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A B S T R A C T

Certificateless public key cryptography (CL-PKC) is a useful method in order to

solve the problems of traditional public key infrastructure (i.e., large amount of

computation, storage and communication costs for managing certificates) and

ID-based public key cryptography (i.e., key escrow problem), simultaneously. A

signcryption scheme is an important primitive in cryptographic protocols which

provides the goals of signing and encrypting, simultaneously. In 2010, Liu et al.

presented the first certificateless signcryption (CLSC) scheme in the standard

model, but their scheme is vulnerable against different attacks presented in the

literature, till now. In this paper, we improve their scheme and propose a new

CLSC scheme, which is semantically secure against adaptive chosen ciphertext

attack under the (S2, 5)-BDHE-Set assumption and existentially unforgeable

against adaptive chosen message attack under the 3-CDHE assumption in

the standard model. Our scheme is more efficient than all other secure CLSC

schemes in the standard model proposed up to now.

© 2017 ISC. All rights reserved.

1 Introduction

I n a traditional public key cryptography (PKC), a
user chooses a public/private key pair (pk, sk). In a

conventional public key infrastructure (PKI), a cer-
tificate authority (CA) issues a digital certificate in
order to bind between the public key and the identity
of a user. However, the management of the certificates
requires a large amount of computation, storage and
communication costs. To avoid this problem, Sham-
mir proposed the notion of identity-based cryptogra-
phy (ID-PKC) in 1984 [1]. In an ID-PKC, a trusted
third party, called the private key generator (PKG),
generates the private key of a user from his unique
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identifier information. However, an inherent problem
of ID-PKC is key escrow, i.e., the PKG knows all users’
private keys. To eliminate these problems, simultane-
ously, Al Riyami and Paterson introduced the concept
of certificateless public key cryptography (CL-PKC)
in 2003 [2]. In a CL-PKC, a public/secret key pair
(pk, x) is produced by the user himself without requir-
ing pk to be certified. Also, a partial private key psk
is generated by a semi-trusted third party, called key
generation center (KGC), from the unique identifier
information of the user. The user must know both x
and psk to calculate his full private key sk. In other
words, CL-PKC can be convinced as an intermediate
between traditional PKI and ID-PKC.

Confidentiality, authentication, integrity and/or
non-repudiation are some well-known security require-
ments in cryptographic protocols. Confidentiality can
be achieved by encryption, and other mentioned re-
quirements can be achieved by signing messages. When
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all these requirements must be satisfied at the same
time, there are more efficient solutions than encrypt-
ing and signing each message, separately. A signcryp-
tion scheme is an important cryptographic primitive
that provides the goals of encrypting and signing mes-
sages, simultaneously. Digital signcryption was first
introduced by Zheng in 1997 [3].

The notion of a certificateless signcryption scheme
was first introduced by Barbosa and Farshim in 2008
[4]. Since then many papers have appeared on certifi-
cateless signcryption about discussing different secu-
rity models, cryptanalyzing the existing schemes, pre-
senting new concrete schemes and proposing schemes
for particular applications [5–14].

In 2010, Liu et al. presented a certificateless sign-
cryption scheme and claimed that their scheme is the
first scheme which satisfies the security requirements
of a CLSC scheme, i.e., unforgeability and confiden-
tiality against malicious -but-passive KGC and key
replacement attacks in the standard model [5]. How-
ever, authors in [12] presented malicious -but-passive
KGC attacks against both the confidentiality and un-
forgeability of Liu et al.’s CLSC scheme. Also, there
exist key replacement attacks against confidentiality
[13, 14] and unforgeability [13] of Liu et al.’s scheme,
in the literature. In 2010, a supplement to Liu et al.’s
CLSC scheme was proposed in [6] which is robust
against the proposed attack in [14], but it is still vul-
nerable against the proposed attacks in [12]. Recently,
in 2014, 2015 and 2016 three CLSC schemes in the
standard model have been proposed in [7], [8] and [9],
respectively which all of them seem secure against the
attacks in [12–14]. However, these schemes are not so
efficient. (Although the scheme in [8] is more efficient
than the scheme in [7] and the scheme in [9] is more
efficient than the scheme in [8].) Note that efficiency
is a very important property in a signcryption scheme,
since the main goal of a signcryption scheme is pro-
viding the goals of encryption and signature, simul-
taneously more efficient than encrypting and signing,
separately [3].

In this paper, we will propose an improved version
of Liu et al.’s CLSC scheme which is not only secure
against the attacks in [12–14], but also more efficient
than the proposed schemes in [7–9]. The security of
our proposed scheme is provable in the standard model
(without random oracles).

The rest of this paper is organized as follows: In
Section 2, the formal model and the adversarial mod-
els of a certificateless signcryption scheme will be in-
troduced. In Section 3, we will present our improved
scheme. Section 4, the security and the performance
of the proposed scheme will be analyzed. Finally, we
will conclude the paper in Section 5.

2 Certificateless Signcryption

2.1 Formal Model

A generic certificateless signcryption scheme, involves
three entities: a key generation centre (KGC), a sender
(S) and a receiver (R) and is defined by six algorithms
as follows:

• Setup. It is a probabilistic polynomial time (PPT)
algorithm which takes as input a security parameter
k and outputs system parameters params and a
master secret keymsk. After running this algorithm,
the KGC publishes params and keeps msk secret.

• Partial-Private-Key-Generation. It is a PPT
algorithm which takes as input params, msk and
an identity ID ∈ {0, 1}∗ and outputs a partial
private key pskID. The KGC runs this algorithm
and sends pskID to the corresponding entity via a
secure channel.

• User-Key-Generation. It is a PPT algorithm
which takes as input params and ID and outputs
a randomly selected value xID and a corresponding
public key pkID. After running this algorithm by
the entity with identity ID, he keeps xID secret and
publishes pkID without requiring to be certified.

• Private-Key-Generation. It is a PPT algorithm
which takes as input params, pskID and xID and
outputs the entity’s full private key skID. This
algorithm is executed by the entity, himself.

• Signcryption. It is a PPT algorithm which takes
as input params, a message M , the sender’s private
key skIDS , the receiver’s public key pkIDR , and
outputs a signcryption σ on message M .

• Unsigncryption. It is a deterministic polynomial
time algorithm which takes as input params, a
signcryption σ, the receiver’s private key skIDR , the
sender’s public key pkIDS , and outputs M if the
signature is valid and ⊥ otherwise.

Note that the correctness must be satisfied, i.e., if σ =
Signcrypt(params,M, skIDS , pkIDR), then the out-
put of Unsigncrypt(params, σ, skIDR , pkIDS ) must
contain M and a guarantee that M is actually sign-
crypted by the sender S.

2.2 Adverserial Models and Oracle Accesses

In a certificateless public key cryptography two types
of adversaries are considered [5]. A type I adversary
AI models an adversary who can replace the public
key of an arbitrary entity, but does not access to the
master secret key (key replacement attack). A type
II adversary AII models an adversary who possesses
the master secret key but cannot replace any public
keys. In [5], AII is considered as a malicious-but-
passive KGC, who can try to decrypt a ciphertext or
forge a signature (malicious-but-passive KGC attack).

ISeCure



January 2017, Volume 9, Number 1 (pp. 3–16) 5

During an attack against a cryptographic scheme,
the adversary can obtain some information from the
environment. This is modelled by some oracles that
the adversary can send some requests to them. In a
certificateless signcryption scheme, the adversaries
may access to the following oracles:

• Opk. Refers to the public key oracle, which takes as
input an identity ID and outputs the corresponding
public key pkID.

• Opsk. Refers to the partial private key oracle, which
takes as input an identity ID and outputs pskID.

• OReplace.pk. Refers to the replaced public key oracle,
which takes as input an identity ID and a new valid
public key pk′ID and replaces pkID with pk′ID.

• Osk. Refers to the private key oracle, which takes as
input an identity ID and outputs the corresponding
private key skID for the identity whose public key
has not been replaced.

• OSigncrypt. Refers to the signcryption oracle, which
takes as input M , IDS , IDR and outputs a valid
signcryption σ.

