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A B S T R A C T

Impossible differential cryptanalysis, an extension of the differential

cryptanalysis, is one of the most efficient attacks against block ciphers. This

cryptanalysis method has been applied to most of the block ciphers, and has

shown significant results. Using structures, key schedule considerations, early

abort, and pre-computation are some common methods to reduce complexities

of this attack. In this paper, we present a new method for decreasing the time

complexity of impossible differential cryptanalysis through breaking down the

target key space into subspaces, and extending the results on subspaces to the

main target key space. The main advantage of this method is that there is no

need to consider the effects of changes in the values of independent key bits on

each other. Using the 14-round impossible differential characteristic observed

by Boura et al. at ASIACRYPT 2014, we implement this method on 23-round

LBlock and demonstrate that it can reduce the time complexity of the previous

attacks to 271.8 23-round encryptions using 259 chosen plaintexts and 273 blocks

of memory.

© 2016 ISC. All rights reserved.

1 Introduction

1.1 Motivation, Contribution and
Organization

C ryptanalysis methods that rely on eliminating
the round’s function key’s effect by working on

the differences, form a considerable part of attacks
against block ciphers. Differential cryptanalysis [1]
proposed by Biham et al. is the first attack of this cat-
egory. Impossible differential, higher order differential,
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truncated differential, and boomerang cryptanalyses
are other attacks of this type.

Impossible differential cryptanalysis was introduced
independently by Knudsen on DEAL block cipher [7]
and Biham et al. on Skipjack block cipher [2]. It is one
of the conventional cryptanalyses methods for block
ciphers showing remarkable results. Distinguisher of
impossible differential attack, impossible differential
characteristic, is n-round of target algorithm with spe-
cific input and output differences holding with proba-
bility zero, implying that a pair with such input dif-
ference cannot lead to the specified output difference
after n rounds. After extending the characteristic by
adding some rounds to the plaintext and ciphertext
sides of the distinguisher, we try to find the key val-
ues leading chosen pairs of plaintexts to the attack’s
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distinguisher. Since these key values lead to the dis-
tinguisher holding with probability zero; they cannot
be the correct key and should be eliminated from the
target key space.

LBlock is a lightweight block cipher of generalized
Feistel type represented in ACNS2011 [3]. The algo-
rithm consists of 32 rounds with 64-bit block length,
and 80-bit key length. In [3], the designers evaluated
LBlock’s security against different attacks including
impossible differential cryptanalysis. Using a 14-round
impossible differential characteristic They presented
the attack on 20 rounds of the algorithm. Using an-
other 14-round characteristic, impossible differential
cryptanalysis on 21 rounds of the algorithm is pre-
sented in [4]. This improvement was achieved by apply-
ing mentioned methods, such as key schedule consider-
ation. The authors in [5] represented another impossi-
ble differential cryptanalysis of LBlock. They have sep-
arated the plaintext and ciphertext sides added to the
distinguisher and searched each part independently.
Using this method, they could reduce the complexity
on 21 rounds of algorithm. Also, they have extended
the attack to 22 rounds. Our new method can be con-
sidered as an extension of their work. By investigating
the key schedule of the cipher in [9], the authors have
extended impossible differential cryptanalysis to 23
rounds of the algorithm. In [10], the authors presented
another impossible differential cryptanalysis on 23
rounds of the algorithm by using an approach that can
help reducing the number of pairs used in the attack.

In conventional impossible differential attacks, the
effects of changes in most of the target key bits are
considered while the attackers are studying the pos-
sible values for some specific key bits, although lots
of them are independent; and these considerations
come to attacks with higher time complexities. The
main idea of the new method is preventing this over-
load by separating the target key space into subspaces.
We classify the target key bits into the groups and
determine the values of key bits in each group inde-
pendently. Then, we extend the achieved results to
the whole target key space. This idea was first applied
on 22-round LBlock in [21]; however, there was no
efficient algorithm for extending the achieved results
to the main target key space. In this paper, we gener-
alize the method and propose an efficient algorithm
for combining the results stored in distinct tables.

Using this improved method in parallel with pre-
vious ones, an improved attack on 23-round LBlock
is presented in this paper. The results of this attack
are compared with the previous works in Table 1. The
outstanding advantages of this method are its gener-
ality that can be applied on different block ciphers
(especially those with weak diffusion layers including

lightweight algorithms) and also applicability in par-
allel with other techniques proposed for improving im-
possible differential cryptanalysis. The rest of this pa-

Table 1. Comparison of attacks on LBlock

No.
Rounds

Cryptanalysis
method

Memory

complex-

ity

Data

com-

plexity

Time

com-

plexity

Ref.

18 Integral 216 262 212 [17]

20 Integral 235 263.6 239.6 [17]

20
Impossible
Differential

260 263 272.7 [3]

21
Impossible

Differential
268 262.5 273.7 [4]

21
Impossible
Differential

268 263 269.5 [5]

22
Impossible

Differential
272.67 258 279.28 [5]

22

Zero-

Correlation
Linear

264 262 271.27 [14]

22 Integral 263 261 270 [16]

22
Related Key
Impossible

Differential

not

mentioned
247 270 [6]

23
Related Key
Impossible

Differential

261.4 261.4 278.3 [8]

23
Impossible

Differential

not

mentioned
257 277.4 [9]

23
Impossible

Differential
274.6 259 275.36

[10,
12,

13]

23
Impossible
Differential

273 259 271.8
This

Paper

24

Key Difference

Invariant Bias

(Related-Key)

261 262.95 270.67 [19]

Full
Higher Order

Key

Partitioning

Negligible 2 278.338 [20]

Full Biclique Negligible 278.4 252 [18]

per is organized as follows: In Section 2, we introduce
the impossible differential cryptanalysis and describe
the new method. Prevalent notations for LBlock and
brief description of it are presented in Section 3. In
Section 4, we clarify the new method by applying it on
LBlock. Finally, we conclude the paper in Section 5.

