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A B S T R A C T

GGH class of public-key cryptosystems relies on computational problems based

on the closest vector problem (CVP) in lattices for their security. The subject

of lattice based cryptography is very active and there have recently been new

ideas that revolutionised the field. We present EEH, a GGH-Like public key

cryptosystem based on the Eisenstein integers Z[ζ3] where ζ3 is a primitive

cube root of unity. EEH applies representations of polynomials to the GGH

encryption scheme and we discuss its key size and parameters selection. We

also provide theoretical and experimental data to compare the security and

efficiency of EEH to GGH with comparable parameter sets and show that EEH

is an improvement over GGH in terms of security and efficiency.

© 2015 ISC. All rights reserved.

1 Introduction

L attice-based cryptographic structures are known
with their very strong security proofs based on

worst-case hardness and relatively efficient implemen-
tations for post-quantum cryptography which have
considerable active research area, as well as suitable
simplicity and great security against quantum com-
puters. We can roughly categorize lattice-based cryp-
tography into two groups:

• Theoretical work for providing a one way func-
tion.

• Applied work for using the properties to solve
more complex cryptographic affairs.

The theoretical researches aimed at bringing
lattice-based cryptography closer to applications.
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We can refer to [1, 2] for recent developments in this
area. In addition, for readers interested in practice,
we provide some references to related papers which
organized by category:

• Public key encryption [3–5].
• Digital signatures [6, 7].
• Group and ring signatures [8].
• Identity based cryptography [9].
• Homomorphic encryption [10–13].
• Zero-knowledge proofs and identification proto-

cols [14, 15].

Also, for improving the security of lattice-based
cryptosystems some variants have been presented

using polynomial rings with coefficients in rings other
than Z, such as GF (2k)[x] [16], the non-commutative

ring of k × k matrices of polynomials in Z[x]
<xN−1> [17],

the non-commutative matrix ring M = MkZ[x]
<Xn−Ik×k>

with k × k matrices of polynomials in R = Z[x]
<Xn−1>

[18], Dedekind domains including Z[i], Z[
√
−2], Z[ζ3]

and Z[ζ5] [19–21], QTRU, based on Quaternion alge-
bra [22] and authors’ lattice-based schemes [23, 39].
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Goldreich, Goldwasser and Halevi proposed an effi-
cient way to build a cryptosystem in 1997 that uses
lattice theory and McEliece cryptosystem based on
Bounded Distance Decoding [25], called GGH cryp-
tosystem [24]. The security of the GGH is based on
the difficulty of the closest vector problem (CVP) in
lattices. For the GGH, they published 5 numerical
challenges for the security parameter N = 200, 250,
300, 350, 400, of which the public key sizes range from
330KBytes to 2MBytes. A fourth attack presented by
Nguyen and broke all the GGH challenge except N =
400 [26], that is, the GGH cryptosystem is insecure
unless over a high dimensional lattice that makes it
inefficient with very large key size.

The GGH describes a clear scheme of using lattices
in cryptography and uses N×N matrices as a public
key and a private key, thus every lattice-based public
key cryptosystem except for NTRUEncrypt [38] has
an impractical key size. Some major improvements of
the speed and the security of the GGH suggested in
[27] by Micciancio. In this scheme, the public key is
of a Hermite Normal Form (HNF), whose key sizes
are much smaller than those of the GGH cryptosys-
tem. However, implementations of this algorithm are
extremely slow, again limiting practicality.

The GGH cryptosystem has some advantages and
has a natural signature scheme. In this system, the
computational complexity for encryption, decryption,
signing, and verifying are all quadratic in the natural
security parameter and it is asymptotically more effi-
cient than the RSA and ElGamal encryption schemes.
The GGH has public key of size O(N2) and compu-
tation time of O(N2), compared to public key of size
O(N) and computation time of O(N3) for the RSA
and ElGamal systems. Also, Ajtai and Dwork [28]
proposed a public key encryption scheme that is less
efficient than the GGH whose security is reducible to
a variant of shortest vector problem (SVP). The Ajtai-
Dwork scheme has key of size O(N4) and encryption
time O(N4). Currently, ETRU cryptosystem [31] is
the most efficient cryptosystem among lattice-based
public key schemes.

In this paper, our main technical contribution is the
modification of the GGH key generation algorithm
based on polynomial representations that each coef-
ficient is an Eisenstein integer and then analysis of
the efficiency and the security of the modified GGH
cryptosystem. To the best of our knowledge, it is the
first time that the GGH scheme is modified and an-
alyzed based on a firm theoretical grounding and a
moderate practical implementing for the security and
the efficiency of the GGH-like schemes, in the ring
of quotient of the NTRU-like schemes. Therefore, we
present a public key cryptosystem applying ETRU

polynomial representations to the GGH scheme whose
key size is practical, called EEH cryptosystem. In view
of security, the EEH cryptosystem has an advantage:
Attackers can find out only the message by known
lattice attacks, i.e. the secret key of the EEH cannot
be obtained by solving the shortest vector problem
(SVP) and closest vector problem (CVP).

