
ISeCure
The ISC Int'l Journal of
Information Security

January 2017, Volume 9, Number 1 (pp. 73–91)

http://www.isecure-journal.org

AnAutomatic Test CaseGenerator for Evaluating Implementation

of Access Control Policies

Marzieh Safarzadeh 1, Mahboubeh Taghizadeh 1, Bahman Zamani 2,∗, and
Behrouz Tork Ladani 1
1Department of Software Engineering, University of Isfahan, Isfahan, Iran
2Model-Driven Software Engineering Research Group, Department of Software Engineering, University of Isfahan, Isfahan, Iran

A R T I C L E I N F O.

Article history:
Received: 5 November 2016

Revised: 14 January 2017

Accepted: 27 January 2017

Published Online: 31 January 2017

Keywords:

Access Control Policies,

Automated Testing, Model Based
Technique, Implementation of

Access Control, XACML.

A B S T R A C T

One of the main requirements for providing software security is the enforcement

of access control policies which aim to protect resources of the system against

unauthorized accesses. Any error in the implementation of such policies may

lead to undesirable outcomes. For testing the implementation of access control

policies, it is preferred to use automated methods which are faster and more

reliable. Although several researches are conducted for automated testing of the

specification of access control policies at the design phase, there is not enough

research on testing their implementation. In addition, since access control is

amongst non-functional requirements of the system, it is not easy to test them

along with other requirements of the system by usual methods. To address

this challenge, in this paper, we propose an automated method for testing the

implementation of access control in a system. This method, as a model based

technique, is able to extract test cases for evaluating the access control policies

of the system under test. To generate test cases automatically, a combination of

behavior model of the system and the specification of access control policies are

used. The experimental results show that the proposed approach is able to find

the failures and cover most of the code that is related to access control policies.

© 2017 ISC. All rights reserved.

1 Introduction

Access control means to ensure that the users can
only access what they are authorized to have

access to. Access control policies define high-level
rules that determine under which conditions, who are
allowed to access what resources. To better manage
access control, the access control policies are specified

∗ Corresponding author.

Email addresses: Safarzadeh@eng.ui.ac.ir (M. Safarzadeh),

m.taghizadeh@eng.ui.ac.ir (M. Taghizadeh),

zamani@eng.ui.ac.ir (B. Zamani), ladani@eng.ui.ac.ir(B.
Tork Ladanai)

ISSN: 2008-2045 © 2017 ISC. All rights reserved.

using a policy language such as XACML (eXtensible
Access Control Markup Language) [1]. In practice,
after specifying the access control policies with a policy
language and ensuring that there is not any error or
inconsistency in this specification, we implement them
in the system by hard coding.

Defects in the access control may lead to serious
threats such as unauthorized access and escalation of
privileges. Therefore, validation of implemented access
control policies through testing is both important
and inevitable [2]. Access control testing is performed
in two levels, including ensuring the correctness of
the specification of access control policies, as well

ISeCure

74 An Automatic Test Case Generator — Safarzadeh et al.

as ensuring the correctness of their implementation.
First, we should ensure that the specification of access
control policies match precisely to the intent and
purpose of the system. Also, we ensure that there is
not any replication and incompatibility in the rules
and policies. Second, it should be checked that there
is not any inconsistency between the specification of
policies (at design level) and their implementation
(at development level), and they have full compliance.
In fact, during the implementation phase, for various
reasons, e.g., misunderstanding of the specification of
access control policies, forgetfulness, or carelessness
in coding, the programmers may develop some of
these access control policies incorrectly. There exist
powerful and automated verification techniques for
the first step [3–5]; however, the second step is still a
challenge. In other words, although several researches
that have been conducted to automate the verification
of access control implementation, there is not a fully
automated approach for this purpose that has good
code coverage. A fully automated method could help
in decreasing the cost, time and effort, as well as
increasing the speed and repeatability of test process,
and easier maintenance of the test suite, along with
more complete test and more coverage of code.

As mentioned earlier, the implementation of access
control may be incorrect for various reasons, therefore,
evaluation of the implemented access control policies,
is one of the key issues in the development of secure
software. To address this issue, in this paper using
model-based testing (MBT) technique, an automated
method has been proposed, which is able to extract
test cases to evaluate access control policies in given
software.

MBT is a popular method for test automation which
generates a set of test cases using a model that de-
scribes the behavior of the system under test (SUT)
[6]. This method uses the behavioral model that repre-
sents the functional requirements of the system. Such
requirements correspond to the functionalities that
end-user expects from the system. However, the non-
functional requirements which deal with the quality
of the system are neglected. In the proposed approach,
we use MBT technique and customize it for access
control domain. This way, we are able to generate ap-
propriate test cases for validating the implementation
of access control policies in a given system. The test
cases are executable and use real data during the test
process.

Main contributions of this paper are as follows:

• Proposing an automated MBT method to gener-
ate test cases that are able to evaluate the imple-
mentation of access control policies.

• Automatic generation of both negative and posi-

tive test cases.
• Automatic generation of efficient and real test

data through using both database and Microsoft
Solver Foundation as constraint solver [7].

In fact, by combining the behavioral model of the
given software and the XACML specification of access
control policies, we produce a model that is appro-
priate for generating test cases. The generated test
cases include both positive and negative ones and are
capable of verifying the implementation of access con-
trol policies. Generation of negative test cases along
with positive ones will increase the possibility of de-
tecting unknown errors. This is one of the superior-
ities of the proposed method compared with similar
approaches that generate only positive test cases. Fur-
thermore, by automatic extraction of test paths from
a model and generating test data via a constraint
solver, the proposed method becomes a fully auto-
mated one. The proposed method is implemented as
a tool called “ACP Test Generator” which is able to
automatically generate a set of executable test cases
based on the behavioral model of the software and
XACML specification of access control policies. The
generated test suite is able to evaluate a SUT with a
user interface. Also, it is appropriate for testing form
applications. Form applications are among systems
that are vulnerable through access control faults. Our
evaluations that are performed in a case study on a
library management system (LMS) with a diverse set
of access control rules show that the extracted test
suite is able to discover most of the related defects.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the related work. In Section 3 some
preliminary concepts are described. This background
is required in the rest of the paper. Section 4 presents
the motivation example. Section 5 presents the pro-
posed approach. Section 6 shows our results, and Sec-
tion 7 presents the conclusions and discusses the future
work.

2 RelatedWork

Access control is an important aspect of a software
system, i.e., existence of an error in this part may
lead to unwanted outcomes. For this reason, various
researches are conducted to ensure the correctness of
access control. In the following, most related researches
are reviewed.

Masood et al. [8] have studied the test of role based
access control (RBAC). They use finite state machines
(FSM) to model the access control policies. They have
also used a fault model to identify user-role assignment,
user-role activation, and permission-role assignment
faults. Clearly, access control testing is beyond the
identification of mentioned faults. Moreover, it is just

ISeCure

January 2017, Volume 9, Number 1 (pp. 73–91) 75

able to cover behavioral aspects of the system; while,
test data is the main part of a test case and is not
captured in this model. Also, Masood et al. proposed
another approach with FSM [9] and focus on time
constraints of access control policies. Mallouli et al.
[10] have used extended finite state machine (EFSM)
to specify the behavior of the system. They have
proposed algorithms for the integration of security
rules within the system specification. However, this
method lacks a mechanism for generating test data.

Xu et al. [2] have presented a model-based approach
for automated testing of access control implementa-
tion. They have modified policies at design level by
adding new rules before modeling them and so deal
with a complete set of rules. In their approach, each
test case is interpreted as a sequence of fired transi-
tions from a Petri Net that describes the access control
rules. In this method, the test data are provided man-
ually and are placed in Petri Net as initial marking,
and then the transitions use these data to fire.

Mouelhi et al. [11] have tried to reduce the required
effort to test the security policies. Their idea is to
reuse and automatically transform existing functional
test cases for testing the security mechanisms. This is
possible because each security policy is exercised at
least once by functional test cases. However, from a
functionality testing point of view, the issue is to de-
termine the correctness of function, not how to access
and corresponding security policies. In this method,
test generation is not automated. Julliand et al. [12]
also generate access control tests from functional test
model.

Kalam et al. [13] have introduced the OrBAC model
and in this context it is considered more than RBAC,
because it is not only able to model static permissions
but also includes contextual rules related to permis-
sions, prohibitions, obligations, and recommendations.
OrBAC is used in [10, 14–16] to model access control
policies under test. In [14] a methodology is proposed
for test case selection, not to generate and implement
it. Thus, access control test has been studied at a high
level of abstraction. Pretschner et al. [15] have focused
particularly on the automatic generation of abstract
test cases, and they have presented three strategies
for this purpose. Strategies which are introduced in
[15] increase the rate of test coverage but have ignored
the optimality principle. It is possible to examine all
states in small systems that have a short hierarchy
of roles, permissions and context, but it is not effi-
cient in large systems. Li et al. [16] were looking for
test purpose generation from Or-BAC rules, and then
they generate test cases from these test purposes. In
this work, executable test cases are not generated be-
cause of using a model at high level of abstraction. In

addition, there is no way to generate test data.