• OUnsigncrypt. Refers to the unsigncryption oracle,
which takes as input σ, IDS , IDR and outputs the
results of the Unsigncryption algorithm.

Note that a type I adversary, i.e., AI , has access to
all of the above oracles and a type II adversary, i.e.,
AII , has access to all of the above oracles except
OReplace.pk and Opsk (Because AII herself possesses
the msk and can generate psk, so she does not need to
has queries from Opsk). In the rest of this paper, OI =
{Opk,Opsk,OReplace.pk,Osk,OSigncrypt,OUnsigncrypt}
is the set of all oracles which can be accessed by AI
and OII = {Opk,Osk,OSigncrypt,OUnsigncrypt} is
the set of all oracles which can be accessed by AII .

2.3 Security Requirements

Confidentiality and unforgeability are two main secu-
rity requirements for a signcryption scheme. In this
section, these security requirements will be described
via some games between an adversary (AI orAII) and
a challenger C. In the following games some notations
will be used which we describe them here:

• Outputs←− XAl(Inputs): The entity X runs the
algorithm Al on Inputs and generates Outputs.

• Q = {res1, res1, . . . resq} ←− Queries(X,O): The
entity X sends q (a polynomially bounded number)
queries to the set of oracles O and obtains Q as
response. Note that all queries can be made adap-
tively, i.e., each query may depend on the answers
to the previous queries.

• γ ←− XR: The entity X randomly selects a bit
γ ∈R {0, 1}.

Confidentiality. This property is considered as

Figure 1. Game I

Initialization:

(msk, params)←− CSetup(k)

(C keeps msk secret and gives params to AI .)

Phase 1 queries:

Q1 ←− Queries(AI ,OI)

Challenge:

({IDS∗ , IDR∗}, {M0,M1})←− AI(Q1)

γ ←− CR({IDS∗ , IDR∗}, {M0,M1})

σ∗ ←− CSigncrypt(params,Mγ , skIDS∗ , pkIDR∗ )

(C sends σ∗ to AI .)

Phase 2 queries:

Q2 ←− Queries(AI ,OI)

Response:

γ∗ ←− AI(Q1, Q2, σ
∗)

indistinguishability of encryptions under the adaptive
chosen ciphertext attack (IND-CCA) and is defined
by Game I and Game II for type I and type II
adversaries, respectively.

It is said that AI wins Game I if γ∗ = γ and the
following conditions hold:

(1) AI cannot extract skIDR∗ at any point.
(2) AI cannot extract skID for any identity if the

corresponding public key has already been re-
placed.

(3) AI cannot extract pskIDR∗ if AI has replaced
pkIDR∗ before the challenge step.

(4) In phase 2 queries, AI cannot make an unsign-
cryption query on σ∗ under IDS∗ and IDR∗ ,
unless pkIDS∗ or pkIDR∗ used to signcrypt Mγ

has been replaced after the challenge was issued.

It is said that AII wins Game II if γ∗ = γ and the
following conditions hold:

(1) AII cannot extract skIDR∗ at any point.
(2) In phase 2 queries, AII cannot make an unsign-

cryption query on σ∗ under IDS∗ and IDR∗ .

Definition 1. A certificateless signcryption scheme
is (ε, t, qpk, qpsk, qRpk, qsk, qS , qU )-semantically secure
under adaptive chosen ciphertext attack if no adver-
saries (AI and AII) with at most running time t, mak-
ing at most qpk public key queries from Opk, qpsk par-
tial private key queries from Opsk (qpsk = 0 for AII),
qRpk public key replacement queries from OReplace.pk
(qRpk = 0 for AII), qsk private key queries from Osk,
qS signcryption queries from OSigncrypt and qU un-
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Figure 2. Game II

Initialization:

(msk, params)←− AIISetup(k)

(AII gives msk and params to C.)

Phase 1 queries:

Q1 ←− Queries(AII ,OII)

Challenge:

({IDS∗ , IDR∗}, {M0,M1})←− AII(Q1)

γ ←− CR({IDS∗ , IDR∗}, {M0,M1})

σ∗ ←− CSigncrypt(params,Mγ , skIDS∗ , pkIDR∗ )

(C sends σ∗ to AII .)

Phase 2 queries:

Q2 ←− Queries(AII ,OII)

Response:

γ∗ ←− AII(Q1, Q2, σ
∗)

Figure 3. Game III

Initialization:

(msk, params)←− CSetup(k)

(C keeps msk secret and gives params to AI)

Queries:

Q←− Queries(AI ,OI)

Output:

(σ∗, IDS∗ , IDR∗)←− AI(Q)

(σ∗ is not produced by the signcryption oracle)

signcryption queries from OUnsigncrypt, wins Game I
and Game II with probability at least 1

2 + ε.

Unforgeability. This property is considered as ex-
istential unforgeability against chosen message attack
(EUF-CMA) and is defined by Game III and Game
IV for type I and type II adversaries, respectively.

It is said that AI wins Game III if the result of
checking the signature in

Unsigncrypt(params, σ∗, skIDR∗ , pkIDS∗ )

is valid and the following conditions hold:

(1) AI cannot extract skIDR∗ at any point.
(2) AI cannot extract skID for any identity if the

corresponding public key has already been re-
placed.

(3) AI cannot extract pskIDR∗ .

It is said that AII wins Game IV if the result of

Figure 4. Game IV

Initialization:

(msk, params)←− AIISetup(k)

(AII gives msk and params to C)

Queries:

Q←− Queries(AII ,OII)

Output:

(σ∗, IDS∗ , IDR∗)←− AII(Q)

(σ∗ is not produced by the signcryption oracle)

checking the signature in

Unsigncrypt(params, σ∗, skIDR∗ , pkIDS∗ )

is valid and AII cannot extract skIDR∗ at any point.

Definition 2. A certificateless signcryption scheme
is (ε, t, qpk, qpsk, qRpk, qsk, qS , qU )-existentially un-
forgeable under adaptive chosen message attack if
no adversaries (AI and AII) running time at most
t, making at most qpk public key queries from Opk,
qpsk partial private key queries from Opsk (qpsk = 0
for AII), qRpk public key replacement queries from
OReplacepk (qRpk = 0 for AII), qsk private key queries
fromOsk, qS signcryption queries fromOSigncrypt and
qU unsigncryption queries from OUnsigncrypt, wins
Game III and Game IV with probability at least ε.

3 Our Proposed Scheme

3.1 Biliniear Pairings

Let G1 and G2 be two multiplicative cyclic groups of
prime order q and let g be a generator of G1. There
exists an admissible bilinear pairing e : G1 ×G1 −→
G2 if and only if the following properties are satisfied.

(1) Bilinearity: e(ga, gb) = e(g, g)ab, for all a, b ∈
Z∗q .

(2) Non-degeneracy: i.e., e(g, g) 6= 1G2 .
(3) Computability: There exists an efficient algo-

rithm for computing e(g, g).

3.2 Related Complexity Assumptions

In this subsection, some required assumptions in com-
plexity theory are described.

Definition 3.K+1-Computational Diffie-Hellman
Exponent (K+1-CDHE) problem [15] is that on inputs

g, ga, . . . , ga
K ∈ G1, for unknown a ∈ Z∗q , calculate

ga
K+1

. It is said that (ε, t)-K + 1-CDHE assumption
holds in G1, if no t-time algorithm can solve the K+1-
CDHE problem in G1, with probability at least ε.

Remark 1. The unforgeability of our proposed
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scheme against AI and AII are based on 2-CDHE and
3-CDHE assumptions, respectively.

Definition 4. Consider a set of integers S ⊂ Z,
and define S +q S , {i + j mod λ(q) : i, j ∈ S},
where λ(q) is the order of elements modulo q. Also,
consider another target integer m /∈ S +q S. The
(S,m)-Bilinear Diffie-Hellman Exponent-Set ((S,m)-

BDHE-Set) problem [16] is that on inputs {gai ∈ G1 :
i ∈ S}, for unknown a ∈ Z∗q , and X ∈ G2, decide

whether X = e(g, g)a
m

. It is said that (ε, t)-(S,m)-
BDHE-Set assumption holds in (G1, G2), if no t-time
algorithm can solve the (S,m)-BDHE-Set problem in
(G1, G2), with probability at least 1

2 + ε.