The rest of this paper is structured as follows: In
Section 2, we shortly review the GGH system and
explain the security related to the choice of secret
parameters. In Section 3, we study the Eisenstein inte-
gers, the ETRU and representation of polynomials by
2N×2N matrices and their direct applications to the
GGH system. In Section 4, we suggest a GGH-Like
public key cryptosystem (EEH) using the representa-
tion in Section 3. In Section 5, we study parameter
selection, security analysis and key sizes. Also we show
that key size of EEH is comparable with GGH and
ETRU cryptosystems. Finally, the paper concludes
in Section 6.

2 The GGH Cryptosystem

In this chapter, we describe the GGH cryptosystem
and its trapdoor function [24]. The useful notion of
the orthogonality−defect of a lattice-based was first
defined by Schnorr [29]. This is a requirement for the
GGH trapdoor function.

Definition 1. Let V and V ′ denote two bases of the
N -dimensional lattice L. V is said to be smaller than
V ′ if: ∏

i

||vi||≤
∏
i

||v′i|| (1)

where ||vi|| and ||v′i|| are the l2 − norm of the i-th
column in V and V ′, respectively.

Definition 2. If V is a real non-singular N×N ma-
trix, then the orthogonality − defect of V is defined
as:

orth− defect(V ) :=

∏
i ||vi||

|det(V )|
(2)

So orth − defect(V ) = 1 if and only if V is an
orthogonal matrix.

Definition 3. Suppose V is a real non-singular
N×N matrix. The dual − orthogonality − defect of
V is defined as:

orth− defect∗(V ) :=

∏
i ||v∗i ||

|det(V −1)|
= |det(V )|

∏
i

||v∗i ||

(3)
where v∗i is the i-th row in V −1.

The mathematical problem is used in the GGH, is
called the closest vector problem (CVP). Both CVP
and SVP are profound problems and by growing the
dimension N of the lattice, they become computa-
tionally difficult and also are known to be NP -hard.

ISeCure



July 2015, Volume 7, Number 2 (pp. 115–126) 117

On the other hand, different research areas of pure
and applied mathematics are emerged for approxi-
mate solutions to CVP and SVP. The GGH public
key encryption scheme can be summarized as follows:

2.1 Setup

The public key B is a “bad basis” of a lattice L with
a high dual-orthogonality-defect that is an N×N ma-
trix B = AT−1 for some T ∈ GL(N,Z), where T
is unimodular matrix and A is the private key or
“good basis” that is an N×N matrix with a low dual-
orthogonality-defect. A can be generated by A′ + kI,
where A′=(A′ij) satisfies that |A′ij | ≤ l and k ≈

√
N l

for some constant l. A and B generate the same lat-
tice, i.e. LA = LB.

Definition 4. A matrix T ∈ ZN×N is called
unimodular if det T = ±1.

2.2 Encryption

Let m ∈ ZN be a plaintext massage vector. For an
error vector e = (δ1σ, δ2σ, . . . , δNσ), the ciphertext c
by encrypting m is computed as follows:

c = Bm+ e (4)

where δi= -1 or 1 and σ is a small constant.

Solving the CVP for the lattice L is equivalent to
deciphering m from equation (Equation 4). However,
m can be deciphered easily, for a given “good basis”
A for L, so A is the trapdoor information.

2.3 Decryption

Using the “good basis” A, one can solve the closest
vector problem to find Bm by computing the lattice
vector closest to c in decryption process. The plaintext
is obtained as follows:

m′ = TdA−1cc
= TdA−1(AT−1m+ e)c
= TdT−1m+ A−1e)c
= m+ TdA−1ec (5)

note that dmc denotes the vector in ZN which is
obtained by rounding each entry in m to the nearest
integer.

If A is a “good” basis, then decryption works. We
denote the maximum of L∞-norm of the rows in A−1

by γ√
N

. If σ=[(γ
√

8ln 2N
ε )−1] for some small real num-

ber ε >0, then the probability of decryption error is
bounded by ε, where [y]=max{x|x is an integer, x ≤
y}. The ciphertext in GGH encryption is considerably

larger than the plaintext message. A precise analysis
of this depends on the sizes of entries in A.

2.4 The Gap of Lattice

In the GGH, LA and LB are the same lattices and
this lattice generated by columns of A and B, respec-
tively, such that the rows of both matrices are linearly
independent, hence span(A) = span(B). Suppose T
is not unimodular and B = AT−1, these two matrices
generate different lattices. In fact, LB is a sublattice
of LA, i.e. LB ⊂ LA. Even if LB is a sublattice of LA,
the decryption works, but in this case, its security can
be weakened [30]. Therefore we should use A and B
such that LA = LB in view of security.

