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In this paper we propose a new method for applying hiding countermeasure
against CPA attacks. This method is for software implementation, based on
smoothing power consumption of the device. This method is evaluated on
the SIMON scheme as a case study, however, it is not relying on any specific
SIMON features. Our new method includes only AND equivalent and XOR
equivalent operations since every cryptographic algorithm can be implemented
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with two basic operations, namely AND and XOR. Therefore, hamming
weight and hamming distance take constant values at each moment of time.

This can decrease data-dependency between processed values and consumed
power. In order to practically evaluate the resulting implementation overheads
and the resistance improvement against CPA, we implement the proposed
coding scheme on SIMON, a lightweight block cipher, on a smart card with
the ATmegal63 microprocessor. We define resistance as the number of traces,
which for less than that number, the correct key cannot be distinguished
from all other hypothetical keys by its correlation coefficient in any moment
of time. The results of this implementation show 350 times more immunity
against correlation attacks.

(© 2017 ISC. All rights reserved.

1 Introduction sures against power analysis attacks have been pro-

posed [2]. Software based countermeasure methods

ince the first time that differential power analysis
S(DPA) was proposed by Kocher in 1999 [1], side
channel attacks have been an important subject in as-
sociation with cryptographic devices. In the past two
decades, many progresses in power analysis attacks
have been achieved. Different classes of countermea-
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recently are noticed because these kinds of methods
do not need any special hardware or changes in the de-
vice architecture. These methods can be implemented
in software and on all conventional microprocessors.

The proposed method in this paper tries to smooth
the consumed power by considering power models.
This is a method for applying hiding countermeasure
in the software such that all the intermediate states
have constant hamming weight and hamming dis-
tance. Hence, in some sense, the information leakage
gets lower. Our new method is based on this fact that
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every cryptographic algorithm can be implemented
with only two operands AND, XOR. Therefore, our
new method maps computation to a new domain by
defining equivalent AND and equivalent XOR; these
equivalent operands are designed so that the ham-
ming weight and the hamming distance take constant
values at each moment of time. As a result, data de-
pendency between computation and power consump-
tion will be decreased. Finally, when computation
terminates, output can be decoded and ciphertext
will be obtained.

This paper is divided into different sections; Sec-
tion 2 introduces the related work, as well as a short
introduction to the SIMON block cipher that is used
for the case study; Section 3 presents implementation
of protected and unprotected SIMON using the pro-
posed method; in Section 4 the evaluated results and
the data of the correlation power analysis attacks on
different implementations are stated and compared
with each other. Finally, conclusions are presented in
Section 5.

2 Background

This section introduces the related work. Also, a short
introduction to the SIMON block cipher that is used
for the case study is provided.

2.1 Previous Works

So far various array of countermeasures against dif-
ferential power attacks have been proposed. Most of
them are applied in architecture level or cell levels of
a cryptographic device. These countermeasures are
complicated, expensive and not suitable for inexpen-
sive industrial applications such as sensors, RFIDs
and smart cards. Another main class is masking [3, 4]
methods which in spite of their strengths, they are
still vulnerable to higher order attacks. Meanwhile,
there have been some efforts for proposing new coun-
termeasures based on hiding class in the software and
programming level.

In the first attempts, in 2010 Chen [5] tried to
utilize DPL (dual rail logic) methods [6] in software
on special multi-core microprocessors. They assumed
that there are two one-core microprocessors that work
parallel and they are precisely synchronized with each
other by an additional circuit. On the other hand,
in the software, the moment the first microprocessor
processes an operation, the second microprocessor
processes complement of that operation in that exact
moment of time. For instance, if the first microproces-
sor processes AND (OR) the second microprocessor
should process OR (AND) operation. The authors
claim that this method shows 80 times improvement
in the resistance against CPA; however, this method
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is still vulnerable to EM attacks due to the high corre-
lation of executed intermediate data with consumed
power and consequently, with the power of electromag-
netic radiation by the two distinctive microprocessor.
It also suffers from the synchronization problem that
an adversary can use to attack the system. Moreover,
this method requires special hardware and additional
circuits that forces extra cost and complexity.

In 2011, Hoogvorst [7] proposed a method that used
the DPL idea in the software and works on conven-
tional microprocessors. The authors claim that with
the help of their special programming schemes and
rules, they could decrease dependency between the
consumed power and the processed data. To apply
an operation like AND on two bits a and b, primar-
ily they were encoded and were put together in an
8-bit register like [0000bbaa]. Then, the code cor-
responding to the intended operation such as AND,
OR, XOR, etc. is placed in the unused four bits of the
register; for example [0001bba a] that [000 1] shows
an AND operation. The microprocessor reads the
value of the memory in the address of [0001bba a]
that the value is [000000a.ba.b] which is precom-
puted and placed in memory. With the help of this
procedure all the required processes can be obtained.
Actually this is similar to what an ALU does in a
processor. Also, at the beginning of each step the
used register are set to zero which is equivalent to
precharge step in DPL. The authors did not present
any experimental results in their paper to support
their claims, however, Rauzy [8] presented a program
to secure the assembly code of a cryptographic ci-
pher implemented with bit-sliced format [9] based on
this paper. The name of this program is Paioli. The
implementation results on PRESENT [10] show that
Hoogvorsts method is 34 times more resistant. The
disadvantage of this method is using an 8-bit register
for processing an operation on two 1-bit. Also, this
method’s memory usage highly increases due to the
required memory for every inputs and operands. In
[8], the authors showed that the least significant bit
on ATmegal63 microprocessor leaks very differently
from the other 7 bits, which approximately have a
same leakage characteristics. For this purpose, they
ran eight versions of an unprotected bit-sliced im-
plementation of PRESENT), each of them using only
one of the 8 possible bits. They used the Normalized
Inter-Class Variance(NICV) [11] as a metric to evalu-
ate the leakage level of the variables of each of the 8
versions.