2 Impossible Differential
Cryptanalysis and the NewMethod

Consider the typical round function in block ciphers
of Feistel type, consisted of add round key by XOR op-
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Figure 1. typical round function in algorithms of Feistel

ciphers

eration, and applying S-Boxes, as depicted in Figure 1.
The terms used in this paper are as follows:

Definition 1 For a pair (X1, Y1) and (X2, Y2), Can-
cellation occurs when X1 6= X2 and Y1 6= Y2 and
[F (X1,K)⊕F (X2,K)] = [S(X1⊕K)⊕S(X2⊕K)] =
(Y1 ⊕ Y2) .

Cancellations on specific locations in the target algo-
rithm are the conditions of the impossible differential
attack. Key values satisfying the attack’s conditions
result the attack’s characteristic from the chosen pairs.
These values for the key are those we are looking for
during the attack procedure.

Definition 2 For each cancellation, corresponding
to one F-function, we form a group made up of the
F-function’s subkey, and also the key bits of the other
rounds which affect the input pair value or the desired
differential output value of that F-function (X1,X2

and Y1⊕Y2 in definition 1). The number of key groups
in the attack equals the number of cancellations.

Definition 3 Involved-key-bits is the set of key bits
presented in groups.

Definition 4 Information-key-bits is a subset of
involved-key-bits of the smallest size that can specify
the involved-key-bits value uniquely.

Due to the redundancy of the key schedule, it is
probable to have relations between different rounds’
subkeys in the set of involved-key-bits. As a result,
size of involved-key-bits is less than or equal to the
size of information-key-bits. There is a well-known
property for invertible S-boxes that we apply it in our
attack implementation:

Property 1 For F-function F (X,K) = S(X ⊕K),
where S is a given invertible S-Box, for an input pair
(X1,K) and (X2,K); if we know the value of (X1, X2),
we can determine the values of K leading to a specified
differential value for [S(X1⊕K)⊕S(X1⊕K)] = ∆Y .

2.1 Impossible Differential Cryptanalysis

The characteristic in impossible differential attack
consists of n rounds of the target algorithm with ∆α

Figure 2. impossible differential cryptanalysis

and ∆β as the differential input and output of this
n-round characteristic, respectively (Figure 2). ∆α
(resp. ∆β) contains m1 (resp. m1) non-zero difference
sub-blocks (mostly m1 = m2 = 1). This characteristic
states that a pair of texts with ∆α as the differen-
tial input to the round i cannot lead to ∆β as the
differential output of the round i+ n− 1.

Adding r1 rounds to the plaintext side and r2 rounds
to the ciphertext side of the characteristic, impossible
differential attack can be implemented on n+ r1 + r2
rounds of the algorithm, as Figure 2. After this exten-
sion, differential input (resp. output) of the n+r1+r2-
round version of the algorithm equals ∆θ (resp. ∆γ)
containing l1 +m1 (resp. l2 +m2) non-zero difference
sub-blocks. The number of conditions in this attack
is l1 + l2. In this way, the attack is based on finding
key values that cancel l1 (resp. l2) number of these
non-zero difference sub-blocks on specific locations
from the plaintext side (resp. ciphertext side), leading
to the attack’s characteristic. Since the impossible dif-
ferential characteristic comes to a contradiction, none
of the key values leading to this characteristic can be
the correct key.

For finding the incorrect key values, we take some
pairs with the specified differential forms in the plain-
text and ciphertext sides; ∆θ and ∆γ, respectively.
Then, we test the possible key values on them to find
those which lead to the impossible differential char-
acteristic, i.e. incorrect keys. The number of pairs
needed for recovering the correct key depends on the
number of cancellations that determine the number of
condition-bits (the bits that there are conditions on
them). For l1 + l2 cancellations at t-bit F-functions,
the number of condition-bits equals (l1 + l2)t. If the
number of information-key-bits in the attack is s, each
pair can discard 2s(2−(l1+l2)t) key values on average.
So, if the attacker wants to eliminate all the incorrect
keys, the number of required pairs, q, is determined
by the following inequality:

2s(1− 2−(l1+l2)t)q ≤ 1
Time and memory complexities of impossible dif-

ferential cryptanalysis are dependent on the attack
procedure. In [11] a lower bound for time complex-
ity of impossible differential cryptanalysis is provided.
The authors prove that an impossible differential at-
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tack, which gives 2ε values for the L-bit involved keys,
contains at least (L−ε+ ln(2))×2L memory accesses.