Definition 5. The gap of a lattice L, say GL, is the
ratio between the length of second successive mini-
mum vector and the length of a shortest nonzero vec-
tor in L.

Notice that it is easy to find the shortest vector
in a lattice when the lattice gap is large [26]. As a
result, in this paper, we will propose a “good” basis
A and a “bad” basis B such that LA = LB with
the least gap based on dedekind domain Z[ζ3] where
ζ3= 1

2 (−1 +
√

3i).

3 The Eisenstein Integers, The ETRU
Cryptosystem and Their
Applications to Polynomial
Representations

In this section we describe a representation of a poly-
nomial quotient ring.

3.1 The Eisenstein Integers

We denote by ζ3 a complex cube root of unity, that
is ζ3

3 = 1 where ζ3 = 1
2 (−1 +

√
3i). Since ζ3

3 − 1 =

(ζ3−1)(ζ3
2+ζ3+1) = 0, we have ζ3

2+ζ3+1 = 0 and
hence ζ3

2 = −1−ζ3. The ring of Eisenstein integers,
denoted Z[ζ3], is the set of complex numbers of the
form α = a+ bζ3 with a, b ∈ Z.

For α = a+bζ3 we introduce d(α) = αᾱ = a2+b2−
ab which is the square of the usual analytic complex
norm |α|, so d(α) is a positive integer for α 6=0. For
any complex numbers α, β we have that |αβ| = |α||β|
hence it follows that d(αβ) = d(α)d(β).

The Eisenstein integers Z[ζ3] form a lattice in C
generated by the basis B = {1, ζ3}. We can show the
two basis vectors 1 and ζ3 by the vectors (1,0) and

(− 1
2 ,
√
3
2 ) in R2 with 120 degrees and equal length,

that is, C ∼= R2. This lattice is shown in [31] as Figure
Figure 1. Also, for q ∈ Z[ζ3] the ideal < q > is a lat-
tice with basis qB = {q, qζ3}. The reduced elements
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Figure 1. The solid dots show the rectangular sublattice L

of Z[ζ3] in the complex plane, and the open dots show its

nontrivial coset ζ3 + L [31].

Figure 2. For q = 2 + 3ζ3, the open dots show the elements
of the ideal < q >. The inscribed and circumscribed circles are

of radius |q|/2 and |q|/
√
3, respectively. The hexagon shows

Vq and all elements of Z[ζ3] contained in or on it, are elements
of Dq [31].

modulo q is the set Dq which is defined to be those
elements of Z[ζ3] contained in the Voronoi cell Vq of
the origin of < q >. Vq is a certain regular hexagon in-
scribed by two circles of radius (1/2)|q| and (1/

√
3)|q|.

This region is shown in [31] as Figure Figure 2.

Let β be an Eisenstein integer. We define the ideal
L(β) by:

L(β) = {ηβ|η ∈ Z[ζ3]}
= {(a+ bζ3)β|a, b ∈ Z}
= {aβ + bβζ3|a, b ∈ Z}. (6)

Therefore L(β) is a lattice generated by the basis
B = {β, βζ3}. Since multiplication by any β ∈ C pre-
serves the angle between vectors, it is easy to verify
that L(β) is also a hexagonal lattice. Note that we
are able to develop a closest vector algorithm for the
Eisenstein integers, that is, it is easy to solve the clos-

est vector problem on a Eisenstein integers lattices.
The following Theorem [31] gives a closest vector al-
gorithm for L(β).
Theorem 1 (Division Algorithm). Let β∈Z[ζ3] \ {0}
and α∈Z[ζ3]. Define a1, a2, b1, b2 ∈ Q by:

a1 + b1i = β−1α and a2 + b2i = β−1α− ζ3.

For j=1,2, compute:

ρ′j = (aj − baje) + i(bj −
√

3b bj√
3
e).

Define ρ1, ρ2, η1, η2 ∈ Z[ζ3] by:

ρ1 = βρ′1, η1 = ba1e+ i
√

3b b1√
3
e and

ρ2 = βρ′2, η2 = ba2e+ i
√

3b b2√
3
e+ ζ3.

Then the following hold:

α = βη1 + ρ1 = βη2 + ρ2, d(ρ1), d(ρ2) < d(β) and
Re(η1) 6= Re(η2),

where Re(η) denotes the real part of η.

Define (ρ, η) by the following:

• if d(ρ1) < d(ρ2), set (ρ, η) = (ρ1, η1);
• if d(ρ1) > d(ρ2), set (ρ, η) = (ρ2, η2);
• if d(ρ1) = d(ρ2) andRe(η1) > Re(η2) set (ρ, η) =

(ρ1, η1);
• if d(ρ1) = d(ρ2) andRe(η1) < Re(η2) set (ρ, η) =

(ρ2, η2),

such that outputs ρ when applied to the pair (α, β) is a
division algorithm.