Han in 2012 [12] introduced a bit-wise balanced en-
coding data representation method. Its general idea
is very similar to Hoogvorst’s work [7], every bit a
encoded to aa. Then, for every operation like XOR,
SBOX and permutation, a new equivalent operation
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is stated. Equivalent of SBOX is achieved straight-
forwardly by changing the values of look up tables
to the encoded ones. They show that for XOR the
relation encode(A & B) = encode(A) & encode(B) &
(0101) is confirmed. Thus, the new XOR defined
as (encode(B) & (0101)2) & encode(A) that is eas-
ier than look up table method used in [7]. However,
it cause a problem that makes the attack possible
against it [13]. If B has a value that depends on the
key, the hamming weight of the intermediate value
encode(B) @ (0101)4 is not constant. Therefore, it is
vulnerable to correlation attacks. The authors, imple-
ment the method on LBlock [14] and PRESENT [10]
as case study algorithms.

In 2014, Servant [13] used (z,y)-codes; it means
that all the y-bit words have hamming weight equal
to . Authors use AES for the case study. Each nib-
ble is encoded with this coding system because the
calculations in AES are 8-bit based. Each nibble can
set to 16 different values. They use (3, 6)-codes since
the number of these codes are (g) = 20. Actually
each nibble is encoded to 6-bit words. This method
uses lookup tables for all the processes. If the coding
is shown by C', an operation by L and lookup table
by T, the process can be T[(C(4) < 8) || C(B)] =
C(A L B) on a 16-bit processor. The (< 8) symbol
is an 8-bit left shift. The memory usage to imple-
ment AES by this method is 4kB whereas for the
simple AES implementation is 256 B and the calcula-
tion speed decreases 4.2 times by using this method.

In 2014, Chen [15] proposed a coding system
that makes the hamming weight and hamming dis-
tance constant. For example two coding that were
used mostly in [15] are enc; = bzbzbababb1boby and
encrr = bobabibsbybabobs. This coding system is im-
plemented on the PRINCE block cipher [16]. They
proposed different coding systems and methods for
each step of PRINCE e.g., addRoundkey, SBOX,
MixColumn etc. The disadvantage of this method is
the use of different coding systems for each step. The
authors claimed that the leakage is mostly because
of converting one coding to another coding. Another
drawback is that the proposed method is based on
PRINCE and cannot be applied on other block ci-
phers. The coding systems proposed for inputs and
outputs of SBOX are just designed in order to make
the hamming distance constant for PRINCE’s SBOX,
so it is not constant for another SBOX, therefore it
cannot be applied to other ciphers such as SIMON
block cipher.

2.2 SIMON Block Cipher

SIMON is a lightweight block cipher algorithm that
was introduced by NSA in 2013 [17]. SIMON2n/mn

uses Feistel rule of motion and has two n-bit words
and an m-word key. For instance SIMON32/64 has
a 32-bit block (consists of a 16-bit word left and a
16-bit word right) and a 64-bit key. Encryption and
decryption of this algorithm only consists of three
operations: XOR, AND and the j bits left circular
shift (57). Equation (1) defines each round of SIMON
and F(z) is defined in (2). Also, this algorithm is
shown in Figure 1.

R (zit1,2i) = (2 © F(zi41) ® k,2i41) (1)
F(z) = (($®2)&(S'2)) & (S%z)  (2)

A detailed description for this algorithm and key
scheduling can be found in [17].
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Figure 1. SIMON round function

3 Proposed Schemes and
Countermeasures

In this section the proposed method is introduced
to make cryptographic implementations more resis-
tant against CPA. This method is trying to decrease
leakage and correlation between the consumed power
and the cryptographic key during encryption by mak-
ing the consumed power even more constant. The
proposed method uses an encoding scheme in which
all the steps and operations have constant hamming
weight and hamming distance.

