
ISeCure
The ISC Int'l Journal of
Information Security

January 2016, Volume 8, Number 1 (pp. 53–60)

http://www.isecure-journal.org

Self Authentication Path Insertion in FPGA-basedDesign Flow for

Tamper-resistant Purpose

Sharareh Zamanzadeh 1,∗, and Ali Jahanian 1

1Computer Science and Engineering Department, Shahid Beheshti University, Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: 15 August 2015

First Revised: 27 November 2015

Last Revised: 21 December 2015

Accepted: 31 December 2015

Published Online: 4 January 2016

Keywords:
FPGA, Hardware Security, IP

Protection, Security Path.

A B S T R A C T

FPGA platforms have been widely used in many modern digital applications

due to their low prototyping cost, short time-to-market, and flexibility.

Field-programmability of FPGA bitstream has made it a flexible and

easy-to-use platform. However, access to the bitstream degraded the security of

FPGA IPs because there is no efficient method to authenticate the originality

of a bitstream by the FPGA programmer. The issue of secure transmission of

configuration information to the FPGAs is of paramount importance to both

users and IP providers. In this paper, we presented a “Self Authentication”

methodology in which the originality of sub-components in the bitstream is

authenticated in parallel with the intrinsic operation of the design. In the case

of discovering violation, the normal data flow is obfuscated and the circuit

would be locked. Experimental results show that this methodology considerably

improves the IP security against malicious updates with reasonable overheads.

© 2016 ISC. All rights reserved.

1 Introduction

F ield-Programmable Gate Arrays (FPGAs) offer
flexibility in high-performance computing. FPGAs

are grown in capacity and complexity while they are
provided with lower prototyping cost and less time-
to-market. These merits make them suitable for all
application ranges from consumer products to military
systems. As FPGAs have become larger and more
capable, the value of the IP of application designs are
grown. However, there is not a good balance between
security measures and the value of the information
being protected. This fact motivates IP providers to
invest in built-in security functions [1].

FPGAs are programmed using a binary file called
“configuration bitstream”. The generated bitstream is

∗ Corresponding author.

Email addresses: sh zamanzadeh@sbu.ac.ir (S. Zamanzadeh),
jahanian@sbu.ac.ir (A. Jahanian)

ISSN: 2008-2045 © 2016 ISC. All rights reserved.

a software form of the hardware design loaded in the
FPGA. In fact, it is qualitatively much like micropro-
cessor software. Despite advantages like design sim-
plicity, configurability and short time-to-market, bit-
stream is susceptible to all the same security concerns
that surround software, including design tampering or
reverse engineering, IP piracy or Trojan insertion [2].

Configuration bitstream contains the logic and con-
nectivity of the design and it should be transferred
from the PC where the CAD tool is running to the
FPGA. The syntax and semantic of these files are com-
mercially confidential and there is little information
about their details in the public domain. For several
years, this kind of obfuscation, known as obscurity,
was the main mechanism to keep the programmed
design secure. However, recently some papers such
as [3] proposed an easy process to decompile the bit-
stream of modern FPGA families to a textual netlist
description in a short time. Reverse engineering of the
bitstream which is performed in [3] leads to netlist

ISeCure

54 Self Authentication Path Insertion in FPGA-based Design — S. Zamanzadeh and A. Jahanian

extraction and makes the whole design information
available to attacker and also it is the introduction to
IP theft or malicious design tampering.

There are also some reports of directly inserted Tro-
jans in the configuration bitstream [2], [4]. In [2], a
ring oscillator circuit is inserted in to the bitstream in
order to decreas the expected lifetime by increasing
the chip operation temperature. On the other hand,
Trojan insertion in [4] is more intelligent and it is per-
formed intentionally to open a back door. This leaked
information would be used to break the encryption
algorithms like AES and 3DES that are embedded in
the configuration bitstream.