Then the following hold:

(1) α = βη + ρ and d(ρ) < d(β)
(2) ηβ is an element of L(β) closest to α
(3) ρ is a smallest representative of the congruence

class modulo β
(4) the division algorithm outputs a unique represen-

tative of the congruence class, that is if α, α′ ∈
Z[ζ3] satisfy α′ ≡ α mod β then the algorithm
produces the same output when applied to (α, β)
and (α′, β).

According to [31] and Theorem 1, we deduce that the
Eisenstein integers are an Euclidean domain. Hence,
the following properties hold:
Proposition 1. An Eisenstein integer ψ ∈ Z[ζ3] is a
unit if and only if d(ψ) = 1.
Proposition 2. The units of Z[ζ3] are ±1,±ζ3 and
±ζ23 .
Proposition 3. If ϕ ∈ Z[ζ3] and d(ϕ) = p where p is
a rational prime, then ϕ is a prime in Z[ζ3].
Proposition 4. Suppose that ϕ is an Eisenstein in-
teger. Then d(ϕ)=3 if and only if ϕ = ψ(1 − ζ3) for
some unit ψ.

Propositions 3 and 4 and also [32] show that 1− ζ3
and its associates are Eisenstein primes. Notice in
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the case for α = a + bζ3 where the gcd(a, b)=1 then
the set of distinct congruence classes modulo α can
be represented by the set {0, 1, . . . , d(α) − 1}. For
example for α = 2 + 3ζ3 we have d(α) = 7 and hence
the set {0, 1, 2, 3, 4, 5, 6} is a set of distinct congruence
classes modulo α.

For each Eisenstein integer α = a+ bζ3 we define:

< α >=

 a b

−b a− b

 (7)

Notice that for any Eisenstein integer β=c+dζ3 we
have:

[
c d
] a b

−b a− b

 =
[
ac− bd bc+ ad− bd

]
(8)

which is the vector representation of the multiplica-
tion βα.

For each N×Nmatrix B with entries that are
Eisenstein integers we will set < B > to be the
2N×2Nmatrix with each entry bij replaced with the
2×2 matrix < bij >.

Every element of R = Z[ζ3][x]
<t(x)> has a unique rep-

resentative of the form c(x) = c0 + c1x + c2x
2 +

· · ·+ cN−1x
N−1 with the coefficients in Z[ζ3], where

t(x) is a polynomial of degree N , i.e. c(x) = (a0 +
b0ζ3) + (a1 + b1ζ3)x + · · · + (aN−1 + bN−1ζ3)xN−1.
It is often convenient to identify a polynomial c(x)
with its vector of coefficients (c0, c1, c2, . . . , cN−1) =
([a0, b0], [a1, b1], . . . , [aN−1, bN−1]) ∈ Z2N .

3.2 The ETRU Cryptosystem

To define the ETRU [31], we identify t(x) = xN − 1,
a polynomial of degree N . So we choose an prime N

and set R = Z[ζ3][x]
<xN−1> , we also choose p and q in Z[ζ3]

relatively prime, with |q| much larger than |p|. Since
each ETRU coefficient is a pair of integers, an element
of ETRU at degree N is comparable with an element
of NTRU of degree N ′ = 2N .

3.2.1 Key Generation

Private key consists of two randomly chosen polyno-

mials f, g ∈ R = Z[ζ3][x]
<xN−1> . We define the inverses

Fq = f−1 ∈ Rq and Fp = f−1 ∈ Rp, where Rq and
Rp are the reduced sets modulo q and p, respectively.
Hence, public key is generated by h = Fq × g. The
public key h is a polynomial with N coefficients which
are reduced modulo q. Each coefficient consists of
two integers can be stored as binary strings of length

dlog2(4.|q|/3)e, hence the size of the ETRU public
key is K = 2Ndlog2(4.|q|/3). An NTRU public key,
corresponding to polynomials with N ′ = 2N coeffi-
cients reduced modulo an integer q′, has size K ′ =
N ′dlog2(q′)e. Therefore to maintain the same key size
as NTRU withN ′ = 2N and q′ = 2k, we should choose
|q| 6 (3/4)q′ so that dlog2(4.|q|/3)e 6 dlog2(q′)e.

3.2.2 Encryption and Decryption

Each encryption requires the user to compute e =
φ × p.h + m mod q, where m is a plaintext and φ
is a ephemeral key. In total, one counts N ′2 +N ′ ∼
4N2 + 2N operations for NTRU encryption at N ′ ∼
2N in contrast to only 3N2 + 27N operations for
ETRU encryption.