An encoding system is needed in which equivalent
operations fulfil the conditions about constant ham-
ming weight and hamming distance at each moment.
In order to keep consistency with previous works, we
use the word “coding instead of mere suitable word
“mapping. Primarily, plaintext and cryptographic key
are encoded based on the proposed encoding scheme,
both of them are mapped to the new domain as
shown in Figure 2. It is known that each block cipher
can be implemented only by basic operations such as
AND, XOR and NOT. For instance, bit-slice imple-
mentation uses just basic operations [9]. Therefore,
if equivalent of basic operations are defined in this
new domain, any block cipher can be implemented
with this method. Finally, the equivalent ciphertext
in the new domain should be decoded and the original
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Cryptographic
Proposed Algorithm Consisting
Coding =» ofasequence of -bI Decoding H Ciphertext |
System equivalent-AND and
equival OR

Proposed Coding System

Figure 2. Outline of the proposed scheme

Input bit Set A Set B

x TTTT TTTT

Table 1. Three sets A, B and C of proposed coding system

Corresponding Corresponding Corresponding

hg.):t member in set member in set member in set
' A B C
0 1100 1010 0110
1 0011 0101 1001

Table 2. Mapping of bit zero and one to three sets A,B and C

ciphertext will be obtained. This is the overview of
what proposed coding consists of. In the following we
explain each part in detail. For the proposed coding,
three sets A, B and C are defined as stated in Ta-
ble 1. There are an equivalent member for bit 0 and
an equivalent member for bit 1 in each set. With this
coding system one bit is encoded to 4 bits. In set B,
assuming we set x = 1, the mapping of bit 1 in set B
will result in 1111 = 0101. For more illustration the
mapping of bit 0 and 1 in three sets A, B and C' are
presented in Table 2. If a = aaaa € A, b = bbbb € B,
c=cccc € C and a,b,c € {0,1} then;

HW(a) = HW(b) = HW(c) = 2 (3)
HD(a,b) = HW(a@®b) = HW(a®b a®b a ®b a®b) =2
4)

HD(a,c) = HW(a®c) =HW(a®c a®c adc adc) =2
(5)

HD(b,c) =HW(b®c) =HW(b ®c b@®c bdc bDc) =2
(6)

Thus based on (3) hamming weight of all the mem-
bers in these three sets equals to 2 and based on (4),
(5) and (6) hamming distance of every two members
from two different sets equals to 2. Next step is to de-
fine equivalent-XOR and equivalent-AND such that
the result of equivalent-XOR(e,d) and equivalent-
AND(e,d) for every two members e and d from two
different sets be in third set like in (7) and (8).

a®b = c — equivalent-XOR(a,b) =ce C (7)
a.b = ¢ — equivalent-AND(a,b) =c€ C (8)
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Equivalent-XOR. Considering properties of three
sets A, B, C and Equations (3), (4), (5) and (6),
equivalent-XOR is the same as normal bitwise XOR.
If a = aaaa € A,b = bbbb € B, c = cééc € C such
that a,b,c € {0,1} then:

a®b=adaa®bbbb=a®badbadbadbeC
(9)

a@c=aaaaPcicc=adca®cadba®bec B
(10)

b®c=bbbbBcccc=bDcbBcbBecbDceec A
(11)

The result of the XOR of every two members from
two different sets will be in the third set. For example,
XOR of two bits 1 and 1 equals 141 = 0, equivalently
it can be calculated by XOR 0011 in set A (mapping
of bit 1 in set A) and 0101 in set B (mapping of
bit 1 in set B) thus the result is 0110 in the set C
(mapping of bit 0 in set C). Therefore, the equivalent-
XOR is normal bitwise XOR. It should be noted that
equivalentXOR must not be applied on two members
from a same set.

With the help of this property, one member from
each set can be converted to the corresponding mem-
ber in another set. As an illustration, every member
of set A could be XORed by mapping of bit 0 in set
B to produce the corresponding member in set C. For
instance, XOR of the mapping of bit 1 in set A (0011)
with the mapping of bit 0 in set B (1010) equals to
1001 that is the mapping of 1 in set C. Hence, one
member can be converted to the corresponding mem-
ber in another set by using this method.

Equivalent-NOT. Considering Table 1 and 2, it
is concluded that equivalent-NOT is exactly the same
as normal bitwise NOT. Thus complementing a mem-
ber (corresponding to bit a) from each set produces
another member (corresponding to bit @ ) of the same
set as illustrated in Equations (12),(13) and (14). The
hamming weight and the hamming distant in this sit-
uation is always constant and equal to 4. Therefore,
it fulfils our intended requirements.

a€{0,1} - a=aaaa € A — a =aaaa = aada € A
(12)

be{0,1} — b =bbbb € B — b = bbbb = bbbb € B
(13)

c€{0,1} - ¢ =ccéc e C — ¢ = cccc=cccc € C
(14)

For example: a =1 —-a =0011€ A — a=0011=
1100 € A — 0 in set A

However an XOR operation with corresponding
member of bit 1 in another set can be used as an
equivalent-NOT operation too, but using simple com-




July 2017, Volume 9, Number 2 (pp. 119-130)

plementing of a member is more convenient and sim-
ple while XORing needs more clock cycles and steps.