Since bitstream should be transferred as IP through
global network or in the commercial market, the em-
bedded netlist is threatened with tampering or IP
theft. Although, encryption techniques are used as
secure bitstream transferring, there are some gaps
in security domain which is provided by encryption
techniques and bitstream encryption also has its own
security challenges as follows:

• There are serious security and technological prob-
lems in key storage and key transmission if the
bitstream is encrypted because the attacker has
full access to bitstream and body of the FPGA. In
more details, bitstream decryption key should be
programmed by the IP provider in a non-volatile
memory inside the FPGA but modern FPGAs
are SRAM-based and have no E2PROM.

• Encrypting and decrypting the bitstream has
overheads at both IP provider side and user side
that cannot be easily tolerated, especially for run-
time reconfiguration applications. FPGAs with
built in encryption are expensive and power-
hungry for many embedded applications [3, 5].

• It has been reported that the built in encryp-
tion has been flawed by side-channel analysis
attacks [6–8]. It is worth noting that there are
many families with numerous deployed FPGAs
which support bitstream encryption [2], but they
cannot be used in many of the applications. An
important point is that encryption is just a well-
known method to improve bitstream confidential-
ity [6, 7], but it does not provide authentication
and integrity for the design [9] during the oper-
ation time. Any bitstream manipulation is not
necessarily a meaningful Trojan and tampered
bitstream may decrypt to nonsense configuration
[9].

• Bitstream encryption methods provides a secure
cube for shielded message transmission.In other
word, they are used when a protected bitstream
is going to be transferred and programmed in the
FPGA, however protecting IPs from the evil de-

signers who misuse the bought IPs or immoral
attackers in the foundry and IP market is a dif-
ferent security aspect.

In this paper, we have set up a built-in authentica-
tion path in parallel with the data and control path of
the design to efficiently authenticate the originality of
the IP, in the form of bitstream for both IP providers
and end users. In this self-authentication methodol-
ogy, the functionality of sub-components is monitored
in parallel with the intrinsic operation of the design.
In the case of discovering violation, the normal data
flow is blocked and the circuit would be locked. This
path is composed of two main elements (authentica-
tion and blocking modules). The main contributions
of this research are as follows:

• Proposing the semantic of self-authentication
path for FPGA-based designs, to prevent from
runtime functional-tampering.

• Automating the self-authentication path inser-
tion process to make FPGA CAD tools include
authentication plug-in option.

The rest of the paper is organized as follows. Threat
model is discussed in Section 2. Section 3 3 describes
the proposed methodology, including authentication
path architecture and the security flow that these ele-
ments have made. Experimental results are presented
in Section 4. Finally, Section 5 concludes the paper.

2 Threat Model

In modern EDA business, FPGAs are widely used in
low circulation products and security of the FPGA at
runtime is very important for designer, service provider
and end customer. Moreover, faults of the EDA tool
and FPGA platform can be found during the test pro-
cess but runtime attacks can not be controlled by the
designer. Besides there is no rigid boundary between
the vulnerabilities of FPGA EDA tools and ASIC.
Also, the security issues associated with the design
and manufacture of the base array are similar to those
of other semiconductor devices. This paper is focused
on the security concerns that comes from the need
to protect the application design in different stages
of bitstream lifecycle especially in post-configuration
(runtime stage) [1] and [10].

Quick innovation, well design and professional sub-
circuits, spreading out the cost of design are the advan-
tages that cause IPs cores to become common practice
in semiconductor Industry in both aspects of FPGA
logic design and ASIC chip designs. IPs are presented
mostly in the form of bitstream and are transferred
among designers in plain text. The main targeted is-
sue in this paper is related to when the FPGA based
application is compiled into a bitstream and should
be transmitted into the FPGA base array or be deliv-

ISeCure

January 2016, Volume 8, Number 1 (pp. 53–60) 55

ered to the market as an IP-core. The bitstream may
be partially updated, or environmental faults might
be injected to the FPGA to tamper the programmed
bitstream. Also, it may be at the risk of malicious ma-
nipulation of designers who can alter the core by the
information obtained from reveres engineering.