Each decryption requires the user to compute both
a = f×emod q andm = Fp×amod p. For decryption,
we have 2N ′2+2N ′ ∼ 8N2+4N operations for NTRU
and only 6N2 + 29N operations for ETRU.

The speed of encrypting and decrypting 10, 000 mes-
sage in ETRU and NTRU for comparable parameter
sets is shown in [31] as Figure 3. We see that the data
in each case fits a quadratic curve, and that for each
of encryption and decryption, for N ′ = 2N , ETRU is
distinctly faster.

3.2.3 Decryption Failure and Security

In [31] is shown that in fact |q| ∼ (3/8)q′ is an optimal
choice in view of security against decryption failure
and lattice attacks. With this choice, the public key
size for ETRU will be smaller than that of the NTRU
public key.

3.3 Polynomial Representation

We have the following representation of R = Z[ζ3][x]
<t(x)>

into the set of 2N×2Nmatrices with Eisenstein integer
entries:

ρ :
Z[ζ3][x]

< xN − 1 >
−→ GL(2N,C)

g 7−→ ρ(g), ρ(g)(h) = g(x)h(x). (9)

Then:

ρ(g)(h) = (c0 + d0ζ3, . . . , cN−1 + dN−1ζ3) ∈ Z[ζ3]N

(10)
So general term can be represented as:

g(x)h(x) =

(c0 + d0ζ3) + · · ·+ (cN−1 + dN−1ζ3)xN−1 ∈ Z[ζ3][x]

< xN−1 >
(11)
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Depending on the choice of t(x), we can find various
representations [30]. If t(x) = xN − 1, then we have a
circulant 2N×2N matrix:

ρ(g) =


a0 + b0ζ3 aN−1 + bN−1ζ3 . . . a2 + b2ζ3 a1 + b1ζ3

a1 + b1ζ3 a0 + b0ζ3 . . . a3 + b3ζ3 a2 + b2ζ3

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

aN−1 + bN−1ζ3 aN−2 + bN−2ζ3 . . . a1 + b1ζ3 a0 + b0ζ3


(12)

Now, in Section 4 we can construct a “good basis”
A and a “bad basis” B by this representation and
apply them to the GGH scheme.

4 Proposed EEH Cryptosystem

Now we need to adapt the NTRU lattice for Eisenstein
integers, that is, we introduce the ETRU lattice. Then
we show that new lattice is an improvement to the
GGH in terms of both lattice security and storage
and comparable to the ETRU in terms of speed. In
order to derive our proposed EEH cryptosystem from
the vector representation of the ETRU lattice and the
GGH encryption scheme, we proceed in several steps
as follows:

(1) We replace the GGH lattice byR = Z[ζ3][x]
<xN−1> and

we exploit the fact that R is the ring of integers
of a dedekind domain and its representation
with Eisenstein integers.

(2) We sample the public key (bad basis) from the
ETRU cyclic modular lattice (CML).

(3) We construct the private key (good basis) in two
steps: At first, we use the NTRU key recovery
problem based on the ETRU lattice for a “half-
good basis” of short vectors, then we apply a
construction used in the NTRU digital signature
based on the ETRU lattice to find the other
“half-good basis”.

(4) We modify encryption and decryption process
of the GGH based on our modified “bad” and
“good” bases. This allows us to derive the ETRU
security and the ETRU key sizes which are much
smaller than the key sizes of the GGH scheme
and its variants.

Implementation of the new trapdoor function and
these modifications are similar to the ETRU cryp-
tosystem implementation. In [31], Jarvis and Nevins
proposed an implementation of the ETRU primitives,
hence our presented EEH scheme provides practicality.

4.1 Parameter Selection

We would like to be able to easily calculate the inverse

of f(x) ∈ Z[ζ3][x]
<xN−1> modulo p and q thus we want to

choose p and q to be prime or a prime power. For

example we choose p to be 2 + 3ζ3 because d(p) = 7
and the distinct equivalence classes modulo p based on
the fundamental domain of L(p) are {0,±1,±ζ3,±ζ23}.
We will choose q to be prime or a power of 1 − ζ3
the smallest prime. Thus, the inverses of polynomials
modulo p and q can be found using the extended
Euclidean algorithm. In Table 1, all setup parameters
of NTRU, ETRU, GGH, and EEH are summarized.

Let Lf and Lg be subsets of Z[ζ3][x]
<xN−1> . We choose

f(x) ∈ Lf and g(x) ∈ Lg to be polynomials with co-
efficients from L(p) are {0,±1,±ζ3,±ζ23}. The poly-
nomial f(x) has df+1 1’s and df of each of the other
units so that x−1 is not a factor of f(x) and the poly-
nomial g(x) has dg of each of the units {±1,±ζ3,±ζ23}
and the rest of its coefficients zero. For security reasons
let N be a prime number and df = dg = d = bN3 c.