In conventional impossible differential cryptanaly-
sis, there are some common methods to reduce the at-
tack’s complexity; such as using structures, key sched-
ule considerations, early abort, and pre-computation.
Using structures leads attackers to choose texts of spe-
cific form in which there are constant values in some
positions of the texts’ block and the other positions
can take all possible values. By this method, the cho-
sen pairs from one structure have the desired differ-
ential form. Key schedule consideration is one of the
most effective methods to reduce the complexity of
attacks. The key schedule generates rounds’ subkeys
from one seed, main key, usually in an iterative form;
and therefore, it contains some redundancy. In ideal
key schedules, this redundancy is not exploitable; but
for most of the algorithms, the attackers can find some
applicable redundancy to reduce size of the target key
space. In early abort technique, attackers discard the
pairs or key values that cannot comply with some
conditions as soon as possible. Here, pre-computation
means performing the repetitive computations that
are independent from the achieved results of the at-
tack’s steps and classifying them in tables before the
attack starts. Then, attackers can refer to these tables
and find the result of the intended computation when
they need, instead of spending time on computing in
the online phase of the attack.

2.2 The New Method

In impossible differential attack, the attackers are
searching for the values of the information-key-bits
satisfying the attack’s conditions to discard them
from the target key space. Not necessarily all the
information-key-bits have effect on all the conditions.
However, in conventional impossible differential crypt-
analysis methods, the effects of changes in the values
of all the information-key-bits are considered while
attackers are studying a specific cancellation. Here,
we present a new method which is based on reducing
computational complexity by refusing to study the ef-
fects of independent key bits’ changes on the attack’s
conditions.

In our attack scenario, for each one of l1 + l2 can-
cellations, we determine the effective key bits and put
them in distinct groups. Then, for each group, we
form a table consisted of flags corresponding to all the
possible values of the determined key bits. For each
chosen pair, we find the key values satisfying each
cancellation and set the achieved values’ flags in the
corresponding table. The combinations of key values
that their flags are set from the tables lead the cho-
sen pair to the attack’s distinguisher and should be

eliminated from the target key space.

According to property 1, we just need to know the
input pair value of (X1, X2) and the desired output
difference of the F-function F = S(X ⊕K) for each
cancellation to determine the key values of the func-
tion; and just the changes in the key bits that affect
the input pair value or the desired differential output
value of the F-function are needed to be considered,
not the changes in all the involved-key-bits. Therefore,
there are two types of key bits in each group:

Type-1 : key bits of the F-function on which we have
cancellation,

Type-2 : key bits which affect the input pair value or
the desired differential output value of this function

(Groups of key bits corresponding to cancellations
on the first and last rounds do not contain key bits of
type-2.)

For each group of key bits that contains key bits of
type-2, we guess this type of key bits to determine the
input pair value and the desired differential output
value of the F-function. Then, we can determine the
values of type-1 key bits in each group.

Impossible differential cryptanalysis by using the
new method can be done within the following steps:

(1) Choosing a proper n-round impossible differen-
tial characteristic,

(2) Extending number of rounds to n+ r1 + r2,
(3) Determining the non-zero difference sub-blocks

of the plaintext and ciphertext sides,
(4) Specifying number of cancellations l1 + l2 and

their locations,
(5) Forming l1 + l2 key groups corresponding to l1 +

l2 cancellations and determining each group’s
key bits,

(6) Forming l1 + l2 tables corresponding to l1 + l2
key groups consisted of flags corresponding to
the possible values of the determined key bits
for each group,

(7) Choosing pairs with the specified difference in
the plaintext and ciphertext sides, and repeating
the two following steps for each pair,

(8) Determining key bits values of each groups and
setting their corresponding values’ flags in the
corresponding table,

(9) Eliminating the combinations of key bits values
of tables that their flags are set from the target
key space.

We clarify this method in Section 4 by applying it
on 23-round LBlock. To the best of our knowledge,
impossible differential attack by this method comes to
the best results in terms of data and time complexities,
considering the cryptanalysis methods in single-key
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model excluding biclique attack.

3 Brief Description of LBlock

The used notation in this paper is summarized here:

A: a bit string

A|B: concatenation of strings A and B

A <<< B: left rotation of A by j bits

Kr
i : the ith nibble of the rth round key

Rr−1: the right half of the rth round’s input

Lr−1: the left half of the rth round’s input

Rr−1
i : the ith nibble of Rr−1

Lr−1
i : the ith nibble of Lr−1

∆Rr−1: the difference of two Rr−1

∆Lr−1: the difference of two Lr−1

∆Rr−1
i : the difference of two Rr−1

i

∆Lr−1
i : the difference of two Lr−1

i

Sr
i : output of the ith S-Box in the rth round

∆Sr
i : the difference of two Sr

i

(Note that the nibbles are indexed beginning with
zero subscript and ending with seven, and the zero-
indexed nibble is the rightmost one)

LBlock is a lightweight block cipher with 64-bit
block length and 80-bit key length [3]. Its structure is
a generalization of a Feistel structure with 32 rounds.
It can be implemented efficiently both in hardware
and software. The iterative round function F consists
of three basic functions: (1) add round key by XOR,
(2) confusion function by S-Boxes, and (3) diffusion
function by permutation and rotation. LBlock’s al-
gorithm uses 4-bit S-Boxes Si, i = 0, 1, . . . , 9; where
Si, i = 0, 1, . . . , 7 are used in the round functions and
S-Boxes S8 and S9 are used in the key schedule. Its
round function is depicted in Figure 3.

Figure 3. Round function of LBlock.