In this paper, integrity and authentication of the
design on FPGA are considered rather than its confi-
dentiality. It is worth noting that the provided mech-
anism is not the superseded for the classic encryp-
tion /message authentication mechanisms, but is used
along with existing security techniques to compensate
for security weak points and provides balance the cost
benefit concerns of practical applications. Moreover,
Trojans that would change the functionality of the
design are studied in this defense mechanism. But
the alterations with the aim of physical damage (e.g.
pin manipulation) is not targeted. The opponents are
neither the IP designer nor IP provider, but competi-
tors or ill-wishers who are skillfull in circuit design
or the IP consumers. Also, there would be no compu-
tational, financial and temporal limitation for them.
The attackers may acquire unauthorized knowledge
(key, design ides), open back-door during bitstream
malicious manipulations. Also runtime malfunctions
such as environmental faults or tampers through run-
time reconfiguration.

In the proposed methodology, security path would
be inserted by the CAD tool automatically after place
and route phases and before bitstream generation. No
reported information would be saved from the secu-
rity path generating process by the CAD tool. Also,
the converting process for updating bitstream with se-
curity path would be carried out internally. No key is
applied as input to the self-authentication protection
mechanism, hence no key management mechanism is
necessary.

3 Proposed Methodology

As mentioned before, we proposed a new methodol-
ogy in which a new path (security path) is added to
regular ASIC design flow to improve the security of
IP/IC. Developing the security path in the design
makes it self-authenticated against the bitstream ma-
nipulations which will effect the functionality of the
circuit. The proposed security path is an extra path,
parallel with data/control paths to authenticate the
configured circuit at runtime. The functionality of the
whole/some parts of the circuit will be obfuscated if
any violation is detected through the authentication
modules. This mechanism is implemented in VPR
CAD tool as a security plug-in phase. This phase is
added to VPR design flow after placement and routing
steps and before the final bitstream is being generated.
Figure 1 illustrates the authentication path concept

in abstract form.
r

C

t

so

rs

al

GA

EDA

he

Design

functions

Authentication

module

Obfuscation

module

Design

functions

Authentication

module

Obfuscation

module

Fig. 1.Conceptual view of Security path

Figure 1. Conceptual view of Security path.

As shown in Figure 1, authentication path consists
of two main parts (dark modules); Authentication
and obfuscation modules. Authentication modules
verify functionality of the design’s components. In
this methodology, functionality of the circuit will be
corrupted by the security path when authentication
module(s) discover any deviation. As it is illustrated
in the Figure 1, the authentication path is like a
chain with several sub-paths each of which verifies a
small part of the circuit. Each sub-path gets input
from the data path and applies on data path as well.
Obfuscation module is a junction for both data and
authentication path. In the case of violation detection,
the obfuscation modules will propagate faulty data
(opposite logic) through data flow. It is worth noting
that whenever authentication signal is activated it
would remain active until the FPGA is reconfigured
again.

It is worth noting that this approach does not have
any inconsistency with any other common security
solutions described at introduction section. This ap-
proach can be applied along with them as a supple-
mentary solution and/or individually as a superseded
solution. Moreover, in the proposed technique, the reg-
ularity of the FPGA architecture is kept. In the next
subsections the main tasks of authentication path are
explained in details.

3.1 Proposed Authentication Path
Architecture

The main functionality of authentication module
is checking the correctness of LUT functionality at
run time. In the proposed architecture, each LUT is
equipped with an individual authentication module.
LUT and its related authentication module built a
compound component by the name of security cell.
Authentication modules are programmable elements
which are programmed at configuration time; how-
ever, their bitstream is independent from LUTs. It
also means that authentication module is aware of
LUT’s function, its configuration bits are distinct
from the related LUT. In this proposed mechanism
we are focused on authentication detection rather
than correction, since in order to conceal the caused

ISeCure

56 Self Authentication Path Insertion in FPGA-based Design — S. Zamanzadeh and A. Jahanian

alteration, the attacker should modify bitstream in
such a way that bitstreams of authentication and
related LUT have consistent functionality. However,
this alteration is considerably hard. Therefore, it does
not matter which one (authentication module or the
LUT) is modified, alteration in any of them leads to
authentication detection.