Remark 2. Assigning S = SK = {0, 1, 2, dots,K},
and m = 2K + 1, the (S,m)-BDHE-Set problem is

that on inputs g, ga, ga
2

, . . . , ga
K ∈ G1, for unknown

a ∈ Z∗q , andX ∈ G2 decide whetherX = e(g, g)a
2K+1

.
The confidentiality of our proposed scheme againstAI
and AII are based on (S1, 3)-BDHE-Set and (S2, 5)-
BDHE-Set assumptions, respectively.

3.3 Proposed Scheme

In this subsection we present our certificateless sign-
cryption scheme which is an improvement of Liu et
al.’s scheme [5]. We use the certificateless signature
scheme in [17] as the base of our signcryption scheme.
Table 1 shows some symbols and notations which are
used in our scheme.

For generality, identities can be considered of ar-
bitrary lengths and a hash function Hu : {0, 1}∗ −→
{0, 1}nu can be used to convert them to the specific
length nu. The algorithms of our scheme are as follows:

• Setup: Given k, the KGC selects two multi-
plicative cyclic groups G1 and G2 of a large
prime order q, a random generator g of G1 and
a bilinear map e : G1 × G1 −→ G2. It also
chooses a random α ∈ Z∗q and sets g1 = gα and
T = e(g1, g1). Furthermore, it selects two ran-
dom values u′, v′ ∈ G1 and two random vectors
U = (ui) ∈ Gnu1 and V = (vj) ∈ Gnm1 . The KGC
also selects two collision resistant hash functions
H1 : {0, 1}∗ −→ {0, 1}nm and H2 : {0, 1}∗ −→ Z∗q .
The public system parameters are params =
{G1, G2, q, e, g, g1, T, u

′, v′, U, V,H1, H2} and the

master secret key is msk = gα
2

.
• Partial-Private-Key-Generation: The KGC

randomly selects r ∈ Z∗q and computes pskID, as
follows:

pskID = (pskID,1, pskID,2) = (gα
2

(u′
∏
i∈UID

ui)
r, gr).

• User-Key-Generation: The user with identity
ID, selects a random secret value xID ∈ Z∗q as his

Table 1. Some notations in our scheme

Notation Description

nu The length of identities

k The security parameter

G1 and G2
Two multiplicative cyclic groups of a large
prime order q

g A random generator of G1

e : G1 ×G1 −→ G2 A bilinear pairing

H1 : {0, 1}∗ −→ {0, 1}nm
Two collision resistant hash functions

H2 : {0, 1}∗ −→ Z∗q

α A random value in Z∗q

u′, v′ Two random values in G1

U = (ui) ∈ G
nu
1

A random vector of length nu that its
elements uis (i = 1, 2, . . . , nu) are chosen
randomly from G1

V = (vj) ∈ G
nm
1

A random vector of length nm that its
elements vjs (j = 1, 2, . . . , nm) are chosen
randomly from G1

msk The master secret key

ID[i] The i-th bit of an identity ID

UID UID = {i|ID[i] = 1, i = 1, 2, . . . , nu}

pskID
The partial private key of a user with
identity ID

xID ∈ Z∗q The secret key of a user with identity ID

pkID The public key of a user with identity ID

skID
The full private key of a user with identity
ID

m
The H1 value of a string which will be
described in the signcription phase

m[j] The j-th bit of m ∈ {0, 1}nm

M M = {j|m[j] = 1, j = 1, 2, . . . , nm}

secret key and computes the corresponding public
key as

pkID = (pkID,1, pkID,2) = (gxID1 , g
1

xID
1 ).

• Private-Key-Generation: The user with identity
ID, selects a random value r′ ∈ Z∗q and computes
his full private key as

skID = (skID,1, skID,2)

= (psk
x2
ID

ID,1(u′
∏
i∈UID

ui)
r′ , psk

x2
ID

ID,2g
r′).

• Signcryption: Suppose that the sender with iden-
tity IDS , wants to send a message M ∈ G2 to the
receiver with identity IDR. The sender selects ran-
dom values r1, r2 ∈ Z∗q and runs the following steps:
(1) Checks whether e(pkIDR,1, pkIDR,2) = T

holds or not. If the equality does not hold,
aborts and outputs ⊥.

(2) Computes σ1 = M.e(pkr1IDR,1, pkIDR,1) =

M.e(g1, g1)x
2
IDR

r1 .
(3) Computes σ2 = gr1 .
(4) Computes σ3 = (u′

∏
i∈UIDR

ui)
r1 .

(5) Computes σ4 = skIDS ,2.g
r2 .

(6) Computesm = H1(σ1, σ2, σ3, σ4, IDR, pkIDR,1) ∈
{0, 1}nm , and also computes M = {j|m[j] =
1, j = 1, 2, . . . , nm}.

(7) Computes h = H2(IDS ,m, pkIDS ,1, σ4, σ2).

ISeCure



8 An Efficient Certificateless Signcryption Scheme in the Standard Model — Rastegari, and Berenjkoub

(8) Computes σ5 = skIDS ,1.(u
′∏

i∈UIDS
ui)

r2

.(pkhIDS ,1(v′
∏
j∈M vj))

r1 .
(9) Outputs σ = (σ1, σ2, σ3, σ4, σ5).

• Unsigncryption: The receiver checks the validity
and decrypts σ = (σ1, σ2, σ3, σ4, σ5) as follows:
(1) Checks whether e(pkIDS ,1, pkIDS ,2) = T holds

or not. If the equality does not hold, aborts
and outputs ⊥.

(2) Computesm = H1(σ1, σ2, σ3, σ4, IDR, pkIDR,1) ∈
{0, 1}nm , and also computes M = {j|m[j] =
1, j = 1, 2, . . . , nm}.

(3) Computes h = H2(IDS ,m, pkIDS ,1, σ4, σ2).
(4) Verifies the equality

e(σ5, g) =e(pkIDS ,1, pkIDS ,1)

.e(u′
∏

i∈UIDS

ui, σ4)

.e(pkhIDS ,1(v′
∏
j∈M

vj), σ2).

If the equally holds, computes and outputs

M = σ1.
e(σ3, skIDR,2)

e(σ2, skIDR,1)
,

else outputs ⊥.

4 Analysis of the Proposed Scheme

4.1 Correctness

The correctness can be simply verified as:

e(σ5, g) =e(skIDS ,1, g)

.e((u′
∏

i∈UIDS

ui)
r2 , g)

.e((pkhIDS ,1(v′
∏
j∈M

vj))
r1 , g)

=e(gα
2x2
IDS (u′

∏
i∈UIDS

ui)
rx2
IDS

+r′ , g)

.e((u′
∏

i∈UIDS

ui)
r2 , g)

.e((pkhIDS ,1(v′
∏
j∈M

vj))
r1 , g)

=e(gα
2x2
IDS , g)

.e((u′
∏

i∈UIDS

ui)
rx2
IDS

+r′+r2 , g)

.e((pkhIDS ,1(v′
∏
j∈M

vj))
r1 , g)

=e(g
xIDS
1 , g

xIDS
1 )

.e(u′
∏

i∈UIDS

ui, skIDS ,2g
r2)

.e(pkhIDS ,1(v′
∏
j∈M

vj), g
r1)

=e(pkIDS ,1, pkIDS ,1)

.e(u′
∏

i∈UIDS

ui, σ4)

.e(pkhIDS ,1(v′
∏
j∈M

vj), σ2),

and

σ1.e(σ3, skIDR,2)

e(σ2, skIDR,1)

=
M.e(g1, g1)x

2
IDR

r1 .e((u′
∏
i∈UIDR

ui)
r1 , grx

2
IDR

+r′)

e(gr1 , g
α2x2

IDR (u′
∏
i∈UIDR

ui)
rx2
IDR

+r′
)

=
M.e(gα, gα)x

2
IDR

r1 .e((u′
∏
i∈UIDR

ui)
r1 , grx

2
IDR

+r′)

e(gr1 , g
α2x2

IDR ).e(gr1 , (u′
∏
i∈UIDR

ui)
rx2
IDR

+r′
)

=
M.e(g, g)α

2x2
IDR

r1 .e((u′
∏
i∈UIDR

ui)
r1 , grx

2
IDR

+r′)

e(g, g)
α2x2

IDR
r1 .e(g

rx2
IDR

+r′
, (u′

∏
i∈UIDR

ui)r1)

=M

4.2 Security Analysis

The security of the proposed scheme is provable in the
standard model. Define:

εI ,
1

8qU (qpsk + qsk + qS + qU + 1)(nm + 1)(nu + 1)
,

tI , order(((qpsk + qsk + qS + qU )nu + (qS + qU )nm)TM

+ (qpk + qpsk + qsk + qS + qU )TE + (qS + qU )TP ),

εII ,
1

8qU (qsk + qS + qU + 1)(nm + 1)(nu + 1)
,

tII , order(((qsk + qS + qU )nu + (qS + qU )nm)TM

+ (qpk + qsk + qS + qU )TE + (qS + qU )TP ),

where TM , TE and TP are the time for multiplication
and exponentiation in G1 and a pairing computation,
respectively.