4 Improved Impossible Differential
Cryptanalysis on LBlock

S-Boxes used in an algorithm are so effective in the
security against cryptanalyses. After studying differ-

ential distribution tables of the S-Boxes of LBlock,
Si, i = 0, 1, . . . , 7 we found a property common among
them:

Property 2 For the SBoxes used in the LBlock’s
algorithm, the probability of generating a specific
output difference from an input difference is 2(−1.4);
and for each possible input pair and output difference,
there are on average 21.4 key value.

4.1 Impossible Differential characteristic

We use the 14-round impossible differential character-
istic as our attack’s distinguisher [10]. This character-
istic is as follows (see Figure 5 in the Appendix):

(0000, 0000, 0000, a000) −→ (0000, 0b00, 0000, 0000)
Where a, b ∈ {0, 1}4\{0}4 are two non-zero nibbles.

We add five rounds to the plaintext side and four
rounds to the ciphertext side of the characteristic and
propose our attack on 23-round LBlock (Figure 4).

4.2 Separating Target Key Space into
Subspaces

There are eighteen cancellations during the attack;
and therefore, we separate target key bits into eighteen
groups. The groups gi, i = 1, 2, 3, . . . , 18 and their cor-
responding conditions are demonstrated in Table 2.
We find key values of each group, committing the cor-
responding cancellation, and discard the combinations
of these keys values from the target key space.

4.3 Pre-computation

For Si, i = 0, 1, . . . , 7 we form the tables Ai, i =
0, 1, . . . , 7 indexed by (x1, x2,∆y). For all possible val-
ues of (x1, x2,∆y), we find key values which result
specific values for ∆y = [Si(x1⊕ k)⊕Si(x2⊕ k)], i =
0, 1, . . . , 7; and put them in the corresponding rows
of Ai, i = 0, 1, . . . , 7. Also, for 18 groups of key bits,
we form tables Ui, i = 1, 2, 3, . . . , 18 consisted of flags
corresponding to the possible values for the key bits
in each group.

4.4 Key Recovery

The key recovery procedure is organized as the follow-
ing steps:

Step 1 (Choosing plaintexts). Take 2n structures of
the form (b1|a1|b2|a2)|(b3|
b4|b5|a3)|(b6|b7|b8|b9)|(b10|b11|b12|a4)) where ai, i =
1, 2, 3, 4 , are 4-bit fixed constants, and each bi, i =
1, 2, 3, . . . , 12 takes all 24 possible values for a nibble.
Almost all the chosen pairs of each structure have dif-
ferential form of ((∗|0|∗|0)|(∗|∗|∗0)|(∗|∗|∗|∗)|(∗|∗|∗0)),
where “∗”presents a non-zero 4-bit value. Each struc-

ISeCure



78 Accelerating Impossible Differential Cryptanalysis and its Application on LBlock — A. Khalesi et al.

Table 2. Conditions of the Cancellations and Corresponding Groups of Key Bits.