Hughes et al. [3] and Martin et al. [17] have used
XACML to specify access control policies. In fact,
the automatic generation of test cases is not the goal
in [3] but, it automatically checks that there is no
conflict between the XACML access control policies.
Also, [17] presents a novel framework based on change-
impact analysis to generate a set of tests in the form
of request-response pairs to evaluate the XACML
access control policies. In these works, the evaluation
of security policies is performed at the design level. In
addition, there exist other studies that have addressed
the assessment of XACML policies at design level [3–
5, 18].

Masood et al. [9] specify access control policies using
temporal role based access control (TRBAC) model
but as mentioned above, it focuses on time constraints
of security policies. Hu et al. [19] have introduced
verification and conformance testing as complements,
since both of them is necessary to validate the system.
They have proposed an approach for integrating for-
mal verification and conformance testing for access
control model in assurance management framework
(AMF). In this method, access control model and its
constraints are expressed using Alloy modeling lan-
guage [20]. The Alloy analyzer, using the assertion ex-
pressions, generates the counterexamples that violate
constraints of the model. These counterexamples are
the positive and negative test cases to be run on the
system. In comparison, our approach intends to gen-
erate real test data, automatically. Mouelhi et al. [21]
have presented an interesting and useful framework
for specifying, deploying and testing security policies
but test cases are not automatically generated.

3 Background

In the following sections we present the background in-
formation including the XACML which is a language
for describing access control policies, EFSM that is
used to model the behavior of SUT, the modified con-
dition/decision coverage (MC/DC) as a code coverage
criterion that is used in the proposed approach, and
the M2C/DC criterion that is a modified version of
MC/DC and is used to generate tests to cover some
parts of the system that MC/DC is not able to cover.
Note that M2C/DC criterion is in fact a partial con-
tribution of our research published earlier in [22].

3.1 XACML

“XACML is a language specification standard that is
designed by OASIS 1 . It can be used to express domain-

1 Organization for the Advancement of Structured Information

Standards

ISeCure

76 An Automatic Test Case Generator — Safarzadeh et al.

specific access control policy languages as well as
access request languages” [23]. The main components
of XACML model language include rule, policy, and
policy set [1]. A set of rules forms a policy, and each
policy set contains several policies. Policy set (also
policy, and rule) includes a target that determines the
applicability of policy set (policy, rule) for a request.
The target is expressed as constraints on the subject,
action, resource, and environment. If a request satisfies
the target of a policy set (policy), then, that policy
set (policy) is applicable for the request.

A rule contains the condition and the effect as well
as the target. Condition represents a Boolean expres-
sion that determines the applicability of the rule as
well as its target. In other words, if a request satisfies
the target and condition of a rule, then that rule is
applicable for that request. The effect of the rule indi-
cates the result of the application of that rule for a re-
quest. Two values are allowed: “Permit” and “Deny”.
More than one rule (policy) in a policy (policy set)
may be applicable to a given request. To resolve con-
flicting decisions from different rules (policies), a rule
combining algorithm (policy combining algorithm)
can be specified to combine multiple rules (policies)
decisions into a single decision [23].

3.2 EFSM

Extended finite state machine (EFSM) is a modeling
approach that has been used to model both the data
aspect and the control aspect of a system. In our
approach, the behavior of each role in SUT is described
as an EFSM.

Definition. An EFSM M is a 5-tuple M =
(S;T ; I;O; s0) where S is the finite set of states, T
is the finite set of transitions, I and O are the finite
sets of input and output respectively, and s0 ∈ S is
the initial state. Each transition t ∈ T is a 6-tuple
(s1; s2; i; o; c; a) where s1, s2 ∈ S are the initial and
final states of the transition respectively, i ∈ I, o ∈ O
are the input and output symbols respectively, c is the
constraint (a Boolean expression), and a is the action
statements to be performed if the transition fires.

3.3 MC/DC

The modified condition/decision coverage (MC/DC)
is a code coverage criterion that helps us to select an
appropriate finite set of test cases, among all potential
test cases. “The essence of this criterion is that each
condition must be shown to independently affect the
outcome of the decision, i.e., one must demonstrate
that the outcome of a decision changes as a result of
changing a single condition” [24]. In the following, we
explain the details of MC/DC via an example.

Assume that we want to test the following code
excerpt:

if ((i > 2 || j < 3) && k > 1) { /*instructions*/ }

A condition is a Boolean expression that cannot be de-
composed into simpler Boolean expressions; hence, in
the above code there are three conditions (i > 2), (j <
3)and(k > 1) that will be represented by symbols A,
B and C, respectively. A decision is the combination
of some conditions, using logical operators AND, OR,
and NOT . Hence, if we represent the above decision
by symbol S, we have S = ((A || B) && C).

The MC/DC extends the condition/decision crite-
rion requiring that each condition should affect the
outcome of the decision, independently. In fact, in the
test suite that is produced based on the condition/de-
cision criterion, for each condition or decision some
test cases should exist such that both true and false
values of elements can be considered. However, in the
MC/DC criterion, the independent effect of each con-
dition on the outcome of the decision must also be
investigated. Independence of a condition is shown
by proving that only one condition changes at a time.
The requirement of independence ensures that the ef-
fect of each condition is tested considering the other
conditions. In order to ensure MC/DC, for each indi-
vidual condition in a decision, one pair of test cases is
required, in which the Boolean value of that specific
condition has changed while all the other conditions
have the same Boolean values. These two test cases
produce both true and false values in the outcome of
the whole decision. For example, in the above excerpt
code, MC/DC guarantees that:

• There is at least one test case, in which the con-
dition A is true and so the outcome of decision is
true.

• There is at least one test case in which the condi-
tion A is false and so the outcome of decision is
false.

• In the above test cases, all other conditions (B
and C) have the same values.

• For other conditions (B and C), some test cases
are produced in a similar method.

For a decision with n conditions, we have to find at
least n+ 1 tests in order to be able to ensure MC/DC
[25]. As there are three conditions (A, B, C) in our
example, we can choose the following four test cases:

1. A = true; B = false; C = true → S = true
2. A = false; B = true; C = true → S = true
3.
A = false; B = false; C = true → S = false
4.
A = true; B = false; C = false → S = false

ISeCure

January 2017, Volume 9, Number 1 (pp. 73–91) 77

Table 1. Test Case Pairs for Condition A.

True False

TFT FFT

Table 2. Test Case Pairs for Condition B.

True False

FTT FFT

Table 3. Test Case Pairs for Condition C.

True False

TTT TTF

TFT TFF

FTT FTF

Table 4. Selected Test Cases and Their Coverage.

Test case Coverage

TFT A(T), C(T)

FTT B(T), C(T)

FFT A(F), B(F)

TFF C(F)

The procedure to find test cases that ensure MC/DC
is as follows[26]:

• Create a table for condition A, which includes
two columns. Column one contains all possible
test cases, in which condition A is true and so the
outcome is true. Column two includes the test
cases that all conditions have the same value as
column one except condition A, in addition the
outcome should be evaluated to false.

• The same procedure is done for other conditions
(B and C).
• Select the minimum number of test cases from

the tables, such that they cover all conditions
(in both true and false values) and satisfy the
above mentioned rules.

In the above example, we should create three tables
for three conditions (Table 1, 2 and 3). Test cases are
shown with a string including T s and F s, in which T
or F means setting the value of corresponding condi-
tion to true or false. For example, the string “TFT”
indicates a test case in which condition A evaluates to
true, B evaluates to false, and C evaluates to true.
Also, the title of each column shows the value of the
corresponding condition. For example in Table 1, col-
umn “A(F)” means that the value of A is false. Ta-
ble 4 shows the selected test cases and their coverage
(final result to ensure MC/DC).

3.4 M2C/DC

As mentioned earlier, by using the MC/DC criterion
we can produce a finite and appropriate set of test

cases. However, it is possible to see some insoluble test
cases in the final collection of test cases. In fact, such
tests are not logically soluble since there are some in-
consistent constraints in their conditions. To solve this
problem, we can replace an insoluble test by a soluble
one from the set of tests that are previously gener-
ated; but if there is not any test to replace, we should
generate a new one. The new and old test should have
similar properties. In the other words, they should
cover same condition and show the independent effect
of same condition on the outcome. So, we proposed
the M2C/DC idea for solving this problem. In fact,
M2C/DC is an improvement of MC/DC and should
be applied after using MC/DC criterion, if some in-
soluble tests are generated. The detail of M2C/DC is
proposed in [22], but in the following we will give a
brief description.