Lemma 1. The proposed scheme is (ε, t, qpk, qpsk,
qRpk, qsk, qS , qU )-semantically secure against AI , if
the (ε′, t′)-(S1, 3)-BDHE-Set assumption holds in
(G1, G2), where ε′ ≥ εεI and t′ ≤ t+ tI .

Proof. Suppose that there exists a (ε, t, qpk, qpsk,
qRpk, qsk, qS , qU )-type I adversary AI , who can break
the indistinguishability of encryptions against adap-
tive chosen ciphertext attack (IND-CCA) in the pro-
posed scheme according to Game I. By this assump-
tion, we can construct a simulator B that can use AI
as a sub-routine and solve the (S1, 3)-BDHE-Set prob-
lem with a probability at least ε′ and in time at most
t′, which contradicts the (ε′, t′)-(S1, 3)-BDHE-Set as-
sumption in (G1, G2).

Consider two multiplicative cyclic groups G1 and
G2 of a large prime order q, a random generator g of
G1 and a bilinear map e : G1 ×G1 −→ G2. Suppose
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that B is given a random (S1, 3)-BDHE-Set chal-
lenge (g ∈ G1, A = ga ∈ G1, X ∈ G2) and outputs

a guess β′ = 1, if he decides that X = e(g, g)a
3

and
β′ = 0, otherwise. In order to use AI as a subroutine,
B must simulate the challenger C and answer all
AI ’s queries in Game I. In order to respond these
queries consistently, B creates a database DB =
{(ID, pskID, xID, pkID, skID, sta = 0)} which is ini-
tially empty. Then B plays Game I with AI and sim-
ulates C and all oracles which AI has access to them,
i.e., OI = {Opk,Opsk,OReplace.pk,Osk,OSigncrypt,
OUnsigncrypt}, as follows:

Initialization: Let lu = 2(qpsk+qsk+qS+qU +1)
and lm = 2qU . Assume that lu(nu + 1) < q and
lm(nm + 1) < q. B randomly selects the following
elements:

• ku ∈R {0, 1, . . . , nu} and km ∈R {0, 1, . . . , nm}.
(By the assumptions of lu(nu + 1) < q and
lm(nm + 1) < q, we have 0 ≤ kulu < q and
0 ≤ kmlm < q.)

• x′, x1, . . . , xnu ∈R Zlu and y′, y1, . . . , ynu ∈R Zq.
• z′, z1, . . . , znm ∈R Zlm and w′, w1, . . . , wnm ∈R
Zq.

These values are kept internal to B. Then B assigns a
set of public parameters as follows:

g1 = A = ga,

u′ = g−kulu+x
′

1 gy
′
,

ui = gxi1 g
yi (i = 1, 2, . . . , nu),

v′ = g−kmlm+z′

1 gw
′
,

vj = g
zj
1 g

wj (j = 1, 2, . . . , nm).

B also computes T = e(g1, g1) and selects two
collision resistant hash functions H1 : {0, 1}∗ −→
{0, 1}nm andH2 : {0, 1}∗ −→ Z∗q and gives params =
{G1, G2, q, e, g, g1, T, u

′, v′, U, V,H1, H2} to AI . From
the perspective of AI , all distributions are identical
to those in the real world.

In order to follow the proof more easily, define four
following functions:

Ju(ID) = x′ +
∑
i∈UID

xi − kulu,

Ku(ID) = y′ +
∑
i∈UID

yi,

Jm(m) = z′ +
∑
j∈M

zj − kmlm,

Km(m) = w′ +
∑
j∈M

wj ,

where UID andM are defined similar to those in the
proposed scheme. By These assignments, the following
equations hold:

u′
∏
i∈UID

ui = g
Ju(ID)
1 gKu(ID),

v′
∏
j∈M

vj = g
Jm(m)
1 gKm(m).

Also note that by these assignments, B does not know
the master secret key, msk = ga

2

, and he must simu-
late C and answer all AI ’s queries in Game I without
the knowledge of msk.

Phase 1 queries: In this step, AI has access
to OI = {Opk,Opsk,OReplace.pk,Osk,OSigncrypt,
OUnsigncrypt}. B responds to AI ’s queries by simulat-
ing these oracles as follows:

• Opk. As AI sends a public key query for an iden-
tity ID to Opk, B checks whether such key ex-
ists in the database DB. If so, B returns this
public key to AI . Otherwise, B runs the User-
Key-Generation algorithm to generate pkID and
returns it to AI . Also B adds pkID and its corre-
sponding xID in the database.

• Opsk. As AI sends a partial private key query for
an identity ID to Opsk, B checks whether such
key exists in the database DB. If so, B returns
this partial private key to AI . Otherwise, B tries
to generate pskID without the knowledge of the
master secret key as follows:
◦ If Ju(ID) = 0 mod q, B aborts the simulation.
◦ If Ju(ID) 6= 0 mod q, B randomly selects r ∈
Z∗q and creates pskID as follows:

pskID = (pskID,1, pskID,2)

= (g
−Ku(ID)
Ju(ID)

1 (u′
∏
i∈UID

ui)
r, g
− 1
Ju(ID)

1 gr).

Then B returns pskID to AI and also adds it
in the database.

By defining r̃ = r − a/Ju(ID), it is easy to

check that g
−Ku(ID)/Ju(ID)
1 (u′

∏
i∈UID ui)

r =

gα
2

(u′
∏
i∈UID ui)

r̃ and g
−1/Ju(ID)
1 gr = gr̃,

and as a result, pskID which is simulated by
B, has the correct construction and from the
perspective of AI , all the partial private keys
generated by B are indistinguishable from
those created by the true challenger C.

• OReplace.pk. Suppose that AI requests to replace
the public key of an identity ID, i.e., pkID corre-
sponding to xID, with a new public key pk′ID =
(pk′ID,1, pk

′
ID,2), corresponding to x′ID. B firstly

checks whether e(pk′ID,1, pk
′
ID,2) = T . If so, B

replaces the (xID, pkID) with (x′ID, pk
′
ID) in the

database. If there is not any (xID, pkID) cor-
responding to the identity ID, B directly sets
(xID, pkID) = (x′ID, pk

′
ID) in the database. After

the replacement, B sets sta = 1 for the identity
ID.
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• Osk. As AI sends a private key query for an
identity ID to Osk, B checks whether such key
exists in the database DB. If so, B returns this
private key to AI . Otherwise, B searches DB for
pskID. If pskID exists inDB, B picks it, otherwise
B acts as follows:
◦ If Ju(ID) = 0 mod q, B aborts the simulation.
◦ If Ju(ID) 6= 0 mod q, B creates pskID similar

to that in simulating Opsk.
ThenB obtains (xID, pkID). (B picks (xID, pkID)
from the database if exists and the correspond-
ing sta = 0, otherwise B creates (xID, pkID) by
running the User-Key-Generation algorithm).
Afterwards, B can produce skID by running
the Private-Key-Generation algorithm, since he
knows both xID and pskID. So B generates skID,
returns it to AI and also adds it in the database.