Equivalent-AND. Contrary to equivalent-XOR,
equivalent-AND is more complicated because AND
of two members of two different sets is not in any
set. Following, two methods are proposed to calculate
equivalent-AND that fulfil our conditions.

e Method-1 for equivalent-AND In the Figure 3
method-1 for equivalent-AND presented. This method
is implemented only with XOR and LUT. Two mem-

Method-1 for equivalent-AND
() LUT1

a€A->a @a a a] — a=[0 a@ a 0]
- . an LUT2 -

beB-[b b b b] ——b=[b 0 0 b]
a e - XOR
() d=[b @ a b]

(V) LUT3(d) > Capg =[ab ab ab ab]

Figure 3. Steps of method-1 for equivalent-AND

bers from two different sets are considered (for exam-
plea€ Aand b € B). In (I) and (1), with the help
of LUT1 and LUT2, a" and b’ obtained. In (II1),
XOR of these two values were calculated such that d
in (I'V) was achieved. Finally in (V'), LUT3 takes d
as an input and produces c,nq. Therefore, with the
help of Equations (15) and (16) the hamming weight
and the hamming distance in each step are constant.

HD(a,a ) =HD(b,b’) = HD(a',d) = HD(b ,d) =1 (15)
HD(d, canq) = 2 (16)

e Method-2 for equivalent-AND. In Figure 4, method-
2 for equivalent-AND is presented. This method is
implemented only with XOR and LUT. This method
is only different to method-1 in the last step. Two

Method-2 for equivalent-AND
(1) LUT1
a€A-a a a a] —a=[0 @ a 0]
_ = (1) LUT2 —

beB—[b b b b] ——b'=[b 0 0 D]
amy  —mm e ————— XOR
(V) d=[b @a a b]
) > €gpa = LUT4 (d) ® LUTS (d)

Figure 4. Steps of method-2 for equivalent-AND

members from two different sets are considered (for
example a € A and b € B). In (I) and (II), with the
help of LUT1 and LUT2, a’ and b’ obtained. In (I11),
XOR of these two values were calculated such that
d in (IV) achieved. Finally, in (V') the output of the
LUT4 and LUT5 are XORed to produce cgpq. Input
and output of LUT4 and LUT5 shown in Table 3.

HD(d, LUT4(d)) = 1 (17)
HD(d, LUT5(d)) = 1 (18)

123

ab d=[paab] LUTAW)  LUT5(d) fgfg((g))@
00 [1100] [1101] [1011] [0110]
01  [1010] [1011] [1101] [0110]
10 [0101] [1101] [1011] [0110]
11 [0011] 0111] [1110] [1001]

Table 3. Input and output values of LUT4 and LUT5

Based on Equations (17) and (18), the hamming
weight and the hamming distance in each step is con-
stant. In Figure 4 the procedure for two members from
two sets A and B are shown; but it can be easily gen-
eralized for the members from other sets. In order to
explicitly clarify which register each data is stored in,
the assembly code of the equivalent-AND method-2
implementation is shown in Table A.1 in Appendix B.
In this table, A1 and A2 are two names for two specific
registers of our microprocessor (for instance r1 and
7r2). Assume Al = [by by bo by dp do ag ap] € [B|A] and
A2 = [ay dy a1 ay by by by by] € [A|B]. The required se-
quence of operations are stated in Table A.1. This
table by specifying the changed register and provid-
ing the corresponding proofs, illustrate that in each
step the HW and HD are always constant. Also, this
registers can be used again for calculating equivalent-
AND of two new values without any leakage.

4 Evaluation Methodology

To evaluate any proposed method, it should be ap-
plied on a cryptographic algorithm and compared to
unprotected cases. The unprotected case means that
the steps are exactly the same as protected imple-
mentation and only coding system and intermediate
values are different. In this paper the algorithm SI-
MON32/64 is used for the case study because it is a
well-known lightweight lock cipher, only composed of
XOR, AND and the circular left shift. SIMON32/64
has 32-bit block and cryptographic key length 64-bit.

In the proposed method each bit is coded to four
bits. Therefore, each 2-bit can be put in an 8-bit
register. First, 32-bit plaintext is encoded; because the
plaintext is not sensitive and it is not related to the
key, it can be encoded easily with no leakage. For each
round, the round key is calculated in a conventional
way, then it is encoded based on the proposed method.
For a fixed key all the round keys are fixed too, thus
encoding the round keys do not make any problem
and vulnerability against DPA and CPA.

Applying equivalent-XOR and equivalent-AND
based on explanations in Section 3 are convenient but
circular shifts in SIMON32/64 algorithm can change
the hamming distance and increase the leakage. It is
possible to implement bit-sliced SIMON32/64. In bit-
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sliced implementation of a cryptographic algorithm
there is no need for shift operations. But in this
paper a novel implementation is proposed. In this
novel implementation first the input data reordered
with a specific pattern so that there is no need for
the circular shift operation and just the order of
reading from the memory change.

Assume that pq,ps,...,p1g are 16-bit of left block
of data. Each bit is encoded to four bits. The encoding
is shown by 7(-). In order to apply circular shift
easily, the data block is reordered and put in 8-bit
registers. Each 8-bit register is shown with [. | .] sign.
In Figure 5 the reordered data and its left circular
shifts are illustrated. By using this order of bits, there
is no need for circular shift anymore and just the
order changes in reading the registers. Bytes specified
with underline need an additional swap operation that
with proper set assigning of data which is explained
in the next paragraph, cause no leakage.