NO. Condition Corresponding group of key bits

1 S1(L0
1 ⊕K1

1 )⊕ S1(L′01 ⊕K1
1 ) = ∆R0

6 g1 = {K1
1}

2 S3(L0
3 ⊕K1

3 )⊕ S3(L′03 ⊕K1
3 ) = ∆R0

7 g2 = {K1
3}

3 S2(L0
2 ⊕K1

2 )⊕ S2(L′02 ⊕K1
2 ) = ∆R0

1 g3 = {K1
2}

4 S5(L0
5 ⊕K1

5 )⊕ S5(L′05 ⊕K1
5 ) = ∆R0

2 g4 = {K1
5}

5 S5(L1
5 ⊕K2

5 )⊕ S5(L′15 ⊕K2
5 ) = ∆R1

2 g5 = {K1
7 ,K

2
5}

6 S7(L1
7 ⊕K2

7 )⊕ S7(L′17 ⊕K2
7 ) = ∆R1

3 g6 = {K1
6 ,K

2
7}

7 S6(L1
6 ⊕K2

6 )⊕ S6(L′16 ⊕K2
7 ) = ∆R1

5 g7 = {K1
4 ,K

2
6}

8 S1(L2
1 ⊕K3

1 )⊕ S1(L′21 ⊕K3
1 ) = ∆R2

6 g8 = {K1
2 ,K

2
3 ,K

3
1}

9 S3(L2
3 ⊕K3

3 )⊕ S3(L′13 ⊕K3
3 ) = ∆R2

7 g9 = {K1
0 ,K

2
2 ,K

3
3}

10 S7(L3
7 ⊕K4

7 )⊕ S7(L′37 ⊕K4
7 ) = ∆R3

3 g10 = {K1
7 ,K

1
5 ,K

2
4 ,K

3
6 ,K

4
7}

11 S3(L4
3 ⊕K5

3 )⊕ S3(L′43 ⊕K5
3 ) = ∆R4

7 g11 = {K1
1 ,K

1
2 ,K

1
3 ,K

1
7 ,K

2
1 ,K

2
3 ,K

3
0 ,K

4
2 ,K

5
3}

12 S0(L22
0 ⊕K23

0 )⊕ S0(L′220 ⊕K23
0 ) = ∆L23

2 g12 = {K23
0 }

13 S5(L22
5 ⊕K23

5 )⊕ S5(L′225 ⊕K23
5 ) = ∆L23

4 g13 = {K23
5 }

14 S6(L22
6 ⊕K23

6 )⊕ S6(L′226 ⊕K23
6 ) = ∆L23

7 g14 = {K23
6 }

15 S1(L21
1 ⊕K22

1 )⊕ S1(L′211 ⊕K22
1 ) = ∆L22

0 g15 = {K23
2 ,K22

1 }

16 S4(L21
4 ⊕K22

4 )⊕ S4(L′214 ⊕K22
4 ) = ∆L22

6 g16 = {K23
4 ,K22

4 }

17 S3(L20
3 ⊕K21

3 )⊕ S3(L′203 ⊕K21
3 ) = ∆L21

1 g17 = {K23
3 ,K22

7 ,K21
3 }

18 S2(L19
2 ⊕K20

2 )⊕ S2(L′192 ⊕K20
2 ) = ∆L20

3 g18 = {K23
1 ,K23

4 ,K22
6 ,K21

5 ,K20
2 }

ture contains 248 plaintexts and about 295 plaintext
pairs with the desired differential form. So, by taking
2n structures, we have 2n+95 plaintext pairs with the
specified difference in the plaintext side at the end of
this step.

Step 2 (Filtering by ciphertext side). Encrypt 2n+48

plaintexts and calculate the ciphertext differential val-
ues of the 2n+95 chosen pairs. Keep the pairs which
their ciphertext difference comply with ((∗|∗|0|∗)|(∗|∗
|00)|(0| ∗ | ∗ |0)|(0|0|0∗)). The probability of this con-
dition is almost 2−32; and 2n+95−32 = 2n+63 pairs
pass this filter. The complexity of this step is 2n+48

23-round encryption.

Step 3. According to property 2, some input differ-
ences to the S-Boxes of the algorithm cannot lead to
some specific output differences. Using this property,
before testing the key values on each one of 2n+63 pair,
we can check if the pair can satisfy the cancellations
or not, by using differential distribution tables of the
S-Boxes.

For a chosen pair (P, P ′) , Cancellation 1 occurs

if S1(L0
1 ⊕K1

1 )⊕ S1(L′
0
1 ⊕K1

1 = ∆R0
6 . Refer to the

differential distribution table of S-Box S1 with ∆L0
1

as the differential input to check if an input pair with
such difference can lead to the differential output ∆R0

6

or not. According to the Property 2, 2n+63 × 2−1.4

pairs can satisfy cancellation 1; and after this filtration,
2n+61.6 pairs survive. Details of filtration for the other
cancellations are given in Table 3.

For each one of the 2n+42 survived pairs repeat the
following steps.

Step 4 (Cancellations 1, 2, 3, 4, 12, 13, 14). The
key values of groups 1, 2, 3, 4, 12, 13 and 14 can
be determined by referring to the tables A1,A3, A2,
A5, A0, A5, and A6, respectively (since we know the
input pair values and the desired output difference of
the corresponding F-functions). Set the flags of the
obtained key values for the cancellations 1, 2, 3, 4, 12,
13, and 14 in tables U1, U2, U3, U4, U12, U13, and U14,
respectively. This step contains (7+(7×21.4)) memory
accesses to find the key values and setting the flags.

Step 5 (Cancellations 5, 10, 11). In step 3, we have
filtered the differential pairs, using the differential
distribution tables of the S-Boxes corresponding to
cancellations 1-18, except 5, 10, and 11. This filtration
was possible since the differential input and output
of those cancellations were known having the values
of the plaintexts and ciphertexts (Table 3). However,
since either the differential input or output of S-Boxes
corresponding to cancellations 5, 10, and 11 is ∆L1

5

(Table 4) which is dependent to the subkey K1
7 , we

put off verification for these cancellations until we
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Table 3. Details of step 3

Cancellation
NO.

Corresponding
S-Box

Diff. Input and
Output

Equivalent Diff.
Input and Output

Complexity
(memory access)

No. of Survived
Pairs

1 S1 (∆L0
1,∆R0

6) (∆L0
1,∆R0

6) 2n+63 2n+61.6

2 S3 (∆L0
3,∆R0

7) (∆L0
3,∆R0

7) 2n+61.6 2n+60.2

3 S2 (∆L0
2,∆R0

1) (∆L0
2,∆R0

1) 2n+60.2 2n+58.8

4 S5 (∆L0
5,∆R0

2) (∆L0
5,∆R0

2) 2n+58.8 2n+57.4

6 S7 (∆L1
7,∆R1

3) (∆L0
5,∆R0

3) 2n+57.4 2n+56

7 S6 (∆L1
6,∆R1

5) (∆L0
4,∆R0

5) 2n+56 2n+54.6

8 S1 (∆L2
1,∆R2

6) (∆L0
7,∆R0

4) 2n+54.6 2n+53.2

9 S3 (∆L2
3,∆R2

7) (∆L0
1,∆R0

5) 2n+53.2 2n+51.8

12 S0 (∆R23
0 ,∆L23

2 ) (∆R23
0 ,∆L23

2 ) 2n+51.8 2n+50.4

13 S5 (∆R23
5 ,∆L23

4 ) (∆R23
5 ,∆L23

4 ) 2n+50.4 2n+49

14 S6 (∆R23
6 ,∆L23

7 ) (∆R23
6 ,∆L23

7 ) 2n+49 2n+47.6

15 S1 (∆L21
1 ,∆L22

0 ) (∆L23
3 ,∆R23

0 ) 2n+47.6 2n+46.2

16 S4 (∆L21
4 ,∆L22

6 ) (∆L23
6 ,∆R23

6 ) 2n+46.2 2n+44.8

17 S3 (∆L20
3 ,∆L21

1 ) (∆L23
5 ,∆R23

3 ) 2n+44.8 2n+43.4

18 S2 (∆L19
2 ,∆L20

3 ) (∆L23
6 ,∆R23

5 ) 2n+43.4 2n+42

Table 4. Differential input and output of the S-Boxes corre-

sponding to the cancellations 5, 10, and 11.