• OSigncrypt. As AI sends a signcryption query for
(M, IDS , IDR), B gets the private key of the
signer skIDS by simulatingOsk as mentioned and
creates a signcryption σ = (σ1, σ2, σ3, σ4, σ5) on
message M by running the Signcryption algo-
rithm. Then B returns σ to AI . If B cannot sim-
ulate skIDS (i.e., Ju(IDS) = 0 mod q), B aborts
the simulation.

• OUnsigncrypt. As AI sends an unsigncrypt query
for (σ = (σ1, σ2, σ3, σ4, σ5), IDS , IDR), B firstly
runs the verification part of the Unsigncryption
algorithm. If the verification fails, B returns ⊥ to
AI . Otherwise, B extracts M as follows:
• If sta = 0 for IDR (i.e., pkIDR has never been

replaced), B checks whether skIDR exists in
the database DB. If so, picks it. Otherwise,
B obtains skIDR by simulating Osk (assume
that Ju(IDR) 6= 0 mod q). Then B executes
the unsigncrypt part of the Unsigncryption
algorithm to obtain M and returns it to AI .
• If sta = 1 for IDR (i.e., pkIDR has been re-

placed), B acts as follows:
◦ If Ju(ID) = 0 mod q, B aborts the simula-

tion.
◦ If Ju(ID) 6= 0 mod q, B firstly computes gr11

as follows:

gr11 = (
σ3

σ
Ku(IDR)
2

)
1

Ju(IDR) .

Note that:

(
σ3

σ
Ku(IDR)
2

)
1

Ju(IDR)

= (
(u′

∏
i∈UIDR

ui)
r1

gr1.Ku(IDR)
)

1
Ju(IDR)

= (
(g
Ju(IDR)
1 gKu(IDR))

r1

gr1.Ku(IDR)
)

1
Ju(IDR)

= gr11 .

Then B retrieves the xIDR corresponding to
pkIDR from the database or gets it from AI
(Note that pkIDR is a replaced public key,
since sta = 1 and so AI knows it). After-
wards, with the knowledge of gr11 and xIDR ,
B can extract M as follows:

M =
σ1

e(gr11 , g
x2
IDR

1 )
.

So, B computes M as above and returns it
to AI .

Challenge: After a polynomially bounded num-
ber of queries from OI , AI selects two distinct identi-
ties IDS∗ and IDR∗ and two equal length messages
M0,M1 ∈ G2 as her challenge. (Note that AI has
never issued a private key query for IDR∗ from Osk.)
Then AI submits {IDS∗ , IDR∗} and {M0,M1} to the
challenger C. B plays the role of C as follows:

◦ If Ju(IDR∗) 6= 0 mod q or Ju(IDS∗) = 0 mod q, B
aborts the simulation.

◦ If Ju(IDR∗) = 0 mod q and Ju(IDS∗) 6= 0 mod q,
B selects a bit γ by flipping a fair coin and creates
a signcryption on Mγ for the challenge identities
IDS∗ and IDR∗ as follows.

Let pkIDS∗ = (g
xIDS∗
1 , g

1/xIDS∗
1 ) and pkIDR∗ =

(g
xIDR∗
1 , g

1/xIDR∗
1 ) be the current public keys of

IDS∗ and IDR∗ , respectively. B firstly retrieves
xIDS∗ and xIDR∗ . (B can retrieve these values from
DB if exist, otherwise B retrieves them by running
the User-Key-Generation algorithm). Then B sets
the followings: (Note that (g,A = ga, X) is the
input of the (S1, 3)-BDHE-Set problem which B is
trying to solve it.)

σ∗1 = X
x2
IDR∗Mγ ,

σ∗2 = A = g1,

σ∗3 = AKu(IDR∗ ),

σ∗4 = (A
x2
IDS∗ )

−1
Ju(IDS∗ ) gt

∗
, t∗ ∈R Z∗q .

Let mγ = H1(σ∗1 , σ
∗
2 , σ
∗
3 , σ
∗
4 , ID

∗
R, pkID∗R,1) and

Mγ = {j|mγ [j] = 1, j = 1, 2, . . . , nm}, wheremγ [j]
denotes the j-th bit of mγ ∈ {0, 1}nm . Also, let
h∗ = H2(IDS∗ ,mγ , pkIDS∗ ,1, σ

∗
4 , σ
∗
2).

◦ If Jm(mγ) + xIDS∗h
∗ 6= 0 mod q, B aborts the

simulation.
◦ If Jm(mγ) + xIDS∗h

∗ = 0 mod q, B sets

σ∗5 = (A
x2
IDS∗ )

−Ku(IDS∗ )
Ju(IDS∗ ) (u′

∏
i∈UID∗

S

ui)
t∗AKm(mγ),

and gives σ∗ = (σ∗1 , σ
∗
2 , σ
∗
3 , σ
∗
4 , σ
∗
5) to AI . It is

easy to check that if X = e(g, g)a
3

(i.e., (g,A =
ga, X) is a valid (S1, 3)-BDHE-Set tuple), σ∗ is
a valid signcryption on Mγ by assigning α, r, r′,
r1 and r2 in the proposed scheme as follows:
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• r1 = a,
• α = a (and as a result msk = ga

2

and g1 =
ga = A),

• r′ + r2 = t∗,
• r = −a/Ju(IDS∗).

Otherwise, (if X is a random element of G2 and

not equal to e(g, g)a
3

), σ∗ is a random string
which is not a valid signcryption neither for M0

nor for M1.

Phase 2 queries: AI continuous to her queries
from OI and B responds to these queries similar to
those in Phase 1 queries. Note that AI is not allowed
to send an unsigncryption query on σ∗ under IDS∗

and IDR∗ unless pkIDS∗ or pkIDR∗ used to signcrypt
Mγ , has been replaced after the challenge was issued.

Response: At the end of the simulation, AI out-
puts a guess γ∗ of γ. Finally, when the Game I be-
tween AI and B terminates, B acts as follows:

• If the simulation fails in any step (because of
aborting B) B randomly selects its guess β′ of β.

• Otherwise, if γ∗ = γ, B outputs a guess β′ = 1,
implying that X = e(g, g)a

3

, else B outputs β′ =
0 to the (S1, 3)-BDHE-Set problem.

Time Analysis: Noting the above descriptions we
can see that B needs a time t′ ≤ t + tI , for running
the game.

Probability Analysis: Define the success prob-
ability of B in solving the (S1, 3)-BDHE-Set prob-
lem as Pr[B wins] and the success probability of AI
in Game I as Pr[AI wins]. Noting that if B aborts
Pr[B wins] = 1

2 (since B randomly selects its guess
β′ of β.), and assuming that Pr[AI wins] ≥ 1

2 +ε, we
have:

Pr[B wins] = Pr[B wins|abort]Pr[abort]
+ Pr[B wins|abort]Pr[abort]

=
1

2
Pr[abort] + Pr[AI wins]Pr[abort]

≥ 1

2
(1− Pr[abort]) + (

1

2
+ ε)Pr[abort]

=
1

2
+ ε.Pr[abort].

B will not abort if all the following independent events
happen:

◦ E1: Ju(IDS∗) 6= 0 mod q, and Ju(ID) 6= 0
mod q for all queries from Opsk, Osk, OSigncrypt
and OUnsigncrypt. Let E1,0 denotes the event
that Ju(IDS∗) 6= 0 mod q, and E1,i denotes
the event that Ju(ID) 6= 0 mod q in the i-th
query from the mentioned oracles, hence E1 =⋂qpsk+qsk+qS+qU
i=0 E1,i.

◦ E2: Ju(IDR∗) = 0 mod q.

◦ E3: Jm(mγ) + xIDS∗h
∗ = 0 mod q.

It is easy to see that [5]:

Pr[Ju(ID) = 0 mod q] =
1

lu(nu + 1)
,

and [17]:

Pr[Jm(mγ) + xIDS∗h
∗ mod q] =

1

lm(nm + 1)
.

As a result:

Pr[abort] ≥Pr[E1

⋂
E2

⋂
E3] = Pr[E1].Pr[E2].Pr[E3]

=Pr[

qpsk+qsk+qS+qU⋂
i=0

E1,i].Pr[E2].Pr[E3]

≥(1−
qpsk + qsk + qS + qU + 1

lu(nu + 1)
).