The generation of insoluble tests is due to some
restrictions of the MC/DC criterion. The problem is
that in MC/DC, in the pair of test cases that show
the independent effect of a condition, other conditions
should not be changed. But if the conditions have
common variables, this restriction may cause to pro-
duce some insoluble tests. In fact, maybe two tests
are produced, that in one of them the common vari-
able has a value that is inconsistent with that variable
in the other one. So, the main idea for solving this
problem is to lose this restriction, if we need to do so.
In the other words, in M2C/DC, besides the condi-
tion that we considered it to produce appropriate test
cases, we can change some other conditions, if by fix-
ing them the produced tests are insoluble. In addition,
changing the other conditions should be based on a
principle and we cannot change them arbitrarily. In
fact, after these changes, the outcome of considered
test should be the same as the new one and also the
value of the condition that is the subject of the cur-
rent test to show its independent effect should be the
same. Therefore, we can say that the old test could
be replaced by the new one.

We can divide the subscription of the variables in
the conditions into two groups as follows.

1 The conditions with common variables are fully
inconsistent; i.e., the conditions negate each other
and each initialization of the variables in these
conditions results in inconsistency. For example,
in the conditions x > 0 and x < 0, x is the com-
mon variable and only one of the conditions can
be true at a time.
In this situation, if only one appropriate pair of
test cases is produced for one of these conditions,
the other condition will be covered and we do
not need to produce a test for it. In fact, be-
cause of complete opposition of the conditions,

ISeCure

78 An Automatic Test Case Generator — Safarzadeh et al.

the test cases that are produced to cover the
true/false effect of one of the conditions will cover
the false/true effect of the other one as well. So,
with one pair of test cases both conditions are
covered.

2 The conditions with common variables do not
have full inconsistency, but only some initializa-
tion of the variables in these conditions causes
the inconsistency. For example, if in a conditional
expression we have the conditions x > 30 and
x < 0, x is a common variable and the conditions
are not always opposite. But, in test cases that
both conditions are true, there is not any appro-
priate initialization for x. So, we cannot produce
test cases to cover x > 30(T) and x < 0(T).
In this situation, if there are not any alternative
tests to cover these conditions, we should pro-
duce new soluble one by the proposed algorithm.
For this purpose, we need to use the equivalent
tree of conditional expression. Then, we find
the main condition and the other one that is
inconsistent with it, and consider the first com-
mon sub-tree of these conditions. After that, we
change the value of the inconsistent condition
to the opposite value. For example, if the value
is T (true), the new value is F (false). After
that, we should check the outcome of the part
of conditional expression that is related to the
common sub-tree. According to this outcome and
also this new test, four situations may happen:

1 If the outcome is not changed and the new test is
soluble, we accept it instead of the old insoluble
one.

2 If the outcome is not changed but the new test
is insoluble, we should apply our algorithm for
it so that a new soluble one is produced.

3 If the outcome is changed and the new test
is soluble, we should change the outcome by
changing the value of the node that is at the
same level of the tree or ate the higher level.

4 If the outcome is changed and the new test is in-
soluble, at first we should invoke our algorithm
to be soluble (similar to situation 2), then we
should change the outcome by changing the
value of node that is at the same level of the tree
or at the higher level (similar to situation 3).

The result of these changes is a set of soluble test cases
with same properties as the old one.

4 Motivation Example

We use a library management system (LMS) as a case
study to explain our approach. This LMS is almost
similar to the one which is used in [14]. We assume that
this system is used in a university and has four types

of users. Admin manages the accounts of LMS and
can create, edit, and delete them. Secretary manages
books and is able to create, edit, delete, and classify
them. Students and teachers can borrow or return the
books. This system has a database that contains the
information of accounts and books. In the following,
some access control rules are listed for this LMS.

• Students can only borrow non-reference books.
• Students can borrow books for up to two weeks.
• Teachers can borrow non-reference books and

reference books if there are more than two copies
of them.

• Teachers can borrow books for up to one month.
• Students and teachers who are obligor, are unable

to borrow books, until their debt is paid.
• Students can borrow up to four books.
• Students should borrow at least two books from

the library of their faculty.
• Student can reserve up to two books for two days.
• Teachers can reserve up to three books for three

days.
• Students can extend their books once.
• Teachers can extend their books twice.

In the rest of the paper, we will explain more details
about this LMS and illustrate the proposed methods
using a series of examples based on this LMS.

5 Proposed Approach

In this section, we present our approach for automatic
access control test case generation, which is depicted
as a framework in Figure 1. This framework includes
four parts. The first part (Input) is a set of inputs
that are used in the process. In the second part (Al-
gorithm), the proposed algorithm is shown. The third
part (Output) includes abstract and executable test
cases as outputs of the algorithm. The fourth part
(Application) describes how to use the specified out-
put to demonstrate and correct the defects. In the
following sections, with the help of the motivation ex-
ample (LMS), we describe the proposed framework in
more details.

5.1 Input

Input is one of the most important parts of the pro-
posed framework. This part includes SUT model,
XACML policies, rule under test (RUT), database,
and adaptor. The SUT model is the behavioral model
of the SUT and clarifies the functions of that system.
Using XACML policies, one can express the access
control constraints of SUT. RUT is the rule that is go-
ing to be tested and we want to generate test cases to
test it. In fact, this rule and also the other constraints
of the policy that contains this rule are combined with

ISeCure

January 2017, Volume 9, Number 1 (pp. 73–91) 79

Figure 1. The Proposed Framework

the behavioral model of SUT, and then this combined
model is used as one of the inputs of the test process.
Database is a collection of tables that stores the data
related to SUT. Due to the importance of test data
and using the database in most systems, we have to
indicate database as an input of our algorithm, so that
we are able to generate real data. Finally, the adaptor,
as an important input, is used to convert the abstract
test cases to the executable ones. In the following, we
will describe each of these inputs in more details for
the motivation example.

5.1.1 XACML Access Control Policies

As mentioned earlier, XACML is an XML-based stan-
dard language for the specification of access control
policies. There exist several open source editors for
XACML, e.g., UMU-XACML-Editor [27]. In our pro-
posed approach, after writing the specification of ac-
cess control policies using XACML and ensuring that
they are correct, we save them as an XML file and
input it to our tool.

Example 1. Figure 2 shows an excerpt of the access
control policies for the borrower in LMS. As indicated
in this figure, the constraints of access control are
written based on the users role. For this purpose, for
each role in the system, we considered a policy set and
we wrote the constraints related to each role only in its
policy set. For example, in this figure we have a role
with id “Teacher” that a policy with id “Borrower” is
defined for it. In this policy we determined the rules
of access control that are related to borrowing a book
by teacher role. According to the rule that is shown in
this figure, teachers can borrow non-reference books,
or reference books with more than two copies.

Figure 2. Partial Access Control Policies of LMS

5.1.2 Rule Under Test (RUT)

It should be noted that the access control specification
that is described in XACML, has three levels including
policy set, policy, and rule. In the proposed approach,
we consider the rules and produce some test cases for
each of them when test process is performed. In fact,
by choosing a rule as RUT , we can generate a test
suite that is able to evaluate RUT . In addition, when
we want to generate test suite for a RUT , we should
consider other rules that are covered with the policy
that is related to this RUT , so that the effect of those
rules on the RUT are considered too.

5.1.3 SUT Model

Modeling the behavior of system is based on the for-
malism that is presented in Section 3.2. The behav-
ioral model of each role only includes functional re-
quirements, i.e., there is not any non-functional re-
quirement such as access control in this model.

Example 2. The behavioral model of the teacher
in LMS is shown in Table 5.1.4. The dash symbol (-) in
the transitions represents the absence of input, output,
constraint, or action. After entering the information of
account, the teacher can log into the system (transition
from s0 to s1). Then she should enter the book id and
the number of days to borrow the book. If the book
is available and the number of days is greater than
zero, the book can be borrowed successfully (transition
from s1 to s2). If there is not any available copy of the
requested book, the teacher can reserve it (transition

ISeCure

80 An Automatic Test Case Generator — Safarzadeh et al.

Table 5. Student Table in the Database.

FName LName

Jack Smith

Ruby Davis

from s1 to s3). Teachers who have borrowed books
should return them in less than a month; otherwise
they must pay a fine. Due to lack of space, we do not
explain other transitions.