Cancellation

NO.

Corresponding

S-Box

Differential

Input and
Output

Equivalent
Differential

Input and

Output

5 S5 (∆L1
5,∆R1

2) (∆L1
5,∆L0

2)

10 S7 (∆L3
7,∆R3

3) (∆L1
5,∆L0

1)

11 S3 (∆L4
3,∆R4

7) (∆L0
7,∆L1

5)

guess the values for K1
7 in this step. For 24 possible

values ofK1
7 , calculate 24 values of (L1

5, L
′1
5). Check the

differential distribution table of S-Boxes S5, S7 and S3

for cancellations 5, 10 and 11, respectively; and discard
the values of K1

7 that their corresponding values in
the differential distribution tables are zero. According
to property 2, the probability of surviving from these
filtrations is (2−1.4)3 = 2−4.2; and 24 × 2−4.2 = 2−0.2

values of K1
7 pass this step. This step contains (22)4

F-function and 24 + 22.6 + 21.2 memory accesses.

Step 6 (Cancellation 5). For 2−0.2 possible values

of K1
7 , calculate 2−0.2 values of (L1

5, L
′1
5). Refer to the

(L1
5, L
′1
5,∆R

1
2)th row of table A5 to find the values of

K2
5 . Set the flags of the achieved values for (K1

7 |K2
5 )

in table U5. This step contains 2× 2−0.2 F-function
and (2−0.2 + 21.2) memory accesses.

Step 7 (Cancellation 6). For 24 possible values

of K1
6 , calculate 24 values of (L1

7, L
′1
7). Refer to the

(L1
7, L
′1
7,∆R

1
3)th row of table A7 to find the values of

K2
7 . Set the flags of the achieved values for (K1

6 |K2
7 )

in table U6. This step contains 2× 24 F-function and
(24 + 25.4) memory accesses.

Step 8 (Cancellation 7). For 24 possible values

of K1
4 , calculate 24 values of (L1

6, L
′1
6). Refer to the

(L1
6, L
′1
6,∆R

1
5)th row of table A6 to find the values of

K2
6 . Set the flags of the achieved values for (K1

4 |K2
6 )

in table U7. This step contains 2× 24 F-function and
(24 + 25.4) memory accesses.

Step 9 (Cancellation 8). For 21.4 possible val-
ues of K1

2 from table U3, and 24 possible values of

K2
3 , calculate 25.4 values of (L2

1, L
′2
1). Refer to the

(L2
1, L
′2
1,∆R

2
6)th row of table A1 to find the val-

ues of K3
1 . Set the flags of the achieved values for

(K1
2 |K2

3 |K3
1 ) in table U8. This step contains 2× 25.4

F-function and (25.4 + 26.8) memory accesses.

Step 10 (Cancellation 9). For 28 possible values of

K1
0 |K2

2 , calculate 28 values of (L2
3, L
′2
3). Refer to the

(L2
3, L
′2
3,∆R

2
7)th row of table A3 to find the values of

K3
3 . Set the flags of the achieved values for K1

0 |K2
2 |K3

3

in table U9. This step contains 2× 28 F-function and
(28 + 29.4) memory accesses.

Step 11 (Cancellation 10). For 2−0.2 possible values
of K1

7 from step 5, 21.4 values of K1
5 in table U4, and

28 possible values of K2
4 |K3

6 , calculate 29.2 values of

(L3
7, L
′3
7). Refer to the (L3

7, L
′3
7,∆R

0
1)th row of tableA7

to find the values of K4
7 . Set the flags of the achieved
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Figure 4. Round function of LBlock. White boxes represent
4-bit zero difference; black boxes present 4-bit non-zero dif-

ferences; boxes containing question mark present 4-bit either

zero or non-zero differences; and boxes containing black circle
show the locations of the cancellations.

values for K1
7 |K1

5 |K2
4 |K3

6 |K4
7 in table U10. This step

contains 2×29.2 F-function and (29.2 +210.6) memory
accesses.

Step 12 (Cancellation 11). According to the key
schedule, the most significant bit of K4

2 is equal to
the least significant bit of K1

1 . Also, the two least
significant bits of K3

0 are equal to the two most sig-
nificant bits of K1

5 . Utilizing these relations among
subkeys bits, for 21.4 values of K1

3 in table U2, 21.4

values of K1
2 in table U3, 21.4 values of K1

1 in table
U1, 23.35 values of K4

2 using table U1, 22.7 values of
K3

0 using table U4, and 28 possible values of K2
3 |K2

1 ,

calculate 218.25 values of (L4
3, L
′4
3). For 2−0.2 possible

values of K1
7 from step 5, calculate 2−0.2 possible val-

ues of ∆R4
7. For 218.25×2−0.2 = 218.05 possible values

of (L4
3, L
′4
3,∆R

4
7), refer to the (L4

3, L
′4
3,∆R

4
7)th row of

table A3 to find the values of K5
3 . Set the flags of the

achieved values for K1
7 |K1

3 |K1
2 |K1

1 |K2
3 |K2

1 |K3
0 |K4

2 |K5
3

in table U11. This step contains 2 × (218.25 + 2−0.2)
F-function and (218.05 + 219.45) memory accesses.