1

lu(nu + 1)lm(nm + 1)

≥(1−
qpsk + qsk + qS + qU + 1

lu
).

1

lu(nu + 1)lm(nm + 1)

=
1

8qU (qpsk + qsk + qS + qU + 1)(nu + 1)(nm + 1)
= εI ,

where the equality before the rightmost one is implied
from lu = 2(qpsk + qsk + qS + qU + 1) and lm = 2qU .
Finally we have:

Pr[B wins] ≥ 1

2
+ ε.εI .

As the final result, if AI can win Game I with a non-
negligible advantage ε (i.e., guess γ correctly with
probability at least 1

2 + ε for a non-negligible value of
ε), then B can solve an instance of the (S1, 3)-BDHE-
Set problem with a non-negligible advantage ε′ (i.e.,
guess β correctly with probability at least 1

2 + ε′),
where ε′ ≥ ε.εI and this is a contradiction of the
(S1, 3)-BDHE-Set assumption in complexity theory.�

Lemma 2. The proposed scheme is (ε, t, qpk, 0, 0,
qsk, qS , qU )-semantically secure against AII , if
the (ε′, t′)-(S2, 5)-BDHE-Set assumption holds in
(G1, G2), where ε′ ≥ εεII and t′ ≤ t+ tII .

Proof. Suppose that there exists a (ε, t, qpk, 0, 0,
qsk, qS , qU )-type II adversaryAII , who can break the
indistinguishability of encryptions against adaptive
chosen ciphertext attack (IND-CCA) in the proposed
scheme according to Game II. By this assumption, we
can construct a simulator B that can use AII as a sub-
routine and solve the (S2, 5)-BDHE-Set problem with
a probability at least ε′ and in time at most t′, which
contradicts the (ε′, t′)-(S2, 5)-BDHE-Set assumption
in (G1, G2).

Consider two multiplicative cyclic groups G1 and
G2 of a large prime order q and a bilinear map e :
G1 ×G1 −→ G2. Suppose that B is given a random
(S2, 5)-BDHE-Set challenge (A = h ∈ G1, B = ha ∈
G1, C = ha

2 ∈ G1, X ∈ G2) and outputs a guess β′ =

1, if he decides that X = e(h, h)a
5

and β′ = 0, other-
wise. Also suppose thatB = ha is a generator ofG1. In

ISeCure



12 An Efficient Certificateless Signcryption Scheme in the Standard Model — Rastegari, and Berenjkoub

order to use AII as a subroutine, B must simulate the
challenger C and answer all AII ’s queries in Game II.
In order to respond these queries consistently, B cre-
ates a database DB = {(ID, xID, pkID, skID)} which
is initially empty. Then B plays Game II withAII and
simulates C and all oracles which AII has access to
them, i.e.,OII = {Opk,Osk,OSigncrypt,OUnigncrypt},
as follows:

Initialization: Let lu = 2(qsk + qS + qU + 1)
and lm = 2qU . Assume that lu(nu + 1) < q and
lm(nm + 1) < q. AII selects a random α ∈ Z∗q
and sets g1 = gα. Then AII selects the values ku,
km, x′, x1, . . . , xnu , y′, y1, . . . , ynu , z′, z1, . . . , znm and
w′, w1, . . . , wnm similar to them in the proof of Lemma
1 and assigns:

g = B = ha,

g1 = Bα = gα,

u′ = C−kulu+x
′
By
′
,

ui = CxiByi (i = 1, 2, . . . , nu),

v′ = C−kmlm+z′Bw
′
,

vj = CzjBwj (j = 1, 2, . . . , nm).

AII also computes T = e(g1, g1) and selects two
collision resistant hash functions H1 : {0, 1}∗ −→
{0, 1}nm and H2 : {0, 1}∗ −→ Z∗q and sends
params = {G1, G2, q, e, g, g1, T, u

′, v′, U, V,H1, H2}
and α to B. AII also computes four functions Ju(ID),
Ku(ID), Jm(m) and Km(m) similar to those in the
proof of Lemma 1 and sends them to B.

By these assignments, the following equations hold:

u′
∏
i∈UID

ui = CJu(ID)BKu(ID),

v′
∏
j∈M

vj = CJm(m)BKm(m).

Also, note that in Game II (in contrast to Game I), B
knows the master secret key, msk = gα

2

, and it must
simulate C and answer all AII ’s queries by this fact.

Phase 1 queries: In this step, AII has access
to OII = {Opk,Osk,OSigncrypt,OUnsigncrypt}. (Note
that AII herself possesses the msk and can generate
psk, so she does not need to has queries from Opsk).
B responds to AII ’ s queries by simulating the oracles
in OII as follows:

• Opk. As AII sends a public key query for an
identity ID to Opk, B checks whether such key
exists in the database DB. If so, B returns this
public key toAII . Otherwise, B chooses a random
xID ∈R Z∗q and sets pkID = (pkID,1, pkID,2) =

(CαxID , Aα/xID ) and returns it to AII . Also B
adds (xID, pkID) in the database. Note that by
this assignment, the real secret value of an identity
ID is equal to axID and since B does not know a,

it does not know the real secret value. So, B must
answer the following queries of AII without the
knowledge of the real secret value of an identity
ID.

• Osk. As AII sends a private key query for an
identity ID to Osk, B checks whether such key
exists in the database DB. If so, B returns this
private key to AII . Otherwise B acts as follows:
◦ If Ju(ID) = 0 mod q, B aborts the simulation.
◦ If Ju(ID) 6= 0 mod q, B checks whether

(xID, pkID) exists in the database. If so, B
picks it, otherwise B produces (xID, pkID)
by simulating Opk. Then B selects a random
r ∈R Z∗q and assigns the private key as:

skID =(skID,1, skID,2)

=(C−
Ku(ID)
Ju(ID)

(αxID)2(u′
∏
i∈UID

ui)
r,

C−
(αxID)2

Ju(ID) Br).

Finally, B returns skID to AII and also
adds it in the database. Note that By defin-
ing r̃ = r − a(αxID)2/Ju(ID), it is easy to
see that in the above assignments, skID,1 =

g(aαxID)2(u′
∏
i∈UID ui)

r̃, and skID,2 = gr̃,
and as a result by assuming axID as the secret
value of identity ID, skID which is simulated
by B, has the correct construction and from
the perspective of AII , all the private keys
generated by B are indistinguishable from
those created by the true challenger C.

• OSigncrypt. As AII sends a signcrypt query for
(M, IDS ,
IDR), B gets the private key of the signer skIDS
by simulating Osk as mentioned and creates a
signcryption σ = (σ1, σ2, σ3, σ4, σ5) on message
M by running the Signcryption algorithm. Then
B returns σ to AII . If B cannot simulate skIDS
(i.e., Ju(IDS) = 0 mod q), B aborts the simula-
tion.

• OUnsigncrypt. As AII sends an unsigncrypt query
for (σ = (σ1, σ2, σ3, σ4, σ5), IDS , IDR), B firstly
runs the verification part of the Unsigncryption
algorithm. If the verification fails, B returns ⊥ to
AII . Otherwise, B checks whether skIDR exists
in the database DB. If so, picks it. Otherwise, B
obtains skIDR by simulating Osk (assume that
Ju(IDR) 6= 0 mod q). Then B executes the Un-
signcrypt part of the Unsigncryption algorithm
to obtain M and returns it to AII .

Challenge: After a polynomially bounded number
of queries from OII , AII selects two distinct identi-
ties IDS∗ and IDR∗ and two equal length messages
M0,M1 ∈ G2 as her challenge. Note that AII has
never issued a private key query for IDR∗ from Osk.
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Then AII submits (IDS∗ , IDR∗) and {M0,M1} to
the challenger C. B plays the role of C as follows:

◦ If Ju(IDR∗) 6= 0 mod q or Ju(IDS∗) = 0 mod q, B
aborts the simulation.