[t (p1a)It(pa)I[t(p1s) [t(p )] [T(pya) IT(pe)I [T (pya) I T(ps)] o
o [1(p12) [t(p )] [e(p 1) [T (ps) 1T (pro) It (p2) 1T (pe) [T(py)]

For §*: [t(pys)[t(py)l[t(p1a) [ t(pe)][1(paz) It (ps)][e(psa) [tpy)] ..
o [t(py) [e(pa)] [T(p10) It ()] [t(pa)lt(ps) ][t (ps) IT(py6)]

For % [1(pg) [t(p1e) I[r(p) [t(p1s) ] [T (pe) T(pya)][x(ps) [(P13)] -
o [1(pa) [1(p12)][x(p3) [t (p11)] [x(pa) [(p1o) () [t(ps)]

For 8% [t(py)It(pe)][t(p1g) [t(ps)] [1(p i)t (pa)]le(paa) T(ps)] o
o [t(p10) [t(p )] [x(pe) [t(p )] [t (pa) |1 (p1e) [x(p7) [t(pys)]

Figure 5. Reordered data in input block and after different
number of left circular shifts

Another issue is to determine the sets that should
be assigned to the intermediate data. After studying
different possibilities, assigning [B | A] to data and
round keys (to each 2-bit) are decided. There is no
problem if a swap operation is needed because every
two members from two different sets have constant
hamming distance. Two bytes [A; | B;] and its swap
[B1 | Ai1] would have a constant hamming weight
and hamming distance 4, since HW([4; | Bi]) =
HW([By | A]) = HW([A; ® By | By & Ay]) = 4
. Assigned sets for each encoded 4-bit in an 8-bit
register for different steps of a round are presented
in Figure 6. In the last step of each round, there is a
conversion from [A | B] to [B | A] that is applied by a
simple XOR with the constant 0x66. It only changes
the assigned sets and it does not change the original
data values.

5 Evaluation Results

There are two general methods for evaluating the
countermeasure methods against CPA and DPA at-
tacks. The normal aspect is based on comparing the
maximum absolute value of correlation coefficient ver-
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[B]A] [BIA]
Xiy1 X;
" [BlA] [BlA]
‘7-“\. [€lC] CB
S8 Ta1B] [AlB]
@[B\A]
p= [cicl
[(B|A]
— [AlB] |
[B]A] —  iBlA)

Figure 6. Determination of each set that should assigned to
the intermediate data

sus number of power traces in the specific time inter-
val [13, 15]. In this aspect the attacker does not have
knowledge about exact moment where the attacks ap-
ply. The number of power traces that for more traces,
the maximum correlation coefficient of the correct
key is more than the corresponding coefficient of all
other hypothetical keys, is the minimum number of
traces required for identifying the correct key. Thus,
this number can be used for comparing two different
implementations.

Another method is when the attacker has knowl-
edge about the exact moment of leakage [8]. In this
case, if at any moment of time, the correlation coeffi-
cient of the correct key is more than the correlation
coefficient of all the other hypothetical keys, correct
key can be extracted. Hence, the minimum number of
power traces required to extract the correct key based
on this assumption can be used for comparing two
different implementations. The experimental setup
for this paper is explained in detail in Appendix A.

5.1 Signal to Noise Ratio Measurement

The aim of the hiding methods is reduction of the sig-
nal to noise ratio by decreasing the signal variation.
Actually, the SNR is closely related to the informa-
tion leakage. In power traces, anywhere that have
a higher SNR, the leakage and effectiveness of the
power analysis attacks is more probable. Thus, the
SNR would be a proper factor for comparing security
of various implementations. SNR could be calculated
based on (19) [2].

VaT(PSignal)
VaT(Pnoise)

o VaT(Pdata—dependent + Pop—depcndent)
VaT<Pel.noise + Psw.noise)

SNR =

(19)

Piata—dependent is the power dependent on the pro-
cessed data and P,p_gependent is the power dependent
on the type of the operation. P, ,ise is the electri-
cal noise in the circuit and Psy.poise is the switching
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noise of other bits that are not the target of attack,
therefore, because in our experiment attacks apply
on the whole byte the Pgy nosie 1S equal zero. Also,
because in all the traces, the operations are same (at
each specific time) the valuse of Ppy_ gependent 18 equal
zero too. Thus, the Equation (19) is reduced to (20).

SNR, = Va’r(Pdatafdependent)
VaT(Pel.noise)

(20)

This way of measuring the SNR is related to the
location of the attack. Assume that we want to cal-
culate the SNR of the fifth byte during the second
round. For measuring P,,,;sc, we choose a key and
a plaintext, measure and collect about 10000 power
traces during encryption. In this situation collected
traces are only depend on noise. Then, for each mo-
ment, variance of 10000 corresponding points are cal-
culated. The result is an array that shows the noise
variance for all the moments.