4.2 Key Generation

To generate the public key one can randomly chooses
f(x) ∈ Lf and g(x) ∈ Lg. The polynomial f(x) should
be invertible modulo q. We denote this inverse by

notation Fq(x) ∈ Z/qZ[ζ3][x]

< xN − 1 >
, that satisfying the

following properties:

Fq(x)× f(x) ≡ 1 mod q (13)

Next compute:

h(x) ≡ Fq(x)× g(x) mod q (14)

Notice that modular equation (Equation 14) is
the same construction used in the ETRU encryption
scheme and is equivalent to the following hidden con-
dition:

f(x)× h(x) ≡ g(x) mod q (15)

The condition (Equation 15) is a hard mathematical
problem which is known as the NTRU key recovery
problem. In [33] is discussed that solving the NTRU
key recovery problem is (almost certainly) equivalent
to solving SVP in lattices.

Hence, the following public key or the “bad” basis
B for the lattice LB is generated by the representation
ρ and 4N×4N matrix:

B =

λ < I > < ρ(h(x)) >

0 < qI >

 (16)

where λ ∈ R is balancing Constant. Notice that B
is composed of four 2N×2N blocks. Also B is similar
to the ETRU lattice.

In order to generate the private key or the “good”
basis A for the lattice LA such that LA = LB with
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Figure 3. Comparison of encryption and decryption time between ETRU and NTRU for 10, 000 random messages. The curves are

the best-fitting quadratic polynomials to the data [31].

Table 1. Setup parameters.

NTRU[38] ETRU[31] GGH[24] EEH

Lattice

Dimension N
Positive integer Prime Positive integer Prime

Positive integer Prime Prime

co-prime with q or prime power or prime power

Modulo p as p = 3 as p = 2 + 3ζ3 — as p = 2 + 3ζ3

(q >> p) or p = 2 + ζ3 or p = 2 + ζ3

(|q| >> |p|)

Positive integer Prime Prime

co-prime with p or prime power or prime power

Modulo q as q = 2048 as q = 81ζ3 — as q = 81ζ3

(q >> p) = (1− ζ3)8

(|q| >> |p|)

Perturbation e — —
e ∈

{−1/2, 1/2}N (e1, e2) ∈ {−1/2, 1/2}2N

the least gap and without decryption failure, we use
the following Proposition [33]:
Proposition 5. Assuming that f(x) × h(x) ≡
g(x) mod q, let u(x) ∈ Z[ζ3][x]

<xN−1>
be the polynomial

satisfying:

f(x)× h(x) = g(x) + qu(x)

Then

(f(x),−u(x))B = (f(x), g(x))

so the vector (f(x), g(x)) is in the lattice LB.

In other words, for every vector (f(x), u(x)) ∈ Z4N

with f(x), u(x) ∈ Z2N we have:

(f(x), u(x))B = (λf(x), f(x) < ρ(h(x)) > + < qI > u(x))

= (λf(x), g(x)) (17)

The solution to proposition 5 is not unique, because if
(f(x), g(x)) is one solution, then (xk×f(x), xk×g(x))

is also a solution for every 0 ≤ k < N . The polynomial
xk × f(x) is called a rotation of f(x) because the
coefficients have been cyclically rotated k positions.
In fact, the lattice LB is a 4N -dimensional lattice
containing short vectors (λf(x), g(x)) and each of the
cyclical rotations (λxk × f(x), xk × g(x)) for all 0 ≤
k < N [33].

Therefore, we can construct a “half-good” basis of
short vectors by the representation ρ for all 0 ≤ k < N
as follows:
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A =

λxk × f(x) xk × g(x)

0 0


=

λ < ρ(f(x)) > < ρ(g(x)) >

0 0

 (18)

However, in order to use the private key for the same
lattice, we need a full basis of short vectors. Indeed,
the Gaussian heuristic predicts that the other 2N
basis vectors exist and there is a reasonably efficient
algorithm to find a complementary “half-good” basis
(F (x), G(x)). More precisely, it is possible to find
the other short vector polynomials F (x) and G(x)
satisfying:

f(x)×G(x)− g(x)× F (x) = q (19)

Notice that equation (Equation 19) is the same con-
struction used in the NTRU digital signature scheme
[34]. Thus the “good” basis A with short vectors in
lattice is computed by the representation ρ for all
0 ≤ k < N as follows:

A =

λxk × f(x) xk × g(x)

λxk × F (x) xk ×G(x)


=

λ < ρ(f(x)) > < ρ(g(x)) >

λ < ρ(F (x)) > < ρ(G(x)) >

 (20)

As a result, we have the following 4N×4N matrices
as private key and public key for all 0 ≤ k < N
respectively, such that LA = LB:

A = “Good Basis” =

λ < ρ(f(x)) > < ρ(g(x)) >

λ < ρ(F (x)) > < ρ(G(x)) >


(21)

B = “Bad Basis” =

λ < I > < ρ(h(x)) >

0 < qI >

 (22)

4.3 Encryption

A message is M = (m1,m2) ∈ ( Z[ζ3][x]
<xN−1> ). Then the

ciphertext is:

c =

(
c1
c2

)
= B

(
m1

m2

)
+

(
e1
e2

)
∈ (

C[x]

< xN−1 >
) (23)

for an error vector e = (e1, e2), where ei ∈
{−σ, σ}N and σ will be set to be 1

2 .