Figure 3. Behavioral Model of the Teacher in LMS

5.1.4 Database

In many cases, according to the input received from
the user, the system has to connect to a database to
retrieve information. For example, LMS will receive
a username and password, and if there is such user,
it allows other operations to be performed by that
user according to his/her role. In many of the con-
straints that are used in access control policies, the
domain of variables is a set of values extracted from
the database. To distinguish these variables from oth-
ers in the model and in the XACML policies, we use a
naming convention as “T.F(index)”. This name indi-
cates that the domain of variable is the set of values
of column F of table T. The index is a parameter that
determines correlation between variables in the model
and in the XACML policies. Example 5.1.4 clarifies
the reason of using index parameter.

Example 3. Assume that we want to test part of
SUT in which we need the first name and the last name
of a student. The domain of these variables is table
Student in the database. Table 5 shows this table.

Since both first name and last name variables are
used in the model and in the XACML policies, we
use “Student.FName” to refer to first name and “Stu-
dent.LName” for last name. In fact, this naming con-
vention indicates the exact domain of the variables.
This way of referring to first name and last name, may
assign Jack to Student.FName variable and Davis to

Student.LName variable, which is not correct and the
first name and last name must refer to the same per-
son. To solve this problem, we add the index param-
eter to the phrases, i.e., Student.FName(1) and Stu-
dent.LName(1). The same index shows that the value
of two variables should be selected from the same row
of the table. Also, other variables from other tables
that are related to this student, should be named with
index “(1)”, for example the students score in table
Course.

Generating the test data is an important part of
a test process. For this purpose, we rely on a con-
straint solver; we use the Microsoft constraint solver
for simple data and also some appropriate queries for
database data. In fact, we can generate data for simple
variables (non-database ones) by Microsoft constraint
solver. However, due to the fact that variables with
the domain of database are used in many systems, we
should be able to generate appropriate values for such
variables too (that it is not supported by Microsoft
constraint solver). Hence, in the proposed approach,
we generate data for these variables by using appropri-
ate queries. In addition, according to the complexity
of constraints that are specified with access control
policies and SUT, the queries that should be used to
choose the related variable, may be in various forms.
Thus we are not able to generate these queries auto-
matically. So in our approach, we must use the queries
that are used in the SUT as input. With the help of
these queries, we can generate appropriate data for
variables with database domain. For example, if C is a
constraint on T.F(index) variable, then the query “Se-
lect F from T where C” will solve it. In other words, for
T.F(index) variable those values of column F of table
T are chosen that satisfy the condition C. If more than
one result is returned, one of them is chosen randomly.

Example 4. There are variables with names
“bookT.Id(1)” and “bookT.available(1)” in the model
that is shown in Figure . The same table and the same
index for these variables show that both inputs are
associated with the same row of the table “bookT”.
These inputs are related to the fields Id and avail-
able, respectively. The constraint of transition that
contains these inputs is “bookT.available(1)>0”. Con-
straint solver generates data so that this constraint is
satisfied with the following query:
“select bookT.Id, bookT.available from bookT where
available>0”

5.1.5 Adaptor

Adaptor maps the abstract actions to SUT [28]. In
fact, it maps each component in the model level to its
equivalent element in the implementation level. Figure
shows the process of how to convert an abstract test

ISeCure

January 2017, Volume 9, Number 1 (pp. 73–91) 81

suite into an executable one by the adaptor.

Figure 4. Overview of the Adaptor

We have implemented the adaptor only for form
application programs in the format of an xml file.
Figure shows an excerpt of the LMS adaptor that
indicates how to map the login and borrow actions
to the components of the user interface of SUT. As
indicated in the figure, an adaptor can contain several
action elements. Each action element has a name and
includes several sub-action elements. Each sub-action
element has a name, equivalent control to perform
the sub-action, title of the control, and the form that
contains that control. It includes input or output
elements that each of them has one name, control to
receive input or display output, the title of the control
in user interface (controls with no title are identified
with their index), and the form that contains the
control.

5.2 Algorithm

In this section we will elaborate on the main part of
our framework which is labeled as “algorithm” in Fig-
ure 1. This algorithm contains 8 steps. As mentioned
in Section 3.2, one of the inputs of this algorithm is
an EFSM model such as M = (S;T ; I;O; s0) in which
every transition t ∈ T is written as t = (s; s0; i; o; c; a).
Another input to this algorithm is the access control
specification of SUT which is described using XACML
and includes some policy sets with id PSi that contain
some policies with id Pj . Each Pj contains some rules
with id Rk. Constraints identified as PSCs, PSCr,
PSCa, and PSCe are constraints on subject, resource,
action, and environment in PSi (constraints on the
target element of PSi). PCs, PCr, PCa, and PCe are
constraints on subject, resource, action, and environ-
ment in Pj (constraints on the target element of Pj).
RCs, RCr, RCa, and RCe are constraints on subject,
resource, action, and environment in Rk (constraints
on the target element of Rk) and RCg is a general con-

Figure 5. A Part of Adaptor for LMS

dition (constraints on the condition element of Rk). In
the following, we explain each step of this algorithm.

Step 0: Consider one role and then select one
rule to test. In our approach, we assume that in
SUT there are several roles that according to their
access levels, different access control constraints are
defined. Hence, for testing SUT, we should test all
rules of each role, separately. In other words, we run
our algorithm according to the role of users and the
rule that is going to be tested. In the access control
specification in XACML, we assume that each policy
set is related to only one role. This policy set contains
some policies that each of them can contain some
rules. At the beginning of the test process we should
determine the role of the user (the policy set). Then,
we select one policy of this role. After that, we choose
one of the rules that this policy contains. In fact, we
want to test this rule as RUT and generate test cases
for validating it. By using the set of test cases that
are produced for all rules of all roles, we are able to
test the access control part of SUT.

Step 1: Compute the constraints of RUT
and all constraints that are indicated for each
other’s rules defined in the policy containing
RUT. Let R be RUT, then its constraint is computed
as following:

RC = PSCs ∧ PSCr ∧ PSCe ∧ PCs ∧ PCr

∧ PCe ∧RCs ∧RCr ∧RCe ∧RCg
(1)

A policy can be applied to a request when the request
satisfies the target of the policy and policy set con-

ISeCure

82 An Automatic Test Case Generator — Safarzadeh et al.

taining that policy. A rule can be applied to a request
when the request satisfies the target and condition of
rule and target of policy that contains that rule. In
Formula 1, we have ignored the constraints of action
because it will be checked in step 2.

In addition, for each of other rules that are men-
tioned above, we should compute a conditional expres-
sion similar to Formula 1.

Example 5. Consider the following rule in LMS:
“Teachers can borrow non-reference books or reference
books that there exists more than three copies of them,
for up to one month.”
According to Formula 1 and rule with id “Borrow Book
by Teacher” in XACML policies which are described
in Figure 2, the constraint of this rule is computed as
follows:

PS = “LMS”
P = “Borrower”
R = “Borrow Book by Teacher”
PSCs = True
PSCr = True
PSCa = True
PSCe = True
PCs = True
PCr = True
PCa = “actionid == Borrow”
PCe = True
RCs = “loginT.role(0) == ‘teacher′”
RCr = True
RCa = True
RCe = day ≤ 30
RCg = “bookT.reference(1) ==
false ∨ (bookT.reference(1) ==
true ∧ bookT.available(1) ≥ 3)”

RC = “(loginT.role(0) == teacher) ∧ (day ≤
30) ∧ (bookT.reference(1) == false |
(bookT.reference(1) ==
true ∧ bookT.available(1) ≥ 3))

Step 2:Generate combinationalmodel. In this
step, the model that contains access control informa-
tion is generated. This model is combination of the
behavioral model and all constraints that are indi-
cated by RUT and also other rules of that policy that
contains RUT , is the start point of the test process.
This step is performed in two sub steps as follows:
2.1. Search the model to find transitions with action
value as follows:

RC = PSCa ∧ PCa ∧RCa (2)

We find those transitions of model that are related to
RUT and also all other rules of the policy that contain
RUT . In fact, we should consider the actions of these
rules and find the transitions that have one of these
actions in their action.

2.2. Update the conditions of the found transitions as
follows:

t = (s, s0, i, o, c ∧RC, a) (3)

In each transition t, RC is the constraint of the related
rule that is obtained from formula 1.

In fact, in this step the transitions that contain ac-
tion under test in RUT and also the actions of other
rules in the related policy, are found and their condi-
tion element are equipped with these access control
constraints. In addition, we need to store the transi-
tions that are related to RUT for the next step.