Authentication module is a normal LUT that is
equipped with hardwired output that authenticates
the originality of the related LUT. It can be the same
size as corresponding LUT or a subset of it. In this
case, only a subset of LUT’s minterms can be verified.
It is worth noting that authentication LUTs can be
smaller than regular LUTs if they are prefabricated
with lower number inputs in FPGA array. It is possible
to have authentication modules of various sizes whose
distribution are adjusted based on statistical analysis
of security and implementation overhead tradeoff. In
this paper, we have implemented the architecture with
(n = m) since in this situation the merits and demerits
of proposed authentication mechanism (the security
path) would be assessed more clearly. However, statis-
tical analysis to include smaller-sized authentication
modules is going to be discussed in the further re-
search. Including smaller-sized authentication module
would bring a desired degradation in authentication
level but it would balance the costs with the value of
applications in which the FPGA would be used.

Input orders to security cell are specified with con-
figuration bits of connection blocks. These inputs are
fully (n = m) or partially (m < n) shared among LUT
and the authentication module; however, the order of
inputs for LUT and authentication module is different.
This feature enables us to have distinct bitstream in
LUT and its related authentication modules. Figure 2,
shows detail of authentication path architecture. Un-
like LUT, authentication module is not connected to
the channels but to the obfuscation cells.

Switch boxes are promoted to play the role of ob-
fuscation cells as well. They are triggered by the au-
thentication modules when a violation is found out.
Whenever switch boxes are triggered, they invert their
input logic values and put a faulty data on the chan-
nel. In other word, switch boxes transfer either true
data when the authentication signal is off, or inverted
data when the authentication signal is activated.

Switch boxes are suitable to work as obfuscation
modules. Since they realize the connections of wires
at intersection of a vertical and horizontal channel
and they are the main routing resources in the FP-
GAs. An important point is that any disordering in
net connections in switch boxes leads to the netlist
change and the created disarrangement would be prop-
agated throughout the chip. In the MUX-based FP-

(a)
Auth

Module

Security

Cell
n

m≤ n

n

1

Inputs

LUT2
n

2
m

Authentication

output

LUT output

SB

Fig. 2. Authentication path architecture

 Figure 2. Authentication path architecture.

GAs the connections in the switch boxes are imple-
mented through some multiplexers and some SRAM
cells provide value for the select-pins of these mul-
tiplexers. We have established our implementation
on the mux-based architecture which is a fundamen-
tal architecture for the modern FPGAs [11]. In order
to transform either “true data” or “inverted data”,
2-input multiplexers are put en route of outputs of
switch boxes. We call them obf Mux. All selection pins
of these multiplexers in a switch box come from one
SRAM cell that is configured by bitstream. Authenti-
cation signal changes the value stored in this cell when
the violation is occurred and the altered value is re-
mained unchanged until next reconfiguration process
of the FPGA array.

3.2 Proposed Design Flow

Figure 3 shows the overall CAD flow of implementing
our approach. Solid boxes represent the unmodified
steps in an standard FPGA CAD flow. The dotted
boxes are additional integrated steps. The dark gray
boxes show the name of CAD phases based on the VTR
Tool. The additional phases are labeled as Integrated.

The CAD flow (as shown in Figure 3) starts with
synthesizing of RTL design. ODIN phase converts a
Verilog Hardware Description Language (HDL) de-
sign into a flattened netlist consisting of logic gates
and black boxes that represent heterogeneous blocks.
Next, the ABC synthesis package is used to perform
technology independent logic optimization of each cir-
cuit and then each circuit is technology-mapped into
LUTs and flip flops. VPR then packs this netlist into
more coarse-grained logic blocks, places the circuit,
and routes it. Authentication modules are labeled as

ISeCure

January 2016, Volume 8, Number 1 (pp. 53–60) 57

in

to

he

to

th

Fig5. Security path insertion flow

Figure 3. Security path insertion flow.

illegal nodes for placement, thus VPR placement does
not place the main design functions on authentication
modules. When the VPR process has been finished
some output files would be provided, two of them are
used as input to the security path insertion phase. One
file describes the circuit’s routing while another one is
the post-synthesis netlist, which consists instantiated
modules of the primitives in the circuit such as LUTs,
Interconnects, IOs and etc.[12]. This post-synthesis
netlist just includes the main functions of the design
and it will be revised with the security path.

