011

[25] Itai Dinur, Orr Dunkelman and Adi Shamir: Im-
proved Attacks on Full GOST, FSE 2012, LNCS
7549, pp. 9-28, 2012

[26] Nicolas Courtois: Algebraic Complexity Reduc-
tion and Cryptanalysis of GOST, Monograph
study on GOST cipher, 2010-2014, 224 pages

[27] Alekseychuk, A. N., and L. V. Kovalchuk. To-
wards a Theory of Security Evaluation for GOST-
like Ciphers against Differential and Linear
Cryptanalysis. IACR Cryptology ePrint Archive
2011 (2011): 489.

[28] Ashur, Tomer, Achiya Bar-On, and Orr Dunkel-
man. Cryptanalysis of GOST2. IACR Transac-
tions on Symmetric Cryptology 2017.1 (2017):
203-214.

[29] Ahmadi, Siavash, and Mohammad Reza Aref.
Improved Fixed Point Attack on Gost2. 2017 14th
International ISC (Iranian Society of Cryptology)
Conference on Information Security and Cryptol-
ogy (ISCISC). IEEE, 2017.

[30] Comer, Douglas. Ubiquitous B-tree. ACM Com-
puting Surveys (CSUR) 11.2 (1979): 121-137.

Siavash Ahmadi received the B.S.
and M.S. degrees in electrical en-
gineering in 2012 and 2014, re-
spectively, from Sharif University of
Technology, Tehran, Iran. He is cur-
rently a Ph.D. candidate in electri-
cal engineering (communication sys-

tems and security) at Sharif University of Technology.
His special fields of interest include cryptology and
wireless security, with emphasis on cryptanalysis.

Mohammad Reza Aref received
the B.S. degree in 1975 from the
University of Tehran, Iran, and the
M.Sc. and Ph.D. degrees in 1976
and 1980, respectively, from Stan-
ford University, Stanford, CA, USA,
all in electrical engineering. He re-

turned to Iran in 1980 and was actively engaged in
academic affairs. He was a faculty member of Isfa-
han University of Technology from 1982 to 1995. He
has been a professor of electrical engineering at Sharif
University of Technology, Tehran, since 1995, and has
published more than 290 technical papers in commu-
nication and information theory and cryptography in
international journals and conferences proceedings.
His current research interests include areas of com-
munication theory, information theory, and cryptog-
raphy.

ISeCure

156 Trust-based Probabilistic Method for Verification in Database Outsourcing — S. Ahmadi and M.R. Aref

Appendix

The fixed point attack algorithm proposed by Ashur et al. is provided here. Also, the exact algorithms of our
new fixed point attacks on GOST2 are presented.

Algorithm 1 The previous fixed point attack

1: for all K7,K0[0− 11],K2[0− 11],K1[11] do
2: for all (P,C),K0[12− 31],K1[0− 10, 12− 31],K2[12− 31] do
3: S28 ← partial decryption from C with (K2,K1,K0,K7)
4: S3 ← partial encryption from P with (K0,K1,K2)
5: Save (K0[12− 31],K1[0− 10, 12− 31],K2[12− 31]) in a hash table T [S3||S28]
6: end for
7: for S10 = S16 = S22,K

5,K6 do
8: S13 ← partial encryption from S10 with (K5,K6,K7)
9: if FILTER(S16, S13,K

0[0− 11],K2[0− 11]) ==TRUE then
10: for K3,K4 do
11: (K0[0− 11],K1[12− 19],K2[0− 11])← SOLVE(S16, S13,K

0[0− 11],K2[0− 11],K1[11])
12: S3 ← partial decryption from S10 with K3−7

13: S28 ← partial encryption from S22 with K3−6

14: for each (K0[12− 31],K1[0− 10, 12− 31],K2[12− 31]) in T [S3||S28] do
15: FILTER(K1[12− 19])
16: end for
17: TRY K = K0||K1||...||K7