For measuring Pdatafdependentz we keep the key
constant and generate high number of random plain-
texts (approximately 60000), send them to the smart
card and collect corresponding power traces. Based
on the key and each plaintext, we calculate the tar-
geted value (for instance the value of fifth byte after
AND operation in round 2). This value can take up
to 4 different values. Then, we divide power traces
based on these values and put them in one of the four
groups. For each group we calculate the average, then
we calculate the variance of 4 resulted average arrays.
Therefore, for calculating SNR of each moment, we
just divide the variance of power over the variance of
noise in that moment.

5.2 Experimental Results

All the methods were implemented on the smart card,
the traces were captured and the CPA attack applied
on all of them. We conducted the experiment many
times for different keys and plaintexts but since the
results are almost close to each other, for convenient,
we provide one of the experiment’s results in the con-
text of this paper. The experimental results are as
follows. In Figure 7a and 7b maximum absolute value
of the correlation coefficient curves explained respec-
tively, for unprotected implementation and protected
implementation with the proposed encoding scheme
by equivalent-AND method-1. The attacks applied to
seventh byte because after attacking on all the bytes,
this byte shows lower resistance and security improve-
ment. The unprotected implementation is very vul-
nerable and attacker with just 11 power traces can
identify the correct key. But the protected imple-
mentation is more resistant against CPA and with
3000 power traces still the correct key is not identifi-
able. Thus with the first aspect, there are more than
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Figure 7. Maximum absolute value of the correlation coeffi-
cient curves for implementations with proposed coding system
and equivalent-AND method-1

300 times improvement when proposed coding with
equivalent-AND method-1 is used. The correlation
coefficient curves of protected implementation with
proposed coding and equivalent-AND method-1 450
power traces can be seen in Figure 8a. As you can see
in Figure 8b, 450 power traces is the minimum number
of traces that for the first time, correlation coefficient
for the correct key in one moment is more than other
hypothetical keys. This corresponding number for un-
protected implementation is about 10. Therefore with
the strict aspect, the security improvement against
CPA is about 45 times. In Figure 9b and 9a, SNR
for protected implementation with the proposed cod-
ing and equivalent-AND method-1 and corresponding
unprotected implementation is shown. The SNR of
the protected implementation is much lower than the
SNR of the unprotected implementation.

In Figure 10a and 10b maximum absolute value
of the correlation coefficient curves of the fifth byte
respectively, for unprotected implementation and pro-
tected implementation with the proposed coding sys-
tem and equivalent-AND method-2 illustrated. The
correct key can be identified with nearly 1000 power
traces in unprotected implementation. But the pro-
tected implementation is more resistant against CPA
and with 6500 power traces still the correct key is
not identifiable. You can see the correlation coeffi-
cient curves of protected implementation with pro-
posed coding and equivalent-AND method-2 for 3000
and 3500 power traces respectively in Figure 11a and
11b. As you can see in Figure 11c, 3500 power traces
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Figure 8. The correlation coefficient curves for implementa-
tions with proposed coding and equivalent-AND method-1
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Figure 9. SNR for a round of SIMON32/64 implementations
with proposed coding and equivalent-AND method-1

is the minimum number of traces that for the first
time, correlation coefficient for the correct key in
one moment is more than other hypothetical keys.
This corresponding number for unprotected imple-
mentation is around 10. Therefore with the strict as-
pect, the security improvement against CPA is about
45. In Figure 12, SNR for protected implementation
with proposed coding and equivalent-A ND method-
2 and corresponding unprotected implementation is
shown. The SNR of the protected implementation is
much lower than the SNR of the unprotected imple-
mentation and the protected implementation with
equivalent-AND method-1. This is because of the
LUT4 and LUTS5 in equivalent-AND method-2 have
more even uniform distribution in comparison to the
LUTS3 in equivalent-AND method-1 input-output dis-
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Figure 10. Maximum absolute value of the correlation coeffi-
cient curves for implementations with proposed coding system
and equivalent-AND method-2

tribution.

The leakage of the AND operation for this mi-
croprocessor is very high even when the hamming
weight and the hamming distance is constant in each
step. To study the leakage of the AND operation,
the proposed coding with equivalent-AND method-2
is implemented differently. AND operation is substi-
tuted with constant 0296 and 0269 with respectively
the LUTs in step (I) and (II) in equivalent-AND
method-2 as stated in Figure 13. In Figure 14 the
correlation coefficient curves for this implementation
and for 3000 power traces illustrated. Comparing this
figure with Figure 11a, we see that the correlation
coefficient is lower than 0.2 in Figure 11a whereas the
correlation coefficient is about 0.6 in Figure 14 that
shows high level of leakage for AND operation com-
pared to LUTs and reading from memory in equal
conditions.

In Table 4 the number of clock cycles for pro-
tected implementation of the proposed coding with
equivalent-AND method-1 and method-2 and simple
implementation of SIMON32/64 without using any
coding system or protection are presented. The pro-
portion of the protected implementations clock cycles
to the simple implementation clock cycles are respec-
tively 2.23 and 2.43 for equivalent-AND method-1
and method-2. Also, the memory needed for these
implementations is presented in Table 4.