Security path requires some primitive modules that
do not exist in the primitive library. The primitive li-
brary is updated with the Verilog description of these
modules like: XOR, OR and NAND gates, special
multiplexer module to equip switch boxes with obfus-
cation capability. Security path insertion phase design
authentication functions for each authentication mod-
ule which is left vacant in placement phase. Next, the
authentication network should be inserted and also
this network should be connected to the switch boxes.
Although the architecture of authentication network
is pre-designed in FPGA architecture, the final Verilog
netlist which is used to perform functional simulation
should be updated with the special primitives and the
required netlist alteration to implement their connec-
tions. Figure 4 shows the security path algorithm.

In the following paragraphs, details of this algorithm
are described.

Step 1: The required input files are read and parsed.
Some new data structures are added to the traditional

Security Path Insertion Algorithm

Step1: Read routing output of VPR, primitive library file in

verilog and post-synthesis netlist output of VPR

Step2: Make FPGA Graph (netlist, channels, SBs)

Step3: Generate Auth Bitstream

Step4: Make auth-network

Step4-1: Aggregate-Authentication-CLB()

Step4-2: Aggregate-Authentication-SB()

Step4-3: Setting-Obfuscation-Module()

Step5: Update Post-synthesis

Figure 4. Security Path insertion algorithm

Tool. These Data structures are instantiated and get
value during parsing step.

Step 2: In this step a resource graph is generated
consisting of four matrixes, one represents the CLBs
(including security cells), one for switch boxes (obfus-
cation modules), and two of them show the channels
X and Y . LUTs and interconnects that are defined in
the input netlist (resources that are occupied for main
functions of the design) are mapped to this graph. In
this step, a top view is drawn to show mapping of the
design on the FPGA resources.

Step 3: For each LUT in the netlist file, an authen-
tication module is generated and it is placed to the
respective module.

Step 4: In this step, the primitive modules that make
authentication network are instantiated. They are also
connected to the netlist. Generating authentication
network has tree general subroutines that are intro-
duced as the following:

• Aggregate-Authentication-CLB(): In this
step, a single authentication signal is made
out of all authentication signals that are gen-
erated inside a CLB. This activity is done by
inserting some OR gates that receive authenti-
cation signals as inputs and finally generate a
single authentication signal for that CLB called
CLB authentication.

• Aggregate-Authentication-SB(): This func-
tion finds the CLBs that are neighbor with a
given switch box then their CLB authentication
signals are given to the inputs of some other
OR gates to form a single authentication called
SB authentication signal.

• Setting-Obfuscation-Module(): This func-
tion connects SB Authentications to the switch
boxes to provide the selection inputs of obf Mux
multiplexers.

Step 5: In this step the netlist file generated by the
VPR is updated with the security path instances and
the final post-synthesis netlist file is generated in

ISeCure

58 Self Authentication Path Insertion in FPGA-based Design — S. Zamanzadeh and A. Jahanian

Verilog format.

4 Experimental Results

The self-authenticate path mechanism is added to the
VTR framework 7. In this version, VPR tool generates
the Verilog and SDF files for the post-synthesized cir-
cuit. The Verilog file can be used to perform functional
simulation and the SDF file enables timing simulation
of the post-synthesized circuit. The Verilog file con-
tains instantiated modules of the primitives in the cir-
cuit. Actually the Verilog file represents the mapped
design on given FPGA architecture. This framework
runs on an Intel 2.7 GHZ Quad Core CPU with 4GB
RAM platform. The self-authentication path is imple-
mented on the single module designs provided by the
VTR frame work in .blif format files. Table 1, shows
the specifications of attempted benchmarks.

Table 1. Statistical characteristics of attempted benchmarks.