18: end for
19: end if
20: end for
21: end for

ISeCure

July 2019, Volume 11, Number 2 (pp. 145–158) 157

Algorithm 2 Details of Attack 1 on Gost2

1: for all K7 do . Precomputation phase:
2: for all (P,C),K0[0− 15] do

3: S′
R
30, S

′R
29[11− 26]← partial decryption with C,K7,K0[0− 15]

4: SR
1 [11− 26]← partial encryption with P,K0[0− 15]

5: Save (PR[7− 22], S′
R
30[7− 22]) in a new hash table U [SR

1 [11− 26], PR[23− 6], S′
R
29[11− 26], S′

R
30[23−

6],K0[0− 15]]
6: end for
7: for all S10 = S16 = S22,K

5,6 do . Parallel filters:
8: S13 ← partial encryption from S10 with K5−7

9: for all MV 14[11− 15]+4i, ai13,15, a
i+3
14 with i = 0 to 7 do

10: Calc. X = (K0,2[0− 3]+4i,K1[12− 15]+4i, ai+1
13,15, a

i+4
14) by S13,16

11: Save X ,MV14[15]+4i in a new hash table Hi[a
i
13,15, a

i+3
14 ,MV14[11]+4i]

12: end for
13: for all K3,4 do . Parallel paths:
14: (S′2, S28)← partial decryption/encryption from S10,22 with K3−7

15: for all ai+3
1,29, a

i
2,28,MV1,29[15]+4i & all rows in Hi, with i = 0 to 7 do

16: Calc. MV1,29[11− 14]+4i,MV0,30[23− 26]+4i, ai+4
1,29, a

i+1
2,28 by S′2, S28

17: Consider equivalent row in Hi and save MV0,30[23 − 26]+4i,MV1,29[12 −
15]+4i,MV14[15]4i,K0,2[0 − 3]+4i,K1[12 − 15]+4i, ai+1

2,13,15,28, a
i+4
1,14,29 in a new hash table

Qi[a
i
2,13,15,28, a

i+3
1,14,29,MV1,14,29[11]+4i]

18: end for . Integration phase:
19: for all rows in Q0 with a02,13,15,28 = (0, 0, 0, 0) do
20: for all rows in Q1[a12,13,15,28, a

4
1,14,29,MV1,14,29[15]] do

21: for all rows in Q2[a22,13,15,28, a
5
1,14,29,MV1,14,29[19]] do

22: for all rows in Q3[a32,13,15,28, a
6
1,14,29,MV1,14,29[23]] do

23: Get (PR[7−22], S′
R
30[7−22]) from U [SR

1 [11−26], PR[23−6], S′
R
29[11−26], S′

R
30[23−

6],K0[0− 15]]
24: if there is a row in Q4[a42,13,15,28, a

7
1,14,29,MV1,14,29[27]] with known MV0,30[7− 10]

then
25: if there is a row in Q5[a52,13,15,28, a

0
1,14,29,MV1,14,29[31]] with known MV0,30[11−

14] then
26: if there is a row in Q6[a62,13,15,28, a

1
1,14,29,MV1,14,29[3]] with known

MV0,30[15− 18] then
27: if there is a row in Q7[a72,13,15,28, a

2
1,14,29,MV1,14,29[7]] with known

(MV0,30[19− 22],MV1,14,29[11], a31,14,29) then
28: Try K = K0||K1||...||K7

29: end if
30: end if
31: end if
32: end if
33: end for
34: end for
35: end for
36: end for
37: end for
38: end for
39: end for

ISeCure

158 Trust-based Probabilistic Method for Verification in Database Outsourcing — S. Ahmadi and M.R. Aref

Algorithm 3 Details of Attack 2 on Gost2

1: for all K7 do . Precomputation phase:
2: for all (P,C) do
3: S′30 ← partial decryption with C,K7

4: Save (PL[23−10], PR[11−22], S′
L
30[23−10], S′

R
30[11−22]) in a new hash table U [PL[11−22], PR[23−

10], S′
L
30[11− 22], S′

R
30[23− 10]]