Example 6. Consider the behavioral model of the
teacher that is shown in Table 5.1.4. According to this
figure, step 2 can be performed as follows:
2.1. Search the model and find transition t1 that con-
tains action under test which is computed according
to Formula 2:

a1 = “actionid == Borrow”

2.2. Update the constraint of t1 as follows:

c1 = (bookT.available(1) > 0 ∧ day > 0)

∧ ((loginT.role(0) == teacher) ∧ (day <= 30)

∧ (bookT.reference(1) == false

| (bookT.reference(1) == true

∧ bookT.available(1) >= 3)))

Step 3: Find the paths that include RUT in
the combined model. In this step, we want to find
all paths that their source is the initial state of the
model and their destination is the destination of a
transition that its action is the action of RUT . For
this purpose, we set the source state of the transitions
that are found in the previous step and are related to
RUT , as the start point and move backward in the
model until we reach S0 (the initial state). Thus, for
each transition that is related to RUT , one or more
paths are identified in the model. Each path is a sorted
sequence of transitions. If in M the set of transitions
is T = (t0, , tn), then each path is defined as Formula
4 in which t0 is a transition with source of initial state
s0 and ti is the transition that is related to RUT .

RP = t0, ..., ti (4)

For each of these identified paths, the next steps of
algorithm should be repeated separately.

Example 7. In Table 5.1.4, t1 with initial state s1
is the only found transition in step 2. In step 3, we
move back from state s1 in the model until we reach
state s0. Thus, RP = t0, t1 is determined as the only
path which is found in this step.

Step 4: Generate path condition. If the path
of RUT is in the form of Formula 4, then the path

ISeCure

January 2017, Volume 9, Number 1 (pp. 73–91) 83

Table 6. Test Case Pairs for Condition “bookT.available(1)

> 0”.

True False

TTTTTTF FTTTTTF

TTTTTFT FTTTTFT

TTTTTFF FTTTTFF

TTTTFTT FTTTFTT

Table 7. Test Case Pairs for Condition “day>0”.

True False

TTTTTTF TFTTTTF

TTTTTFT TFTTTFT

TTTTTFF TFTTTFF

TTTTFTT TFTTFTT

condition can be computed as Formula 5, where ck is
the constraints of tk in the combinational model.

PC = c0 ∧ ... ∧ ci (5)

Because of using the combinational model, in which
the condition elements of transitions were updated in
step 2, PC contains constraints of RUT too.

Example 8. Assuming RP = t0; t1 and according
to update constraint of t1 in Example 5.1.3, PC is
calculated as follows:

PC = c0 ∧ c1 = True ∧ (bookT.available(1) > 0

∧ day > 0) ∧ ((loginT.role(0) == ‘teacher′)

∧ (day <= 30) ∧ (bookT.reference(1) == false

|(bookT.reference(1) == true

∧ bookT.available(1) >= 3)))

Step 5: Generate tests using MC/DC and
M2C/DC. By considering PC as a decision which
contains several conditions, we can generate tests us-
ing MC/DC criterion. With the help of this criterion
described in Section 3.3, the impact of changes of any
condition is examined independently. As mentioned
earlier, if PC contains n conditions, then n+1 tests are
generated using MC/DC. So in the running example,
8 tests are selected, because PC contains 7 conditions.
Example 9. PC that was generated in Example 5.1.4,
is analyzed according to MC/DC criterion, and Ta-
ble 6 to 12 show tests which can examine conditions
with two values true and false.

Table 13 shows set of all tests that are generated
in Table 6 to 12 and their coverage list. For example,
consider FTTTTTF. The meaning of this test is as
follows:

Table 8. Test Case Pairs for Condition “loginT.role(0)==

teacher”.

True False

TTTTTTF TTFTTTF

TTTTTFT TTFTTFT

TTTTTFF TTFTTFF

TTTTFTT TTFTFTT

Table 9. Test Case Pairs for Condition “day<=30”.

True False

TTTTTTF TTTFTTF

TTTTTFT TTTFTFT

TTTTTFF TTTFTFF

TTTTFTT TTTFFTT

Table 10. Test Case Pairs for Condition “bookT.reference(1)
==false”.

True False

TTTTTTF TTTTFTF

TTTTTFT TTTTFFT

TTTTTFF TTTTFFF

Table 11. Test Case Pairs for Condition “bookT.reference(1)

==true”.

True False

TTTTFTT TTTTFFT

Table 12. Test Case Pairs for Condition “bookT.available(1)

>=3’.

True False

TTTTFTT TTTTFTF

FTTTTTF = (bookT.available(1) < 0) ∧ (day > 0)

∧ (loginT.role(0) == teacher) ∧ (day <= 30)

∧ (bookT.reference(1) == false)

∧ (bookT.reference(1) == true)

∧ (bookT.available(1) < 3)

We should choose minimum number of tests from
Table 13 such that all criteria are covered and both
true and false independent effect of all conditions on
the outcome of PC can be shown. For this purpose,
we select tests using “size of coverage list” column
in Table 13. In fact, any test with maximum size of
coverage is selected and its coverage list in “coverage”
column will be removed from the coverage list of other
tests. Therefore, with each test selection, “coverage
list” of other tests will be updated. If more than one
test have the maximum “size of coverage list”, then one
of them which is compatible with selected tests should
be selected (to maintain MC/DC guarantees). This
procedure continues until all criteria are covered and

ISeCure

84 An Automatic Test Case Generator — Safarzadeh et al.

so under these circumstances, size of all coverage lists
is zero. If constraints in a selected test is not logically
soluble (it is not true logically, e.g., TTTTFFT where
the book is both reference and non-reference), then
we should choose another test to cover that criterion,
which is not covered by other selected test, and replace
the previous insoluble test with it. This will be done
in the next step, where constraints must be solved.
In some cases maybe there is no test with soluble
constraint to cover special criteria. In these situations,
we use M2C/DC that is introduced in Section 3.4.

Step 6: Generate abstract test cases. Each ab-
stract test case contains test input data, test path,
and expected output. In this step, each test which
is selected in the previous step is converted into an
abstract test case. Algorithm 1 shows generating the
abstract test suite. According to this algorithm, the
constraint solver that is able to solve numeric, string,
char, and database constraints, receives the selected
test and generates data which satisfies the constraints.
These data are combined with the test path and pro-
vide abstract test cases. If the generated data satisfy
PC (i.e., by putting the generated data in PC, it is
evaluated to True), then the test case is a positive one
and should be added to positive test suite (PTS), oth-
erwise, it is a negative one and is added to negative
test suite (NTS).

Algorithm 1 Abstract Test Suite Generation

Input: RP (a Rule Path), CS (constraint set resulted from

Analyzing PC), DB (SUT’s DataBase), PC
Output: Abstract Test Suite

1: TC = ∅; PTS = ∅; NTS = ∅; TS = ∅; RPcopy =
RP ; D = Solve(CS,DB); {D is a set of collection, each
collection is set of data assigned to variable}

2: while D 6= ∅ do
3: choose d ∈ D; {d = {(variable,data) | data assigned to

variable according to CS solving by constraint solver }}
4: D = D − {d};
5: while RP 6= ∅ do

6: choose t ∈ RP ; {t = (s1, s2, i, o, c, a)}
7: tc = action(t) + input(t, d) + output(t);
8: TC = TC ∪ tc

9: RP = RP − {t}
10: end while
11: if validate(PC, TC) = true then

12: PTS = PTS supTC;
13: else

14: NTS = NTS ∪ TC;
15: end if
16: TC = ∅
17: RP = RPcopy;

18: end while
19: TS = PTS ∪NTS;

20: return TS;

Example 10. According to Figure 4, the constraint
solver section receives the selected tests in Example
5.2 and generates the data after it solves them. For
example, TTTTTFT is a selected test according to

Table 13. Final Selected Constraints

Test
Size of
cover-

age list

Coverage Selected

TTTTTTF 5 bookT.available(1)>0(T) No

day>0(T)

loginT.role(0)==’teacher’(T)

day≤30(T)

bookT.reference(1)==false(T)

TTTTTFT 5 bookT.available(1)>0(T) Yes

day>0(T)

loginT.role(0)==’teacher’(T)

day≤30(T)

bookT.reference(1)==false(T)

TTTTTFF 5 bookT.available(1)>0(T) No

day>0(T)

loginT.role(0)==’teacher’(T)

day≤30(T)

bookT.reference(1)==false(T)

TTTTFTT 6 bookT.available(1)>0(T) Yes

day>0(T)

loginT.role(0)==‘teacher’(T)

day≤30(T)

bookT.reference(1)==true(T)

bookT.available(1)≥3(T)