Benchmark CLB# LUT#
Nets# routed on

channels

c6288 11 x 11 586 1244

apex4 16 x 16 1262 2507

alu4 18 x 18 1522 3291

apex2 20 x 20 1878 3766

pdc 31 x 31 4575 10550

4.1 Security Improvement

Table 2, illustrates the security status that authenti-
cation path provides. It indicates 100% violation cov-
erage of the provided self-authentication path mecha-
nism, Our experimental scenario consists of 4 steps.
We start our test with very little amount of manip-
ulation size in the bitstream (1.5%) to test the ca-
pability of our mechanism strictly. We have applied
this amount of manipulation in the bitstreams with
two steps: distributed and locally. In the first step
we have changed one configuration bit in each LUTs
(distributed manipulation) and then in second step
this amount of bit changes is applied to some LUTs;
somehow roughly half of their configuration bits are
altered (localized manipulation). In the given architec-
ture, the size of all LUTs are equal and each LUT has
64 configurations bit. Therefore, to have distributed
alteration with 1.5% fault rate, each LUT should have
only one corrupted bit (1/64 = 1.5%). Also it is worth
noting that in above experiments, bits and LUTs in
above steps are randomly selected for fault insertion.
In the third step we have decreased the tamper size to
0.75% of bitstream. In the fourth step only one LUT
is altered, the LUT is selected randomly and roughly
50% of its configuration bits are altered.

In all tests the aggregated authentication signals
of CLBs and Switch boxes are monitored in the func-
tional simulation, to determine event times in which
the tamper is activated.

In Table 2, two criteria are measured to show the ob-
tained security level by authentication path insertion.

• Authentication coverage: column “Auth the num-
ber of times that tamper is activated and the out-
put vector is deviated from the original one. As it
is shown in all input test patterns and all bench-
marks with various fault amount insertions, no
correct output is generated whenever a tamper
is activated in the circuit.

• Hamming distance: column “HD shows the devia-
tion amount of output from the original one. The
user would notify the violation when there is an
extremely deviation among output vectors and
correct ones. It is possible to drive an extra out-
put pin for authentication output, to show if any
violation has been detected or not, however it im-
poses noticeable cost on circuit implementation.
Therefore, in the proposed mechanism, rather
than making an error output signal, we propa-
gated the discovered fault throughout the circuit
to make them discoverable rapidly and certainly.
In this case, greater distance between obfuscated
and correct output indicates better obfuscation.
However, it is safer if the correlation between the
corrupted and original outputs is minimized. In
this way attackers would face with the maximum
ambiguity to obtain knowledge about the obfusca-
tion behavior. Thus the best amount for distance
corruption would be HD=50% [13]. As shown in
the table, HD is very near to 50% when the fault
amount of the bitstream is more than 1%.

4.2 Overheads

As explained before, switch boxes inverts the cor-
rect logic and transmit it to the channel whenever
the authentication modules report deviation trough
SB authentication signal to the switch boxes. If each
channel of an FPGA has n tracks, it is acceptable to
imagine that in each channel n/2 of tracks are in same
direction also we assumed each track is unidirectional.
On the other hand, each switch box needs one inverter
(inv) and a multiplexer (m2x1) at its each output net
to perform obfuscation feature. Also, the selection pin
of these multiplexers are all connected to each other
and come from a latch, where the SB authentication
signal is saved. The area overhead percentage of ob-
fuscation feature in switch box would be: the area of
obfuscation feature for each output net divided by
the area of each connection in switch box. Equation 1
shows the area overhead calculation in one switch box.

ISeCure

January 2016, Volume 8, Number 1 (pp. 53–60) 59

Table 2. Experimental results in terms of security improvement

1.5% alteration 0.75% alteration 1 LUT only

Benchmark Distributed Localized HD Auth HD Auth Fault

HD Auth HD Auth Size

c6288 49 100 41 100 50 100 30 100 8.5e-4

apex4 31 100 31 100 31 100 0.5 100 4e-4

alu4 57 100 55 100 55 100 31 100 3e-4

apex2 75 100 75 100 75 100 42 100 2e-4

pdc 35 100 35 100 36 100 2 100 1e-4

Ave 49.5 100 48 100 49.5 100 21 100 <1%

SBAO =
2n× (AINV + AMUX2x1) + ALATCH

2n

2n× (AMUX4x1 + 2 ×ALATCH)
(1)

where

AINV = u(baseunit), AMUX2x1 = 4u,

ALATCH = 5u and AMUX2x1 = 10u (2)

therefore

SBAO =
1

4
+

1

(80 ∗ n2)
≈ 1/4 = 25% (3)