Step 13 (Cancellations 15). For 24 possible values

of K23
2 , calculate 24 values of (L21

1 , L
′21
1 ). Refer to

the (L21
1 , L

′21
1 ,∆L

22
0 )th row of table A1 to find the

values of K22
1 . Set the flags of the achieved values

for (K23
2 |K22

1 ) in table U15. This step contains 2× 24

F-function and (24 + 25.4) memory accesses.

Step 14 (Cancellation 16). For 24 possible values

of K23
4 , calculate 24 values of (L21

4 , L
′21
4 ). Refer to

the (L21
4 , L

′21
4 ,∆L

22
6 )th row of table A4 to find the

values of K22
4 . Set the flags of the achieved values

for (K23
4 |K22

4 ) in table U16. This step contains 2× 24

F-function and (24 + 25.4) memory accesses.

Step 15 (Cancellation 17). For 28 possible values

of K23
3 |K22

7 , calculate 28 values of (L20
3 , L

′20
3 ). Refer

to the (L20
3 , L

′20
3 ,∆L

21
1 )th row of table A3 to find the

values of K21
3 . Set the flags of the achieved values for

K23
3 |K22

7 |K21
3 in table U17. This step contains 2× 28

F-function and (28 + 29.4) memory accesses.

Step 16 (Cancellation 18). For 216 possible values of

K23
1 |K23

4 |K22
6 |K21

5 , calculate 216 values of (L19
2 , L

′19
2 ).

Refer to the (L19
2 , L

′19
2 ,∆L

20
3 )th row of table A2 to

find the values of K20
2 . Set the flags of the achieved

values for K23
1 |K23

4 |K22
6 |K21

5 |K20
2 in table U18. This

step contains 2 × 216 F-function and (216 + 217.4)
memory accesses.

Now, we have the key values for 18 cancellations in
tables ; and the combinations of these key values are
the incorrect keys that should be eliminated from the
candidate key space.

Step 17 (Combining the results). In this step, we
combine the achieved results stored in tables Ui, i =
1, 2, . . . , 17, 18 to find the incorrect key values and
eliminate them. Algorithm 1 shows an efficient method
for this purpose. In this algorithm, we use the redun-
dancy of the key schedule to reduce the number of
times needed to access the tables. In this way, for
a chosen combination of subkeys values from tables
U1Uk, k = 1, 2, . . . , 17 that their corresponding flags
are set, we just check the flags of the subkeys val-
ues in table U(k+1) that they comply with the chosen
combination according to the redundancy of the key
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schedule. If their flags are set, they will come to a new
combination for being discarded from the target key
space.

For instance, for the values of the subkey in g1 =
K1

1 , first we chose those that their flags are set in U1.
Then, for each one of the chosen subkey values, we
just check the flags of the subkey values of g2 − g1g2
in table U2; where gigj presents the key bits common
between gi and gj . In this way, if g1 and g2 have any
bit in common, we just check the flags of the values
in U2 that they comply with the chosen value from
U1 in terms of the chosen value for the common bits
from U1. Generalizing this method for accessing the

Algorithm 1 Eliminating the combinations of the
achieved results in tables Ui, i = 1, . . . , 18 from target
key space.

for 2(n+42) pairs do
for the subkey values in g1 do

if the flag is set in U1 then

for the the subkey values in g2 − g1g2 do
if the flag is set in U2 then

for the the subkey values in g3 − g1g3 − g2g3
do

if the flag is set in U3 then
..
.
for the the subkey values in g18−g1g18−
g2g18 − g3g18 − . . . g17g18 do

if the flag is set in U18 then
eliminate the 73-bit key value from
the target key space

end if

end for
...

end if

end for
end if

end for

end if
end for

end for

table U(k+1) for a chosen combination from tables
U1 . . . Uk, k = 1, 2, . . . , 17, we minimize the time com-
plexity of this step by using the redundancy of the
key schedule. In other word, we do not access tables
Ui, i = 1, 2, 3, . . . , 18 to check the flags of the subkeys
values that cannot be correct according to the key
schedule; and reduce the time complexity of this step
in this way. Considering the redundancy of the key
schedule, there are 273 candidates for the key value
in tables Ui, i = 1, . . . , 18, for being eliminated from
target key space [10]. Among these 273 values, we just
pick those that their corresponding flags are set in
tables Ui, i = 1, . . . , 18. The probability of this condi-
tion being true for each key value is 2(15(−2.6)+3(−4)) =
2(−51), where 2(−2.6) is the probability for each one
of the 15 conditions 1, 2, . . . , 18, excluding conditions
5,10 and 11, and 2(−4) is the probability for each one of

the conditions 5, 10, and 11 holding true . So, the time
complexity of this step is 2(n+42)×273×2(−51)×19 ∼=
2(n+68.2) memory accesses (18 memory accesses for
tables Ui, i = 1, . . . , 18, and one memory access for
eliminating the incorrect key value).