FTTTTTF 1 bookT.available(1)>0(F) No

FTTTTFT 1 bookT.available(1)>0(F) No

FTTTTFF 1 bookT.available(1)>0(F) No

FTTTFTT 1 bookT.available(1)>0(F) Yes

TFTTTTF 1 day>0(F) No

TFTTTFT 1 day>0(F) No

TFTTTFF 1 day>0(F) No

TFTTFTT 1 day>0(F) Yes

TTFTTTF 1 loginT.role(0)==‘teacher’(F) No

TTFTTFT 1 loginT.role(0)==‘teacher’(F) No

TTFTTFF 1 loginT.role(0)==‘teacher’(F) No

TTFTFTT 1 loginT.role(0)==‘teacher’(F) Yes

TTTFTTF 1 day≤30(F) No

TTTFTFT 1 day≤30(F) No

TTTFTFF 1 day≤30(F) No

TTTFFTT 1 day≤30(F) Yes

TTTTFTF 2 bookT.reference(1)==false(F) Yes

bookT.available(1)≥3(F)
TTTTFFT 2 bookT.reference(1)==false(F) Yes

bookT.reference(1)==true(F)

TTTTFFF 1 bookT.reference(1)==false(F) No

Table 13. Constraint solver should generate data so
that the following constraints are satisfied:
bookT.available(1) > 0, day > 0, loginT.role(0) ==
teacher, day <= 30, bookT.reference(1) == false,
bookT.reference(1) ! = true, bookT.available(1) >= 3
In this example, except day which is a numeric con-
straint, other are solved by database constraint solver

ISeCure

January 2017, Volume 9, Number 1 (pp. 73–91) 85

Figure 6. Generated Abstract Suite in ACP Test Generator Tool

(using the appropriate queries on system). Generated
data are combined with the test path in Example 5.1.4
and provide abstract test cases. Abstract test suite
for our case study is depicted in Figure 6. The first
test case is resulted from TTTTTFT, where gener-
ated data satisfy the mentioned constraints, because
“book8” is a non-reference book and 4 copies of this
book exist in the library. The tool that implements
the framework presented in Figure 1 is called “ACP
Test Generator”. It is explained in Section 6.

In final step, abstract test cases should be converted
into test cases which are executable on SUT. In other
words, using an adaptor, for each abstract test case a
test script is created. We can run these test scripts on
SUT and then check the results to find the errors of
SUT.

Step 7: Generate executable test cases. With
the help of the algorithm that is depicted in 2, each
abstract test case is converted into an executable one.
The test script that represents the executable test
case (ETC) starts with a special header file (HF).
Then each action in the abstract test case (ATC) is
selected sequentially and its sub actions are added to
ETC. In order to add each sub action to ETC, after
determining the form containing sub action based on
what is specified in the adaptor, its inputs are replaced
in the corresponding controls. Then sub action is
executed and outputs are placed in their corresponding
controls according to adaptor. We used UI automation
interface and thread libraries in c# to perform these
actions automatically. If these outputs match with
the output in the ATC, then positive test case has
succeeded and negative test case has failed, and vice
versa.

Example 11. Figure 7 shows part of test script
(executable test case) corresponding to test case 1 in
Figure 6. This test script is related to enter user name
and password and then click on login button.

Algorithm 2 Algorithm convert Abstract Test Case
to Executable Test Case
Input: ATC (Abstract Test Case), Adaptor, HF (Header

File)
Output: ETC (Executable Test Case)

1: ETC = HF ;

2: AC = Actions(ATC) {ordered sequence of actions in
ATC}

3: while AC 6= ∅ do

4: choose a ∈ AC;
5: AC = AC − {a};
6: SAC = Subactions(a); {ordered sequence of subctions

in a}
7: while SAC 6= ∅ do

8: choose s ∈ SAC;
9: SAC = SAC − {s}
10: ETC = ETC + Form(s,Adaptor); {the choice of

the form of subaction}
11: IN = Inputs(s);

12: while IN 6= ∅ do

13: choose i ∈ IN ;
14: IN = IN − {i};
15: ETC = ETC + Control(i, Adaptor); {placement

test input at the corresponding corntrol}
16: end while

17: OUT = Outputs(s);
18: while OUT 6= ∅ do

19: choose o ∈ OUT ;

20: OUT = OUT − {o};
21: ETC = ETC + Control(o,Adaptor); {compare

the expected output with corresponding control}
22: end while
23: end while

24: end while
25: return ETC;

5.3 Output

The output of our algorithm is a test suite that contains
both positive and negative test cases. By executing
each of these test cases, we are able to test the SUT
and find its errors. In addition, using database data
generator in our constraint solver section, leads to
generate actual and appropriate test data for SUT.
It is important to note that our approach not only
checks the correctness of defined operations for access

ISeCure

86 An Automatic Test Case Generator — Safarzadeh et al.

Figure 7. A part of test script corresponding to test case 1
in Figure 7

control, but also with the help of negative test cases
can detect those operations, which should not be in
SUT. So it is possible to discover more errors in the
implementation of access control policies in SUT.

5.4 Application

With regard to the production of positive and negative
test cases in the proposed approach, it is required to
apply test oracle at application level. Test oracle is a
mechanism to determine success or failure of test cases.
In this discussion, a successful run of SUT is equal
to the success of positive test cases, while success of
negative test case shows running SUT with failure.
Because negative test cases violate the access control
conditions, test oracle receives actual outputs from
SUT and compares them with the expected outputs,
which are specified in adaptor. If the actual and the
expected outputs are the same, positive test case
succeed and the negative one failed; and vice versa.
Each failure of test indicates a flaw in the SUT or
model. Accordingly, the flaw should be modified and
then the tests should be repeated.

6 Results

In this section we will evaluate the proposed solution
and the corresponding tool. Evaluation of a testing
method means to assess its ability to detect errors and

unknown defects in a system. For this purpose, we use
two test adequacy criteria. The first one is based on
mutation analysis and the second one is the level of
code coverage. In the following, each of these criteria
and the related results will be investigated.

It should be emphasized that, in the proposed ap-
proach we assume that the correctness of the speci-
fication of access control policies have been checked
already and we only want to test the implementation
of them in the SUT. For evaluating our approach with
the mutation analysis method, at first we should in-
ject some vulnerabilities into the access control part
in hard code of SUT, then run the test cases that are
previously generated, on this vulnerable SUT. After
that, we should check the results of these runs and
determine the ability of test cases to detect the in-
jected vulnerabilities with the help of mutation score
in Formula 6. In this formula “killed mutations” are
the mutations that are recognized by test cases.

MutationScore =

(killedmutation/allmutation)× 100 (6)

The vulnerabilities that are injected into SUT are
similar to what are produced by the mutant operators
of the mutation analysis technique that are used to test
the correctness of the specification of access control
policies. In this technique, by using mutation operators
some unknown vulnerabilities are injected into the
specification of access control policies, then given
a set of requests, this approach evaluates each of
these requests on both original policy and the mutant
one. After evaluation of each request, two responses
will be produced; one response for the request on
original policy and the other one for the request on
mutant policy. If these responses are different, then it
means that the mutant policy is killed by this request,
otherwise it is not killed [29]. So in our evaluations, for
a vulnerability that is injected into the specification
of policies, we inject a similar one in the hard code of
SUT; then we run our test cases on the new vulnerable
SUT and check the results.

Given that in the proposed approach, XACML is
used to describe access control policies, we should
use the mutants of such policies. In [30] a tool that
is called XACMUT is developed to create mutations
in XACML policies. This tool has some mutation op-
erators to create different mutations in policies. In
our evaluations, we choose 12 appropriate operators
among of those. In Table 14 these operators are pre-
sented. For more information about others refer to
[30].

The following procedure was performed to assess
the capability of ACP Test Generator in detecting
vulnerabilities:

ISeCure

January 2017, Volume 9, Number 1 (pp. 73–91) 87

Table 14. Selected Mutation Operators in XACMUT.

Operator Abbreviation

CRE Change Rule Effect

RTT Rule Target True

RTF Rule Target False

RCT Rule Condition True

RCF Rule Condition False

RPT Rule Parameter Type

ANR Add New Rule

RER REmove Rule

ANF Add Not Function XACML

RNF Remove Not Function XACML

CLF Change Logical Function XACML

CCF Change Comparison Function XACML

1. Start
2. Define three variables AllMu, KillMu, AliveMu

with initial values of zero.
3. Select a mutation operator from XACMUT op-

erators list that has not been reviewed so far, or
jump to step 12 if there is not any unexamined
operator.

4. Generate mutated access control specification
by XACMUT based on the selected operator.

5. Select a mutation that has not been studied
so far, or jump to step 10 if there is not any
unexamined mutation.

6. Apply mutation in SUT and increment AllMu.
7. Run the executable test suite, which is already

generated, on the vulnerable SUT and review
the results.