Table 5 states the results of the proposed methods
in this paper and the methods studied in [8]. Because
in [8] the same strict aspect is used, comparison is
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Figure 11. The correlation coefficient curves for implementa-
tions with proposed coding and equivalent-AND method-2
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Figure 12. SNR for a round of SIMON32/64 implementations
with proposed coding and equivalent-AND method-2

Substitution of AND operation with constants 0x96 and 0x69 with respectively the LUTs in
step (I) and (II) in equivalent-AND method-2
= == e (1) AND with 0x96 — _
[ba by by by, @ T, a, aD] [bo 00 b, 0 @ ag 0]
v, s P (1) AND with 0x69 . =
[@ia a, a, by by by by 5[0 @y @, 0 b, 0 0 by
(1) XOR — - —
(av) d=[by ay a; by by @ a, by
W) * Cana = LUT3 (d) ® LUT4 (d)

Figure 13. Substitution of AND with constants 0296 and
0269 with respectively the LUTs in step (I) and (II) in equiv-
alent-AND method-2
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Figure 14. The correlation coefficient curves for new imple-
mentation AND was substituted with LUTSs, for 3000 power
traces

Simple Method-1 method-2
Clock Cycles 6681 14894 16238
Memory
(byte) 32 716 794

Table 4. The number of clock cycles and memory usage of sim-
ple (no coding system), proposed coding with equivalent-AND
method-1 and method-2 implementations of SIMON32/64 al-
gorithm.

more meaningful between these methods, also, the
methods implemented on a same microprocessor. The
improvement of the security against CPA for proposed
methods in this paper is more than the improvement
of the security in [8]. Also, proposed methods in this
paper have better ratio of speed (ratio of needed
clock cycle for protected implementation to simple
and without any coding system implementation) in
comparison to methods in [8] but methods in [8] have
less additional memory usage.

Table 5 presents the security improvement and
speed reduction of each methods proportional to the
unprotected implementation of that specific crypto-
graphic algorithms. Actually, they are compared with
themselves and the amounts of improvements or re-
ductions, compared among various methods. If we
use the same algorithm as the previous work, still dif-
ferent implementation would change the result a lit-
tle. We try to use an implementation of SIMON that
is more efficient and compatible with our proposed
methods which shows the advantage of them. Second,
the additional memory row, shows the required addi-
tional memory not overall memory usage. Therefore,

1S¢0ured)




128

A New CPA Resistant Software Implementation for Symmetric Ciphers ...

— Safaei Pour and Salmasizadeh

Method-1 Method-2 [8] first 2 bit [8] bit 2 and 3
(SIMON32/64) (SIMON32/64) (PRESENT) (PRESENT)
Ratio of security improvement 45 350 10 34
Speed reduction ratio 2.23 2.43 3 3
Additional memory (byte) +684 +762 +64 +64

Table 5. The results of the proposed methods and the method studied in [8].

it is independent of used cryptographic algorithms.

6 Conclusion

We proposed a new method for software implementa-
tion of symmetric cipher algorithms based on the idea
of the DPL circuits. Our method preserves the ham-
ming weight and the hamming distance by introduc-
ing a new encoding scheme and defining equivalent
operations. This method makes the consumed power
smoother. The main advantage of this method is that
it can be applied on any symmetric block cipher and
it is not limited to a specific cryptographic algorithm.
Also, it leads to lower SNR, that would help the secu-
rity of the system. Masking methods are vulnerable
to higher order attacks when SNR is relatively high.
Combining proposed method as a way for reducing
SNR with masking would be an effective solution.

In the proposed method, we used only one coding
system. Consequently, it avoids leakage from chang-
ing between different coding systems like the prob-
lem arises in [5]. Another advantage of the proposed
method is that we could use it to make a program
to get the assembly code of a bit-sliced implemented
cryptographic algorithm and automatically, apply the
proposed method on it to produce a secure implemen-
tation assembly code.

In order to evaluate the improvement of proposed
method, we implemented the cryptographic algorithm
SIMON with proposed methods in smart card with
microprocessor ATmegal63 for a sufficient number
of tests. The results show that the AND operation
has high leakage even when the hamming weight and
the hamming distance is constant in each step. There-
fore, AND operation is not used in equivalent-AND
method-1 and 2, instead a lookup table is replaced
with AND operations. With the strict aspect that
the correlation coefficient of the correct key should
not be more than the correlation coefficient of all the
other hypothetical keys at any moment of time, the
security improvement against CPA for the proposed
coding system with equivalent-AND method-1 is 45
times and method-2 is 350 times in comparison with
the corresponding unprotected implementations.