4.5 Complexity

Since the attack contains 18 × 4 = 72 bits sieving,
condition bits, the probability of being chosen for
each key value after studying each pair is 2−72. So,
the probability of not being chosen for each key value
after studying each pair is (1 − 2−72). The number
of information-key-bits is 73 [10], and after studying
m pairs, N = 273(1 − 2−72)m key values remain in
the target key space. Putting m = 274, the number
of remained key values is N = 267.2; and we find the
correct key among the remained key by exhaustive
search. From m = 2n+63 = 274, n is 11; and the data
complexity of attack is 2n+48 = 259 chosen plaintexts.

Since we eliminate the incorrect key values from
the target key space, we need a memory of size 273 to
keep the whole possible values for the target key bits
and eliminate the incorrect values among them. So,
the memory complexity of the attack is 273; and sizes
of the other used memories are negligible.

The time complexities of the attack’s steps are indi-
cated in Table 5. Dominant parts of time complexity
refer to steps 3 and 17. Putting n = 11, the time com-
plexity of attack is equivalent to (211+65 + 211+68.2)×
(
1

8
× 1

23
) = 271.8 23-round encryption.

5 Conclusion

In this paper, we presented a new method for impos-
sible differential cryptanalysis, based on separating
target key space into subspaces. To this aim, we search
the subspaces separately; then, we extend the combi-
nations of the results to the whole target key space.
We applied this method on 23 rounds of LBlock. The
presented cryptanalysis requires 259 chosen plaintexts
and the time complexity is equivalent to 271.8 encryp-
tions, which is the best achieved results to the best of
our knowledge. The achieved improvement is indepen-
dent to those that are proposed so far; and studying
their superposition property may lead to more efficient
impossible differential attacks. Moreover, despite the
fact that the proposed method does not necessarily
lead to the most efficient impossible differential attack
for all block cipher algorithms, its consideration is im-
portant while evaluating the security of an algorithm
against this cryptanalysis method.
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Table 5. Impossible differential cryptanalysis of 23-round LBlock

Step No. Target Group Target Key Bits
No. of Survived Key Values

per Pair
Time Complexity

2 None 2n+48 23-round encryption

3 None 2n+65 memory accesses

1 K1
1 21.4

2 K1
3 21.4

3 K1
2 21.4

4 4 K1
5 21.4 2n+42 × 7(1 + 21.4) memory accesses

12 K23
0 21.4

13 K23
5 21.4

14 K23
6 21.4

5 5,10,11 K1
7 2−0.2

2n+42 × 2× 24 F-function

2n+42 × (24 + 22.6 + 21.2) memory accesses

6 5
K1

7 2−0.2 2n+42 × 2× 2−0.2 F-function

K2
5 21.4 2n+42 × (2−0.2 + 21.2) memory accesses

7 6
K1

6 24 2n+42 × 2× 24 F-function

K2
7 21.4 2n+42 × (24 + 25.4) memory accesses

8 7
K1

4 24 2n+42 × 2× 24 F-function

K2
6 21.4 2n+42 × (24 + 25.4) memory accesses

K1
2 21.4 2n+42 × 2× 25.4 F-function

9 8 K2
3 24 2n+42 × (25.4 + 26.8) memory accesses

K3
1 21.4

K1
0 24 2n+42 × 2× 28 F-function

10 9 K2
2 24 2n+42 × (28 + 29.4) memory accesses

K3
3 2−0.2

K1
7 21.4

K1
5 24 2n+42 × 2× 29.2 F-function

11 10 K2
4 24

K3
6 24 2n+42 × (29.2 + 210.6) memory accesses

K4
7 21.4

K1
7 2−0.2

K1
3 21.4

K1
2 21.4

K1
1 21.4 2n+42 × 2× 218.25 F-function

12 11 K2
3 24

K2
1 24 2n+42 × (218.05 + 219.45) memory accesses

K3
0 24

K4
2 24

K5
3 21.4

13 15
K23

2 24 2n+42 × 2× 24 F-function

K22
1 21.4 2n+42 × (24 + 25.4) memory accesses

14 16
K23

4 24 2n+42 × 2× 24 F-function

K22
4 21.4 2n+42 × (24 + 25.4) memory accesses

K23
3 24 2n+42 × 2× 28 F-function

15 17 K22
7 24 2n+42 × (28 + 29.4) memory accesses

K21
3 21.4

K23
1 24

K23
4 24 2n+42 × 2× 216 F-function

16 18 K22
6 24

K21
5 24 2n+42 × (216 + 217.4) memory accesses

K20
2 21.4

17 None 2n+42 × 273 × 2−51 × 19 = 2n+68.2
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Figure 5. 14-round impossible differential characteristic. White boxes represent 4-bit zero difference; black boxes represent 4-bit
non-zero differences; and boxes containing question mark represent 4-bit either zero or non-zero differences.

ISeCure


	1 Introduction
	1.1 Motivation, Contribution and Organization

	2 Impossible Differential Cryptanalysis and the New Method
	2.1 Impossible Differential Cryptanalysis
	2.2 The New Method

	3 Brief Description of LBlock
	4 Improved Impossible Differential Cryptanalysis on LBlock
	4.1 Impossible Differential characteristic
	4.2 Separating Target Key Space into Subspaces
	4.3 Pre-computation
	4.4 Key Recovery
	4.5 Complexity

	5 Conclusion