8. If at least one failure is reported, then the muta-
tion is killed, otherwise it is alive. Accordingly
increment KillMu or AliveMu.

9. Delete mutant from SUT and return to step 5.
10. Calculate the mutation score based on the values

of variables, according to Formula 6.
11. Reset variables to zero and return to step 3.
12. Stop

Figure 8 shows the mutation scores for selected
XACMUT operators in LMS, which are obtained us-
ing the above procedure. Due to using M2C/DC to
generate alternative tests for insoluble ones and also
the database constraint solver that is used in our pro-
posed approach, the generated test cases cover most
of the access control part of the system and explore
most of the mutations that are injected into them.
Nonetheless, we cannot find alternative tests for some
of insoluble tests with the help of M2C/DC. So some
part of SUT may not be covered and then the related
mutations are not killed. In our case study such mu-
tants are produced by mutant operators CRE, RER,
and CCF. Also, most of other mutants can be killed
by other soluble tests. Furthermore, another mutation

operator that we used is ANR. This operator adds
some new rules to access control part. These rules
are generated by using the properties of other rules
that previously existed in this part, like the action
and subject. In fact, a new rule is a combination of
some properties from several existing rules. Since re-
specting to the action of new rule is one of the actions
that exist in SUT, this mutant can be detected in test
process. In fact, in this mutant we change part of the
system that is related to the action of new rule. Also
according to the access control rules of SUT, for this
action we already produced some test cases. So with
the help of these test cases we can detect the mutant
that is injected into SUT by the new rule. As it is
indicated in Figure 8, some of the mutants that are in-
jected into SUT by ANR operator were not detected.
This is because of the new rules, which their actions
are not any of the SUT actions. So we cannot detect
these mutants with our test cases.

Figure 8. Mutation Score of LMS for XACMUT Operators

6.1 Output

In addition, some mutations like those that are gen-
erated by RTF and RCF can only be killed by the
negative test cases. For this reason, other approaches
which are limited to generate positive test cases can-
not discover these mutations. For example, the follow-
ing rule in LMS has been investigated in [2]:
“Borrowing available books are permitted on working
days, prohibited on holidays, and undefined on main-
tenance days.”
The test suite which is shown in Figure 9 is generated
based on [2] to test this rule. In our approach, the
mentioned rule is described in terms of four rules in
XACML (for the roles of teacher or student):

• Borrowing books on working days (WD) by
teacher

PC = (loginT.role(0) == “teacher”)∧
(day == “WD”) ∧ (bookT.available(1) > 0)

ISeCure

88 An Automatic Test Case Generator — Safarzadeh et al.

Table 15. Constraints of Test Cases for First Rule.

TC# Test loginT.role(0) day bookT.available

TC0 TFTT teacher WD > 0

TC1 FFTT !teacher∧!student WD > 0

TC2 FTFT student ! WD > 0

TC3 TFTF teacher WD <= 0

TC4 FTTT student WD > 0

Table 16. Constraints of Test Cases for Second Rule.

TC# Test loginT.role(0) day bookT.available

TC0 FTFTT teacher MD > 0

TC1 FFTFT !teacher∧!student HD > 0

TC2 TFFFT teacher !MD∧!HD > 0

TC3 TFTFT teacher HD > 0

TC4 TFFTF teacher MD <= 0

• Borrowing books on holidays (HD) or mainte-
nance days (MD) by teacher

PC = (loginT.role(0) == “teacher”)

∧ (day == “HD”|day == “MD”)

∧ (bookT.available(1) > 0)

• Borrowing books on working days (WD) by stu-
dent

PC = (loginT.role(0) == “student”)

∧ (day == “WD”) ∧ (bookT.available(1) > 0)

• Borrowing books on holidays (HD) or mainte-
nance days (MD) by student

PC = (loginT.role(0) == “student”)∧
(day == “HD”|day == “MD”)∧
(bookT.available(1) > 0)

Table 15 and 16 show the selected tests for first and
second rule, respectively. After solving the constraints
by constraint solver, abstract test cases are generated.

Now, consider the mutation, in which the program-
mer forgets to check the availability of books before
borrowing. TC3 in Table 15 can kill this mutation;
however, test cases in Figure 9 does not have this ca-
pability because in all test cases, only an available
book has been used.

Another evaluation criterion that we used is the
level of code coverage. It should be noted that access
control is only a part of code under test; therefore,
we cannot use code coverage measurement tools. But
we assume that each access control rule is a decision
in SUT which has several conditions, then we use
the following method to calculate the percentage of
coverage.

• Condition Coverage (CC)
1. Define two variables Condition and Cover-

agedC with initial values of zero

Figure 9. Partial Test Tree [2]

2. Assign the total number of conditions to Con-
dition variable

3. Repeat steps 4 and 5 for each condition
4. Increment CoveragedC, if there is at least one

test case which contains positive condition
5. Increment CoveragedC, if there is at least one

test case which contains negative condition
6. Compute condition coverage percentage using

Formula 7.

CC = (CoveragedC/(Condition× 2))× 100
(7)

• Decision Coverage (DC)
1. Define two variables Decision and CoveragedD

with initial values of zero
2. Assign the total number of decisions to Decision

variable
3. Repeat steps 4 and 5 for each decision
4. Increment CoveragedD, if there is at least one

test case which contains positive decision
5. Increment CoveragedD, if there is at least one

test case which contains negative decision
6. Compute decision coverage percentage using

Formula 8.

DC = (CoveragedD/(Decision× 2))× 100
(8)

• Condition/Decision Coverage (C/DC)
1. Compute condition/decision coverage percent-

age using Formula 9.

CDC = ((coveragedC + coveragedD)/

((condition× 2) + (decision× 2)))× 100

(9)

• Modified Condition/Decision Coverage (MC/DC)
1. Generate the test suite with modified condi-

tion/decision coverage criterion based on the
method which is presented in step 5 of Sec-
tion 5.2. Then, determine the percentage of those
test cases which are generated by ACP Test
Generator.

The percentage of different coverage criteria for
LMS is shown in Figure 10. As indicated in the figure,

ISeCure

January 2017, Volume 9, Number 1 (pp. 73–91) 89

the test cases that are generated for LMS cover most
part of SUT. Because of using M2C/DC to generate
alternative tests instead of insoluble tests and also
generating appropriate test data with the help of
database constraint solver, the generated tests are
good and covers about 95% of the code.

Figure 10. Code Coverage Percentage in the Proposed Ap-

proach

7 Conclusion and FutureWork

We proposed a new approach to automate testing of
access control. This approach is implemented as a
tool that is called ACP Test Generator. Producing
negative tests along with positive ones increases the
possibility of detecting unknown faults. Due to use of
constraint solver which is capable of solving database
constraints as well as other kinds of constraints, actual
data for the test are provided. In this tool, not only
unit tests but also integration and system tests can
be produced. Results of evaluation of our approach
show that this method is able to detect about 95%
of access control failures for LMS. In our proposed
tool, the generation of executable tests is limited to
local form applications. Therefore, in future works we
intend to improve this shortcoming so that we are able
to generate tests for checking the access control of
other kinds of systems, e.g., web applications. Also, it
is better to use a dynamic modeling method to model
the behavior of SUT. In fact, by using such model, in
the test path variable can be dynamic and their value
can be changed during passing of the test path, if it is
required.

References

[1] OASIS. extensible access control markup
language (xacml) version 3.0. docs.oasis-

open.org/xacml/3.0/xacml-3.0-core-spec-

os-en.html . Accessed 6/22/2013.
[2] Dianxiang Xu, Lijo Thomas, Michael Kent, Tejed-

dine Mouelhi, and Yves Le Traon. A model-based
approach to automated testing of access control
policies. In Proceedings of the 17th ACM sympo-
sium on Access Control Models and Technologies,
pages 209–218. ACM, 2012.

[3] Hasan Qunoo and Mark Ryan. X-policy:
Knowledge-based verification tool for dynamic
access control policies. Security & Its Applica-
tions, 7(2):89–104, March 2013.

[4] Karthick Jayaraman, Vijay Ganesh, Mahesh
Tripunitara, Martin Rinard, and Steve Chapin.
Automatic error finding in access-control poli-
cies. In 18th ACM conference on Computer and
Communications Security, pages 163–174. ACM,
2011.

[5] Graham Hughes and Tevfik Bultan. Automated
verification of access control policies using a sat
solver. Software Tools for Technology Transfer
(STTT), 10(6):503–520, 2008.

[6] Alexander Pretschner Mark Utting and Bruno
Legeard. A taxonomy of model-based testing
approaches. Software Testing, Verification and
Reliability, 22(5):297–312, August 2012.