In the worst case where (n = m), authentication
module’s area is equal to an LUT size. However, be-
cause the adder, FF circuitry and output buffers is
unchanged and comprises roughly half the area, the
overall area of a standard LE increases by roughly
50% [14]. However, the (60% ,20%) of total area in
each FPGA is dedicated respectively to the Switch
Boxes and logic elements [15], therefore the total area
overhead is as shown in Equation 4.

AO = ((60% × total area)25%)

+ ((20% × total area) × 50%) (4)

As mentioned before, authentication modules are
working in parallel with the data path flow. The delay
of authentication modules is not effective in the delay
of the data flow. Also the obfuscation latch delay
does not affect in data path delay. Since there is
no difference in how many Nano second later the
functional obfuscation would take place. Thus, the
only affective element is the m2x1 which is en the
route of switch boxes outputs. This mux is on the way
of data path whatever original data or inverted one is
going to the output. Thus, the total delay overhead
would be equal to the delay caused by locking modules
on the critical nets in each benchmark. The delay
overhead is illustrated in Table 3.

In this table first column shows the benchmarks,
the second column SB# represents the number of
switch boxes that the critical path in each benchmark

Table 3. Delay overhead

Benchmark SB DO

c6288 89 21.80%

apex4 89 22.45%

alu4 101 26.37%

apex2 127 23.83%

pdc 165 24.75%

Average 23.84%

has passed. In each switch box the critical path has
passed from one locking module that its delay is 2.5E-
11 ns (k6 N10 40nm.xml). “DO shows the overhead
percentage that is implied to the critical path because
of lock modules.

The power consumption of locking logic can be es-
timated by SPICE simulation or mathematical power
analysis. Our analyses show that this part of power
consumption is very smaller than power overhead of
added LUT (the size of obfuscation module is equal
to the size of a mux2x1). Therefore, we extracted the
total power consumption of the benchmarks before
and after authentication path insertion which is re-
lated to the added LUTs. Table 4 compares the power
consumption of benchmarks before and after authen-
tication modules are inserted.

Table 4. Power overhead.

Benchmark
Before Auth.

Insertion (mW)

After Auth.

Insertion (mW)

Power

Overhead%

c6288 2.956 3.276 11%

apex4 7.382 8.219 11%

alu4 9.333 12.05 29%

apex2 10.95 11.33 4%

pdc 20.81 28.0 35%

Average 18%

ISeCure

60 Self Authentication Path Insertion in FPGA-based Design — S. Zamanzadeh and A. Jahanian

5 Conclusion

In this paper we proposed a self-authentication mech-
anism to authenticate functional units of the designs
at run time. This mechanism is implemented as an au-
thentication path in parallel with the data path which
is automatically added to the design by CAD tool,
right before bitstream is generated. The functionality
of the design is obfuscated if any violation is detected
in the circuit. This mechanism is self-oriented and
does not need key management protocol and storage
element. The security experimental results show that
there is 100% coverage for tampers which are affective
in the circuit functionality.

As a future contribution, it is possible to find a
reasonable tradeoff between area-power and delay
overheads and authentication coverage. Also, we are
working on an authentication-aware placement and
routing algorithms to confine authentication costs to
security required portion of the IPs.

References

[1] S. M. Trimberger, Jason J. Moore, “FPGA se-
curity: Motivations, features, and applications”,
Invited paper in Proceedings of the IEEE, Vol.
102, Issue 8, pp. 1248 - 1265, Aug. 2014.

[2] R. S. Chakraborty, I. Saha and A. Palchaudhuri,
“Hardware Trojan insertion by direct modifica-
tion of FPGA configuration bitstream”, In IEEE
Design and Test, Vol. 30 Issue 2, pp. 45-54, 2013.

[3] J. Note and E. Rannaud, “From the bitstream
to the netlist”, In proceedings of the 16th inter-
national ACM/SIGDA symposium on Field pro-
grammable gate arrays (FPGA’08), pp. 264, 2008.