◦ If Ju(IDR∗) = 0 mod q and Ju(IDS∗) 6= 0 mod q,
B selects a bit γ by flipping a fair coin and creates
a signcryption on Mγ for the challenge identities
IDS∗ and IDR∗ as follows:

Let pkIDS∗ = (CαxIDS∗ , Aα/xIDS∗ ) and pkIDR∗ =

(CαxIDR∗ , Aα/xIDR∗ ) be the current public keys of
IDS∗ and IDR∗ , respectively. B firstly retrieves
xIDS∗ and xIDR∗ . (B can retrieve these values from
DB if exist, otherwise B retrieves them by simulat-
ing Opk). Then B sets the followings: (Note that

(A = h,B = ha, C = ha
2

, X) is the input of (S2, 5)-
BDHE-Set problem which B is trying to solve it.)

σ∗1 = X(αxIDR∗ )
2

Mγ ,

σ∗2 = C = ha
2

,

σ∗3 = CKu(IDR∗ ),

σ∗4 = (C(αxIDS∗ )
2

)
−1

Ju(IDS∗ ) gt
∗
, t∗ ∈R Z∗q .

Let mγ = H1(σ∗1 , σ
∗
2 , σ
∗
3 , σ
∗
4 , ID

∗
R, pkID∗R,1) and

Mγ = {j|mγ [j] = 1, j = 1, 2, . . . , nm}, where
mγ [j] denotes the j-th bit of mγ ∈ {0, 1}nm . Also,
let h∗ = H2(IDS∗ ,mγ , pkIDS∗ ,1, σ

∗
4 , σ
∗
2).

◦ If Jm(mγ) + αxIDS∗h
∗ 6= 0 mod q, B aborts the

simulation.
◦ If Jm(mγ) + αxIDS∗h

∗ = 0 mod q, B sets

σ∗5 = (C
(αxIDS∗

)2
)
−Ku(IDS∗ )
Ju(IDS∗ ) (u′

∏
i∈UID∗

S

ui)
t∗CKm(mγ),

and gives σ∗ = (σ∗1 , σ
∗
2 , σ
∗
3 , σ
∗
4 , σ
∗
5) to AII . It

is easy to check that if X = e(h, h)a
5

(i.e., A =

h,B = ha, C = ha
2

, X is a valid (S2, 5)-BDHE-
Set tuple), σ∗ is a valid signcryption on Mγ by
assigning r, r′, r1 and r2 in the proposed scheme
as follows:
• r1 = a,
• r′ + r2 = t∗,
• r = −α2/aJu(IDS∗).

Otherwise, (if X is a random element of G2 and

not equal to e(h, h)a
5

), σ∗ is a random string
which is not a valid signcryption neither for M0

nor for M1.

Phase 2 queries: AII continuous to her queries
from OII and B responds to these queries similar to
that in Phase 1 queries. Note that AII is not allowed
to send an unsigncryption query on σ∗ under ID∗S
and ID∗R.

Response: At the end of the simulation, AII out-
puts a guess γ∗ of γ. Finally, when the Game II be-
tween AII and B terminates, B acts as follows:

• If the simulation fails in any step (because of
aborting B) B randomly selects its guess β′ of β.

• Otherwise, If γ∗ = γ, B outputs a guess β′ = 1,
implying that X = e(h, h)a

5

, else B outputs β′ =
0 to the (S2, 5)-BDHE-Set problem.

Time and probability analyses are similar to those in
the proof of Lemma 1 except for qpsk = 0. �

Theorem 1. The proposed scheme is semantically
secure under adaptive chosen ciphertext attack (ac-
cording to Definition 1) in the standard model under
the (S2, 5)-BDHE-Set assumption.

Proof. The proof is directly implied from Lemma
1 and Lemma 2. �

Lemma 3. The proposed scheme is (ε, t, qpk, qpsk,
qRpk, qsk, qS , qU )-unforgeable againstAI , if the (ε′, t′)-
2-CDHE assumption holds in G1, where ε′ ≥ εεI and
t′ ≤ t+ tI .

Proof. Suppose that there exists a (ε, t, qpk,
qpsk, qRpk, qsk, qS , qU )- type I adversary AI , who can
break the unforgeability against adaptive chosen
message attack (EUF-CMA) in the proposed scheme
according to Game III. By this assumption, we can
construct a simulator B that can use AI as a sub-
routine and solve an instance of a 2-CDHE problem
with a probability at least ε′ and in time at most t′,
which contradicts the (ε′, t′)-2-CDHE assumption in
G1.

Consider a multiplicative cyclic groups G1 of a
large prime order q and a random generator g of G1.
Suppose that B is given a random 2-CDHE challenge
(g ∈ G1, A = ga ∈ G1) and is requested to output

ga
2 ∈ G1. In order to use AI as a subroutine, B

must simulate the challenger C and answer all AI ’s
queries in Game III. B firstly selects a group G2

of order q and a bilinear map e : G1 × G1 −→ G2.
Then B plays Game III with AI and simulates C and
all oracles which AI has access to them, i.e., OI =
{Opk,Opsk,OReplace.pk,Osk,OSigncrypt,OUnsigncrypt},
as follows:

Initialization: It is similar to the Initialization
step of the proof of Lemma 1.

Queries: B responds all AI ’s queries from OI sim-
ilar to those in the Phase 1 queries of the proof of
Lemma 1.

Output: After a polynomially bounded num-
ber of queries (if B does not abort), AI outputs a
new valid signcryption σ∗ = (σ∗1 , σ

∗
2 , σ
∗
3 , σ
∗
4 , σ
∗
5) on

message M∗ for IDS∗ with public key pkIDS∗ =

(g
xIDS∗
1 , g

1/xIDS∗
1 ) and IDR∗ with public key

pkIDR∗ = (g
xIDR∗
1 , g

1/xIDR∗
1 ). (Note that (σ∗,
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IDS∗ , IDR∗) is not produced by the signcryp-
tion oracle.) Finally, when the Game III be-
tween AI and B terminates, B computes m∗ =
H1(σ∗1 , σ

∗
2 , σ
∗
3 , σ
∗
4 , IDR∗ , pkIDR∗ ) and acts as follows:

◦ If Ju(IDS∗) 6= 0 mod q or Jm(m∗) + xIDS∗h
∗ 6=

0 mod q (or the simulation fails in any steps), B
aborts.

◦ If Ju(IDS∗) = 0 mod q and Jm(m∗) + xIDS∗h
∗ =

0 mod q (and the simulation does not fail in any
steps), B retrieves xIDS∗ and computes:

ga
2

= (
σ∗5

(σ∗4)Ku(IDS∗ )(σ∗2)Km(m∗)
)

1

x2
IDS∗ .

Time Analysis: Noting the above descriptions we
can see that B needs a time t′ ≤ t + tI , for running
the game.

Probability Analysis: Define the success prob-
ability of B in solving the 2-CDHE problem as
Pr[B wins] and the success probability ofAI in Game
III as Pr[AI wins]. Assuming that Pr[AI wins] ≥ ε,
we have:

Pr[B wins] =Pr[abort
⋂
AI wins]

=Pr[AI wins].P r[abort]
≥ε.Pr[abort] ≥ εεI ,

since Pr[abort] ≥ εI , as is proved in the probability
analysis of Lemma 1.

As a result, if AI can win Game III with a non-
negligible advantage ε (i.e., forge a valid signcryption
with probability at least ε for a non-negligible value
of ε), then B can solve an instance of the 2-CDHE
problem with a non-negligible probability ε′, where
ε′ ≥ εεI and this is a contradiction of the 2-CDHE
assumption in complexity theory. �

Lemma 4. The proposed scheme is (ε, t, qpk, 0, 0,
qsk, qS , qU )-unforgeable against AII , if the (ε′, t′)-3-
CDHE assumption holds in G1, where ε′ ≥ εεII and
t′ ≤ t+ tII .

Proof. Suppose that there exists a (ε, t, qpk, 0, 0, qsk,
qS , qU )-type II adversary AII , who can break the
unforgeability against adaptive chosen message at-
tack (EUF-CMA) in the proposed scheme according
to Game IV . By this assumption, we can construct
a simulator B that can use AII as a sub-routine
and solve an instance of a 3-CDHE problem with a
probability at least ε′ and in time at most t′, which
contradicts the (ε′, t′)-3-CDHE assumption in G1.