[7] Microsoft. Microsoft solver foundation.
http://flo.livezon.com/2013/02/how-and-

why-use-microsoft-solver-foundation-

for-net. Accessed 6/5/2016.
[8] Ammar Masood, Arif Ghafoor, and Aditya

Mathur. Scalable and effective test generation
for access control systems that employ rbac poli-
cies. Technical Report SERC-TR-285, Purdue
University, 2006.

[9] Ammar Masood, Arif Ghafoor, and Aditya
Mathur. Conformance testing of temporal role-
based access control systems. IEEE Transactions
on Dependable and Secure Computing, 7:144–158,
2010.

[10] Wissam Mallouli, Jean Marie Orset, Ana Cavalli,
Nora Cuppens, and Frederic Cuppens. A formal
approach for testing security rules. In Proceedings
of the 12th ACM symposium on Access control
models and technologies, pages 127–132. ACM,
2007.

[11] Tejeddine Mouelhi, Yves Le Traon, and Benoit
Baudry. Transforming and selecting functional
test cases for security policy testing. In Proceed-
ings of the 2nd international conference on Soft-
ware Testing, Verification, and Validation (ICST
09), pages 171–180. IEEE, 2009.

[12] Jacques Julliand, Pierre Alain Masson, and Regis
Tissot. Generating security tests in addition
to functional tests. In Proceedings of the 3rd

international workshop on Automation of software
test, New York, NY, USA, pages 41–44. ACM,
2008.

[13] Anas Abou El Kalam, RE Baida, Philippe Bal-
biani, Salem Benferhat, Fredric Cuppens, Yves
Deswarte, Alexandre Miege, Claire Saurel, and
Gilles Trouessin. Organization based access con-
trol. In Proceedings of IEEE 4th International
Workshop on Policies for Distributed Systems

ISeCure

docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
 http://flo.livezon.com/2013/02/how-and-why-use-microsoft-solver-foundation-for-net
 http://flo.livezon.com/2013/02/how-and-why-use-microsoft-solver-foundation-for-net
 http://flo.livezon.com/2013/02/how-and-why-use-microsoft-solver-foundation-for-net

90 An Automatic Test Case Generator — Safarzadeh et al.

and Networks (POLICY 2003), Lake Como, Italy,
pages 120–131. IEEE, 2003.

[14] Yves Le Traon, Tejeddine Mouelhi, and Benoit
Baudry. Testing security policies: going beyond
functional testing. In The 18th IEEE Interna-
tional Symposium on Software Reliability (ISSRE
07), pages 93–102. IEEE, 2007.

[15] Alexander Pretschner, Tejeddine Mouelhi, and
Yves Le Traon. Model-based tests for access
control policies. In 1st International Conference
on Software Testing, Verification, and Validation
(ICST 08), pages 338–347. IEEE, 2008.

[16] Keqin Li, Laurent Mounier, and Roland Groz.
Test generation from security policies specified in
or-bac. In 31st Annual International Computer
Software and Applications Conference (COMP-
SAC 2007), volume 2, pages 255–260. IEEE, 2007.

[17] Evan Martin and Tao Xie. Automated test gener-
ation for access control policies via change-impact
analysis. In Proceedings of the 3rd International
Workshop on Software Engineering for Secure
Systems, pages 5–11. IEEE, 2007.

[18] Antonia Bertolino, Marianne Busch, Said
Daoudagh, Francesca Lonetti, and Eda Marchetti.
A toolchain for designing and testing access con-
trol policies. In Engineering Secure Future In-
ternet Services and Systems, volume 8431, pages
266–286. Springer, 2014.

[19] Hongxin Hu and GailJoon Ahn. Enabling verifi-
cation and conformance testing for access control
model. In Proceedings of the 13th ACM sympo-
sium on Access control models and technologies,
pages 195–204. ACM, 2008.

[20] Hongxin Hu and GailJoon Ahn. Alloy: a
lightweight object modelling notation. 11(2):256–
290, April 2002.

[21] Tejeddine Mouelhi, Franck Fleurey, Benoit
Baudry, and Yves Le Traon. A model-based
framework for security policy specification, de-
ployment and testing. In 11th International Con-
ference on Model Driven Engineering Languages
and Systems (MoDELS 08), Toulouse, France,
pages 537–552. Springer, 2008.

[22] Evan Martin, Tao Xie, and Ting Yu. Defining
and measuring policy coverage in testing access
control policies. In Proceedings of the 8th Interna-
tional Conference on Information and Communi-
cations Security, pages 139–158. Springer, 2006.

[23] John Joseph Chilenski and Steven P Miller. Ap-
plicability of modified condition/decision cover-
age to software testing. Software Engineering,
9(5):193–200, 1994.

[24] Kelly J Hayhurst, Dan S Veerhusen, John J
Chilenski, and Leanna K Rierson. A practical
tutorial on modified condition/decision coverage.
Technical Report SERC-TR-285, Purdue, 2001.

[25] James A Jones and Mary Jean Harrold. Test-
suite reduction and prioritization for modified
condition/decision coverage. IEEE Transactions
on Software, 29(3):195–209, 2003.

[26] Marzieh Safarzadeh, Behrouz Tork Ladani, and
Bahman Zamani. Improvement of modified con-
dition/decision coverage criterion in model based
testing technique. In 7th international conference
on information and knowledge technologies. Iran
2015. (In persian).

[27] Gins DOlera. Umu-xacml-editor v1.3.2. http://

umu-xacmleditor.sourceforge.net/. Ac-
cessed 9/10/2013.

[28] Jan Tretmans and Ed Brinksma. Torx: Auto-
mated model-based testing. 1st European Con-
ference on Model-Driven Software Engineering,
Nuremberg, Germany, pages 31–43, 2003.

[29] Evan Martin, JeeHyun Hwang, Tao Xie, and Vin-
cent Hu. Assessing quality of policy properties in
verification of access control policies. In Proceed-
ings Annual Computer Security Applications Con-
ference (ACSAC), pages 163–172. IEEE, 2008.

[30] Antonia Bertolino, Said Daoudagh, Francesca
Lonetti, and Eda Marchetti. Xacmut: Xacml 2.0
mutants generator. In 6th International Confer-
ence on Software Testing, Verification and Vali-
dation Workshops (ICSTW), pages 28–33. IEEE,
2013.

Marzieh Safarzadeh received her
B.S. and M.S degrees in Computer
Software Engineering from Univer-
sity of Isfahan, Isfahan, Iran, in 2011
and 2016, respectively. Her research
interests include software testing and
software security.

Mahboubeh Taghizadeh received
her B.S. in Computer Engineering
from University of Shiraz, Shiraz,
Iran, in 2011, and M.S. in Computer
Software Engineering from Univer-
sity of Isfahan, Isfahan, Iran in 2014.
Her research interests include soft-

ware testing and model-driven software engineering
(MDSE).

ISeCure

 http://umu-xacmleditor.sourceforge.net/
 http://umu-xacmleditor.sourceforge.net/

January 2017, Volume 9, Number 1 (pp. 73–91) 91

Bahman Zamani received his B.S.
from the University of Isfahan, Isfa-
han, Iran, in 1991, and M.S. from
the Sharif University of Technology,
Tehran, Iran in 1997, both in Com-
puter Engineering (Software). He ob-
tained his Ph.D. degree in Computer

Science from Concordia University, Montreal, QC,
Canada in 2009. From 1998 to 2003, he was a re-
searcher and faculty member of the Iranian Research
Organization for Science and Technology (IROST) -
Isfahan branch. Dr. Zamani joined the Department of
Computer Engineering at the University of Isfahan in
2009, as an assistant professor. His main research inter-
est is model-driven software engineering (MDSE). He
is the founder and director of MDSE research group
at University of Isfahan.

Behrouz Tork Ladani received a
B.S. in Software Engineering from
University of Isfahan, Isfahan, Iran,
in 1996, and M.S. in Software Engi-
neering from AmirKabir University
of Technology, Tehran, Iran, in 1998,
and a Ph.D in Computer Engineering

from Tarbiat-Modarres University, Tehran, Iran, in
2005. He is currently an associate professor and head
of Department of Software Engineering in University
of Isfahan. He is also the managing editor of Journal of
Computing and Security. Dr. Ladani is also member of
the Iranian Society of Cryptology (ISC). His research
interests include software security, cryptographic pro-
tocols, formal verification, and computational trust.

ISeCure

	1 Introduction
	2 Related Work
	3 Background
	3.1 XACML
	3.2 EFSM
	3.3 MC/DC
	3.4 M2C/DC

	4 Motivation Example
	5 Proposed Approach
	5.1 Input
	5.2 Algorithm
	5.3 Output
	5.4 Application

	6 Results
	6.1 Output

	7 Conclusion and Future Work