5: end for
6: for all S10 = S16 = S22,K

5,6 do . Parallel filters:
7: S13 ← partial encryption from S10 with K5−7

8: for all MV 14[11− 15]+4i, ai13,15, a
i+3
14 with i = 0 to 7 do

9: Calc. X = (K0,2[0− 3]+4i,K1[12− 15]+4i, ai+1
13,15, a

i+4
14) by S13,16

10: Save X ,MV14[15]+4i in a new hash table Hi[a
i
13,15, a

i+3
14 ,MV14[11]+4i]

11: end for
12: for all K3,4 do . Parallel paths:
13: (S′2, S28)← partial decryption/encryption from S10,22 with K3−7

14: for all ai+3
1,29, a

i
2,28,MV1,29[15]+4i and all rows in Hi, with i = 0 to 7 do

15: Calc. MV1,29[11− 14]+4i,MV0,30[23− 26]+4i, ai+4
1,29, a

i+1
2,28 by S′2, S28

16: Consider equivalent row in Hi and save MV0,30[23 − 26]+4i,MV1,29[12 −
15]+4i,MV14[15]+4i,K0,2[0 − 3]+4i,K1[12 − 15]+4i, ai+1

2,13,15,28, a
i+4
1,14,29 in a new hash table

Qi[a
i
2,13,15,28, a

i+3
1,14,29,MV1,14,29[11]+4i]

17: end for . Integration phase:
18: for all rows in Q0 with a02,13,15,28 = (0, 0, 0, 0) do
19: for all rows in Q1[a12,13,15,28, a

4
1,14,29,MV1,14,29[15] do

20: for all rows in Q2[a22,13,15,28, a
5
1,14,29,MV1,14,29[19]] & all MV0,30[3] do

21: SL
0 [11 − 14], S′

L
30[11 − 14], a10,30 ← partial decryption/encryption with K0[0 −

3],MV0,30[0− 3],MV1,29[11− 14]
22: for all rows in Q3[a32,13,15,28, a

6
1,14,29,MV1,14,29[23]] with known MV0,30[3] & all

MV0,30[7] do

23: SL
0 [15 − 18], S′

L
30[15 − 18], a20,30 ← partial decryption/encryption with K0[4 −

7],MV0,30[4− 7],MV1,29[15− 18], a10,30
24: for all rows in Q4[a42,13,15,28, a

7
1,14,29,MV1,14,29[27]] with known MV0,30[7] & all

MV0,30[11] do

25: SL
0 [19 − 22], S′

L
30[19 − 22] ← partial decryption/encryption with K0[8 −

11],MV0,30[8− 11],MV1,29[19− 22], a20,30
26: Get (P, S′30) from U [PL[11− 22], PR[23− 10], S′

L
30[11− 22], S′

R
30[23− 10]]

27: if (PR[11], S′
R
30[11]) == MV0,30[11] then

28: if there is a row in Q5[a52,13,15,28, a
0
1,14,29,MV1,14,29[31]] with known

MV0,30[11− 14] then
29: if there is a row in Q6[a62,13,15,28, a

1
1,14,29,MV1,14,29[3]] with known

MV0,30[15− 18] then
30: if there is a row in Q7[a72,13,15,28, a

2
1,14,29,MV1,14,29[7]] with known

(MV0,30[19− 22],MV1,14,29[11], a31,14,29) then
31: Try K = K0||K1||...||K7

32: end if
33: end if
34: end if
35: end if
36: end for
37: end for
38: end for
39: end for
40: end for
41: end for
42: end for
43: end for

ISeCure

	1 Introduction
	2 Preliminaries
	2.1 Basics of the fixed point property
	2.2 GOST2 block cipher description
	2.3 Notations

	3 An overview of prior fixed point attacks on GOST2
	4 New fixed point attacks on GOST2
	4.1 Attack 1 details
	4.2 Attack 2 details

	5 Conclusion