Consider a multiplicative cyclic groups G1 of a large
prime order q and a random generator B = ha of G1.
Suppose that B is given a random 3-CDHE challenge
(A = h ∈ G1, B = ha ∈ G1, C = ha

2 ∈ G1) and is re-

quested to output ha
3 ∈ G1. In order to use AII as a

subroutine, B must simulate the challenger C and an-
swer all AII ’s queries in Game IV . B firstly selects a
groupG2 of order q and a bilinear map e : G1×G1 −→
G2. Then B plays Game IV with AII and simu-
lates C and all oracles which AII has access to them,
i.e., OII = {Opk,Osk,OSigncrypt,OUnsigncrypt}, as
follows:

Initialization: It is similar to the Initialization
step of the proof of Lemma 2.

Queries: B responds all AII ’s queries from OII
similar to them in the Phase 1 queries of the proof of
Lemma 2.

Output: After a polynomially bounded number
of queries (if B does not abort), AII outputs a
new valid signcryption σ∗ = (σ∗1 , σ

∗
2 , σ
∗
3 , σ
∗
4 , σ
∗
5) on

message M∗ for IDS∗ with public key pkIDS∗ =

(CαxIDS∗ , Aα/xIDS∗ ) and IDR∗ with public key
pkIDR∗ = (CαxIDR∗ , Aα/xIDR∗ ). (Note that (σ∗, IDS∗ ,
IDR∗) is not produced by the signcryption ora-
cle.) Finally, when the Game IV between AII and
B terminates, B computes m∗ = H1(σ∗1 , σ

∗
2 , σ
∗
3 ,

σ∗4 , IDR∗ , pkIDR∗ ) and acts as follows:

◦ If Ju(IDS∗) 6= 0 mod q or Jm(m∗) + αxIDS∗h
∗ 6=

0 mod q (or the simulation fails in any steps), B
aborts.

◦ If Ju(IDS∗) = 0 mod q and Jm(m∗) +αxIDS∗h
∗ =

0 mod q (and the simulation does not fail in any
steps), B retrieves xIDS∗ and computes:

ha
3

= (
σ∗5

(σ∗4)Ku(IDS∗ )(σ∗2)Km(m∗)
)

1
(αxIDS∗

)2 .

Time and probability analyses are similar to those in
the proof of lemma 3 except for qpsk = 0. �

Theorem 2. The proposed scheme is existentially
unforgeable under adaptive chosen message attack
(according to Definition 2) in the standard model
under the 3-CDHE assumption.

Proof. The proof is directly implied from Lemma
3 and Lemma 4. �

Remark 3. In order to prove the security (i.e., con-
fidentiality and unforgeability) of Liu et al.’s sign-
cryption scheme against AI , they only considered the
case that AI can replace the public key of an entity
pkID = e(g1, g2)xID , with a correctly formed public
key pk′ID = e(g1, g2)x

′
ID . However, in the first pro-

posed attack in [13, 14], AI can cheat the sender and
decrypt a ciphertext by replacing the public key of the

receiver with pk′IDR = e(g, g)x
′
IDR . Also, in the second

proposed attack in [13], AI can cheat the receiver and
forge a valid signcryption by replacing the public key

of the sender with pk′IDS = e(g, g)x
′
IDS . Our scheme

is robust against these attacks, since in the first step
of both signcryption and unsigncryption phases, it is
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Table 2. Comparisons Between the CLSC Schemes in the Standard Model

CLSC

Scheme
Signcryption Operations

Unsigncryption Operations

(for valid signcription)

Unsigncryption
Operations(for invalid

signcription)

Ciphertext Size
Secure Against

Attacks in [12–14]

[5] 1EG2 + 3EG1 5P 3P |4G1|+ |1G2| No

[6] 3EG2
+ 3EG1

5P + 2EG2
3P + 2EG2

|4G1|+ |1G2| No

[7] 3P + 3EG2
+ 6EG1

8P + 2EG2
+ 3EG1

6P + 2EG2
+ 1EG1

|4G1|+ |1G2| Yes

[8] 5P+1EG2+3EG1+1φ 10P + 1φ−1 10P + 1φ−1 |4G1|+ |1G2| Yes

[9] 2P + 3EG2
+ 5EG1

+ 1φ 7P + 2EG1
+ 1φ−1 7P + 2EG1

+ 1φ−1 |4G1|+ |2G2| Yes

Ours 2P + 7EG1
7P + 1EG1

5P + 1EG1
|4G1|+ |1G2| Yes

checked whether the public keys are formed by the
correct construction.

Remark 4. In two proposed attacks in [12], AII
generates the public parameters maliciously and
wins Game II and Game IV . Our scheme is also
robust against these attacks, because of the terms
(u′

∏
i∈UIDS

ui)
r2 and pkhr1IDS,1

in the structure of

σ5. Note that even if AII generates u′, v′, ui(i =
1, 2, . . . , nu) and vj(j = 1, 2, . . . , nm) maliciously
such that she knows the discrete logarithms of them
(like the attacks in [12]), she could not calculate
(u′

∏
i∈UIDS

ui)
r2 and pkhr1IDS,1

and performs the at-

tacks in [12].

4.3 Performance

To the best of our knowledge, only five CLSC schemes
in the standard model have been proposed in the
literature, till now [5–9]. We compare our scheme with
these schemes in Table 2. EG1 , EG2 and P are the
notations for an exponentiation in G1, exponentiation
in G2 and pairing computations, respectively. φ : < ⊆
{0, 1}nm+nu −→ G2 is a bijection while φ−1 is its
inverse [8, 9]. Also, |aG| denotes the binary length of a
elements in G. Since the schemes in [5, 6] are insecure,
we will concentrate on the comparison of our scheme
with the schemes in [7–9] with more details. Note that
in the Unsigncryption phase of our scheme (as well as
the schemes in [5–7]), the verification is applied before
the encryption and as a result the unsigncryption
operation decreases when the signcryption is invalid.
But in the Unsigncryption phase of the schemes in [8, 9]
the verification is applied after the encryption and as a
result the unsigncryption operation is similar in both
valid and invalid signcryptions. For an approximated
comparison, consider most efficient up-to-date curves
with and without pairing and count the cost of a
modular exponentiation in the curve without pairing
as 1. Denoting G1 and G2 the curves with the pairing,
the cost of an exponentiation in G1 is 3, the cost of an

exponentiation in G2 is 6, and the cost of a pairing is
8, approximately [18]. By these considerations, if the
signcryption is valid, the total computation costs (for
signcryption and unsigncryption operations) of the
schemes in [7], [8] and [9] are approximately 145, 135
and 111, respectively (without considering φ and φ−1

computations) while the total computation cost of our
scheme is approximately 96. Also, if the signcryption
is invalid, the total computation costs of the schemes
in [7], [8] and [9] are approximately 123, 135 and
111, respectively while the total computation cost of
our scheme is approximately 80. So, our scheme is
more efficient than other schemes in the sense of the
computation cost especially for invalid signcryptions.
As shown, the ciphertext size of our scheme is smaller
than that of the scheme in [9]. In fact, the authors in
[9] have tried to improve the computation cost of the
scheme in [8], but their scheme is less efficient than
the scheme in [8] in the sense of the ciphertext size.
Our scheme is more efficient than the scheme in [8]
(and even more efficient than the scheme in [9]) in
the sense of the computation cost, while its ciphertext
size is also kept unchanged in comparison with the
scheme in [8].

As a final result, our scheme is not only robust
against the attacks in [12–14], but also more efficient
than all other secure CLSC schemes in the standard
model in [7–9] both in terms of computation and
communication costs.

5 Conclusion

An improved version of Liu et al.’s CLSC scheme was
presented, which is robust against all proposed attacks
to their scheme. The proposed scheme is semantically
secure against adaptive chosen ciphertext attack under
the (S2, 5)-BDHE-Set assumption and existentially
unforgeable against adaptive chosen message attack
under the 3-CDHE assumption in the standard model.
Furthermore, the proposed scheme is more efficient
than all other secure CLSC schemes in the standard
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model proposed in the literature up to now.
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