It should be mentioned that as stated in [8], leak-
age characterization in not the same for each of the
eight bits in ATmegal63 microprocessor. Whereas
the same leakage characterization for different bits

1S¢0ured)

are assumed for proposing these methods. Hence, it is
expected that the proposed coding system with two
equivalent-AND methods have better results if they
are implemented on another microprocessor with the
same leakage characteristics for all the 8 bits. One
flaw of our proposed schemes is that we do not con-
sider status flags in our calculation for making the
hamming weight and the hamming distance constant.
It has bad effects on both of the proposed methods.
For instance XOR of the LUT4(d) and LUT5(d) in
some cases can set the “N flag in the status register
which leads to more leakage. This could be avoided
by using only 4 bits of eight bits of 8-bit registers and
consequently more overheads.
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Appendix
A Experimental Setup

With the aim of evaluation of security, features and
efficacy of a proposed method, it is required to be
implemented in a cryptographic device, data are col-
lected, attack is imposed and the results are com-
pared with the unprotected mode. In this paper we
used smart card which is a usual cryptographic de-
vice. This was a contact smart card with ATmegal63
microprocessor, 16kB internal flash memory, 2k exter-
nal EEPROM memory and clock frequency of 8MHz.
In [8], authors measured the leakage characterization
of all the eight bits of the ATmegal63 microprocessor.
The results showed that the leakage characterization
for bit one is not the same as other seven bits. There-
fore, this would aggravate the results of our proposed
methods because we assume that all the processed
bits are homogeneous with the leakage perspective.
However, we decided to use this smart card with AT-
megal63 processor for two reasons. First, this smart
card is widely used for side channel security evalu-
ation in many of the previous papers and research.
Second, because our proposed methods are not lim-
ited to some specific type of microprocessors, it could
show us the results of the worst case that even with
this property, still the proposed methods are effective.

In order to establish a communication properly
with smart card, the intended assembly code and
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No. Operation Changed Register Proof Step
1 ldi ZH,0x0d
2 mov ZL, Al ZL = [bo by bo bo do do ao ao)
3 lpm Al,Z Al = [bp 00bg 0dg ap 0] HD(Alpew, Algg) = 2 LUT1
4 mov ZL, A2 ZL =[d1d1a1a1b1bibibi]  ZLgg € [B|A], ZLnew € [A|B] = HD(Z Lypew, ZLog) = 4
5 lpm ZL,Z ZL =1[0d1a10b100b1] HD(ZLnew,ZLoig) =2 LUT2
6 eor ZL, Al ZL = [bo di1 a1 bo by do ag b1] HD(ZLnew, ZLoia) = 2 d
7 mov Al, ZL A1l = [bo d1 a1 bo by dp ag bi] HD(Alpew, Aloig) = 2
8 ldi ZH,0x0b
9 lpm Al,Z Al = LUT4(d) HD(Alpew,Aloq) = HD(d, LUT4(d)) =2 LUT4
10 ldi ZH,0xz0c
11 lpm ZL,Z ZL = LUT5(d) HD(Alpew,Alog) = HD(d, LUT5(d)) =2 LUTS
12 eor Al,ZL Al = LUT4A(d) ® LUT5(d) HD(Alpew,Aloq) = HW(LUT5(A)) = 6, Alpew € [C|C]
13 mov ZL, Al ZL =LUTA(d) ® LUT5(d) HD(ZLnew,ZLog) = HW(LUTA4(d)) = 6, ZLnew € [C|C]
14 swap A2 A2 = [by b1 by by a1 d1 a1 a1] A2new € [B|A]
Table A.1. Assembly code for implementing equivalent-AND method 2 of Al = [bg bobobo do dp agao] € [B|A] and

A2 = [(1_1 d1ayar bbby bl] € [A|B]

the open source operation system “SOSSE” are com-
piled and then they are programmed in smart card.
SOSSE controls the interactions and packet transmis-
sion/receive between smart card and computer based
on ISO 7816 standard.

Oscilloscope could not measure device’s consumed
power or electrical current, therefore, proportional
voltage should be measured instead. For this pur-
pose, usually, a small electrical resistance is putted
before ground or power supply pins, and its voltage is
measured because it is proportional to the consumed
power assuming a constant voltage source [2]. For
that reason, we put a 10} resistance in the way of
the card reader’s electrical current to ground pin and
measure and save its difference voltage during encryp-
tion process. We used Agilent U2702A oscilloscope
which have two channels, with 1GS/sec sampling rate
and bandwidth of 200MHz. Figure A.1 shows the
used experimental setup.

Another point is that lookup tables related to pro-
posed methods are required to be placed in a specific
memory address (Section 3). We looked into the Hex
file and found related addresses after compiling the
code. We used the “.org assembly code to specify in-
tended memory address and put the proper value in
it, and used “LPM assembly code to read that mem-
ory address later. We generated the round keys based
on key scheduling of SIMON, without any coding
or mapping, but later on that they are required for
some operation with coded them based on proposed
methods.

ISeﬂur@

Figure A.1l. Experimental setup: data acquisition during en-
cryption

B Assembly Code

The assembly implementation of equivalent-AND
method-2 is provided as a sample in Table A.1. This
table explains all the steps in detail. It shows the
changed register after the operation and the proof
related to that register’s hamming distance. ZL
and ZH are two 8-bit registers (r30 and 731, re-
spectively), together they form the Z register which
is used for pointing to an address in memory and
retrieving its content.
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