4.4 Decryption

As we already mentioned because A is a “good” basis,
decryption works and our proposed EEH decryption
is the same as the GGH cryptosystem decryption.

4.5 Efficiency

We want to be able to compare the speed on the EEH
to that of GGH. Recall that the encryption and de-
cryption of GGH are both of order O(N2). For any
two Eisenstein integers α = a+ bζ3 and β = c+ dζ3
we have αβ = (ac− bd) + (ad+ bc− bd)ζ3. Since bd
is calculated twice, multiplication of two Eisenstein
integers involves 4 integer multiplications. Hence, sim-
ilar to the GGH the encryption and decryption of the
EEH are also both of order O(N2). Also similar to the
NTRU case, one could also apply algorithms to speed
up multiplications of polynomials as described in [35].
However, in Section 5 we will show that we can take
the EEH parameter N to be smaller than the GGH
parameter N for similar levels of security.

5 Security Analysis and Key Sizes

We now discuss the security of the GGH cryptosystem.
There are three natural ways to attack the GGH
cryptosystem:

(1) Try to obtain the private key A from the public
key B.

(2) Try to obtain information about the message
from the ciphertext, given that the error vector
is small.

(3) Try to solve the CVP of c with respect to the
lattice L defined by B.

5.1 Embedding Attack

Nguyen attacked the GGH by the embedding attack
[26]. Nguyen noted that the choice of the error vector
in the original GGH cryptosystem made it extremely
vulnerable to attack. Let σ = (σ, σ, . . . , σ) ∈ ZN . The
crucial observation is that if c is a GGH ciphertext then
c + σ ≡ BM mod 2σ. Precisely, the linear equation
c = BM + e can be reduced to:

c′ =
c−BM0

2σ
= BM ′ +

e

2σ
(24)

where M0 is the solution of:

c+ (σ, σ, . . . , σ) ≡ BM mod 2σ (25)

So the error vector e′ = e
2σ is an element of {± 1

2}
N .

Hence the choice of a large σ is not so essential con-
dition for the security of the GGH scheme if σ ≥ 1

2 .
Hence we take σ to be 1

2 .
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5.2 Algebraic Attack

Algebraic cryptanalysis is to model a cryptographic
primitive by a set of polynomial equations. The system
of equations is constructed such that the solution
of this system is precisely the secret information of
the cryptographic primitive (for instance, the secret
key of an encryption scheme). Hence, breaking the
EEH system is equivalent to the problem of recovering
the polynomial f(x) from a given polynomial h(x),
knowing that f(x)× h(x) = g(x) + qu(x).

The recovering of the private key of EEH is reduced
to solve a system of 2N quadratic equations in 2N
variables in Z[ζ3][x]. In [36] is presented a more effi-
cient tool for solving algebraic systems, namely fast
Gröbner basis algorithms for standard values of the
parameter in NTRU, such as N = 251, to solve a
system of N quadratic equations in N variables for
f(x) × h(x) = g(x) + qu(x). But this algebraic at-
tack using Witt vectors is not effective for NTRU and
ETRU if one wants to solve the associated system us-
ing Gröbner basis algorithms. Thus, this attack is not
effective for the EEH cryptosystem with appropriate
parameters.

5.3 Lattice Attacks

Recall that the EEH lattice LA = LB is spanned by
the rows of 4N×4N matrix:

B =

λ < I > < ρ(h(x)) >

0 < qI >

 (26)

As we mentioned earlier, the vector (λf(x), g(x))
is a relatively short vector in the lattice, therefore
we can use basis reduction techniques such as the
LLL or BKZ algorithms to try and recover the vector
(λf(x), g(x)) and hence recover our EEH private key.
Note that the implementations of LLL and BKZ in
Shoup’s NTL library [37] find short vectors relative

to the Euclidean norm. We want to take λ = ||g(x)||
||f(x)||

where ||f(x)|| denotes the Euclidean norm of the vector
representation of f(x). If the length of a shortest vector
is much shorter than the shortest expected vector in
the lattice, the LLL and BKZ are more successful at
finding a shortest vector in a lattice. The norms of
λf(x) + g(x) and (λf(x), g(x)) have been presented
in [31] respectively as follows:

τe =
√
λ2(6df + 1) + 6dg (27)

τc =
√
λ2(8df + 1) + 8dg (28)

So the norm of the polynomial λf(x) + g(x) is shorter
than our target vector (λf(x), g(x)).