[4] P. Swierczynski, M. Fyrbiak and C. Paar et al,
“FPGA Trojans through Detecting and Weakening
of Cryptographic Primitives”, In TCAD. pp. 1-
13, 2015.

[5] T. H. Vu and N, V. Cuong, “A framework for
secure remote updating of bitstream of runtime
reconfigurable embedded platforms”, In Commu-
nications and Electronics (ICCE), pp. 471 - 476,
2012.

[6] A. Moradi, A. Barenghi and C. Paar, “On the vul-
nerability of FPGA bitstream encryption against
power analysis attacks”, In ACM Conference on
Computer and Communications Security, pp. 111-
123, 2011.

[7] Y. Hori, T. katashita and A. Sasaki et. al, “Elec-
tromagnetic side-channel attack against 28-nm
FPGA device”, In Pre-proceedings of WISA, 2012.

[8] E. Mudler, P. Buysschaert and P. Delmotte, “Elec-
tromagnetic analysis attack on an FPGA imple-
mentation of an Elliptic curve cryptosystem”,
In Computer as a Tool (EUROCON), pp. 1879 -

1882, 2005.
[9] S. Trimberger, “Trusted design in FPGAs”, In

Proceedings of International of Design Automa-
tion Conference , pp. 5-8. 2007.

[10] S. Trimberger and J. Moore, “FPGA security:
From features to capabilities to trusted systems”,
In Proc. 51st Annual Design Automation Conf.,
2014.

[11] U. Farooq, H. Parvez, H. Mehrez, and Z. Mar-
rakchi, “Exploration of heterogeneous FPGA ar-
chitectures”, In International Journal of Recon-
figurable Computing , 2011 .

[12] J. Rose, J. Luu, and J.Goeders, “VTR 7.0: next
generation architecture and CAD system for FP-
GAs”, In ACM Transaction on Recongurable
Technology and Systems (TRETS), Vol. 7, No. 2,
2014.

[13] J. Rajendran, H. Zhang, R. Karri et al, “Fault
analysis-based logic encryption”, In IEEE Trans-
actions on computers, Vol. 64, No. 2, pp. 410-424,
2015.

[14] M. Hutton, D. Lewis, B. Pedersen, J. Schle-
icher, R. Yuan, G. Baeckler, A. Lee, R. Saini,
and H. Kim, “Fracturable FPGA logic ele-
ments”, Technical Report, Available on http://

www. altera. Com/literature/cp/cp-01006.

pdf, 2006.

[15] U. Farooq, Z. Marrakchi, H. Mehrez, “Tree-based
Heterogeneous FPGA Architectures”, Springer
2012.

Sharareh Zamanzadeh received
her B.S. degree in computer engi-
neering from Islamic Azad Univer-
sity, south Tehran Branch, Tehran,
Iran in 2004, and the M.Sc. degree in
computer System Architecture from
Amirkabir University of Technology,

Tehran, Iran in 2008. She is currently a Ph.D student
in computer system architecture at Shahid Beheshti
University. Her research interests are hardware secu-
rity and VLSI computer aided design.

Ali Jahanian received his B.S. de-
gree in computer engineering from
University of Tehran, Tehran, Iran
in 1996 and the M.S. and Ph.D. de-
grees in computer engineering from
Amirkabir University of Technology,
Tehran, Iran in 1998 and 2008, respec-

tively. He joined Shahid Beheshti University, Tehran,
Iran in 2008. His research interests are VLSI design
automation, hardware security and secure chip design.

ISeCure

http://www. altera. Com/literature/cp/cp-01006.pdf, 2006.
http://www. altera. Com/literature/cp/cp-01006.pdf, 2006.
http://www. altera. Com/literature/cp/cp-01006.pdf, 2006.

	1 Introduction
	2 Threat Model
	3 Proposed Methodology
	3.1 Proposed Authentication Path Architecture
	3.2 Proposed Design Flow

	4 Experimental Results
	4.1 Security Improvement
	4.2 Overheads

	5 Conclusion