Now we can implement the LLL and BKZ algo-
rithms to show the security of the EEH lattice in order
to lattice attacks (lattice basis reduction). Table 2
shows the results of experiments for randomly gener-
ated EEH keys for different parameter sets. For each
parameter set we keep p and q constant taking p =
2+ζ3 and q = 81ζ3 = (1−ζ3)8. We choose df = dg so
we have ||f(x)|| ≈ ||g(x)|| and therefore we take λ = 1.

As we can see from Table 2, the BKZ algorithm is
slower however it gives better results than the LLL
algorithm. The success of the LLL algorithm drops
sharply on EEH lattice for N > 21. For N > 29
the LLL algorithm rarely finds a target vector on
EEH lattice. Similarly, the BKZ algorithm is very
successful for N ≤ 35 the its success drops sharply
and rarely finds a target vector for N > 47 on EEH
lattice. Therefore EEH lattice is more resistant to
lattice attack.

Now we compare NTRU lattice and EEH lattice
on the common criteria we have developed in Table 2.
In [31] is done a comparison between NTRU lattice
and ETRU lattice. Note that the ETRU lattice is
similar to the EEH lattice. So the lattice security for
EEH with q = 81ζ3 or q = 11 + 86ζ3 and polynomials
of length N appears to be similar to that of NTRU
lattice with q = 2048 and polynomials of length of
approximately 3N . Notice that the lattice security
of EEH with polynomials of length N is comparable
to the lattice security of NTRU and polynomials of
length approximately 3N .

As a result, we conjecture that the lattice security
of EEH with polynomials of length N is comparable
to the lattice security of NTRU with polynomials of
length 3N . Note, if we take the NTRU parameterN to
be twice that of the EEH parameter N then the EEH
lattice and the NTRU lattice have the same dimension
but the EEH lattice has higher lattice security than
the NTRU lattice of the same dimension.

5.4 Key Size

It is important to know how much storage is needed to
store polynomials with coefficients modulo Eisenstein
integers. An integer reduced modulo q in NTRU can
be converted to binary and stored in dlog2 qe bits.
Therefore in NTRU we need approximately Ndlog2 qe
bits to store polynomials reduced modulo q [31, 38].

Recall there are d(q) distinct equivalence classes
modulo q. Hence to reduce a Eisenstein integer modulo
q we need approximately dlog2 d(q)e bits [31]. There-
fore in the EEH we need approximately Ndlog2 d(q)e
bits to store polynomials reduced modulo q.

Also recall the GGH has N -dimensional lattice
and the attacks presented in [26] have broken N =
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Table 2. Lattice reduction on the EEH lattice using Shoup’s LLL FP and BKZ FP functions for σ=0.99 and blocksize β=10.

LLL BKZ

N df dg Target(%) Trials AvgT ime(s) Target(%) Trials AvgT ime(s)

17 2 2 99.9 1000 0.53 100 1000 1.05

19 2 2 100 1000 0.77 100 1000 1.62

21 3 3 94.5 1000 1.2 99.5 1000 3.27

23 3 3 47.2 1000 1.46 100 1000 3.46

25 3 3 8.4 1000 1.91 98 1000 4.82

29 3 3 0 1000 2.71 100 1000 10.11

31 3 3 0 1000 3.25 99.9 1000 16.44

33 3 3 0.1 1000 3.85 99.4 500 21.69

35 4 4 0 1000 4.43 98.8 500 39.45

41 4 4 0 1000 6.7 1.6 500 80.91

47 4 4 0 100 139.45

Table 3. Comparison of key sizes (KB) of the EEH cryp-

tosystem with the GGH, GGH(HNF), NTRU, and ETRU for
q = 81ζ3 (EEH and ETRU), and q = 2048 (NTRU).

N GGH[30] GGH(HNF)[30] NTRU[38] ETRU[31] EEH

200 330 32 0.138 0.082 0.082

300 990 75 1.65 0.122 0.122

400 2370 140 2.2 0.163 0.163

Table 4. Operating characteristics. f(n) = Õ(g(n)) if
f(n) = O(g(n).logcn).

GGH[24] NTRU[38] ETRU[31] EEH

Encryption speed O(N2) O(N2) O(N2) O(N2)

Decryption speed O(N2) O(N2) O(N2) O(N2)

Message expansion 1–1 logqp to 1 1–1 1–1

Public key size Õ(N2) Õ(N) Õ(N) Õ(N)

Private key size Õ(N2) Õ(N) Õ(N) Õ(N)

200, 250, 300, 350 except N = 400. Thus, this large
key size makes the GGH inefficient and impractical.
Clearly, NTRU has 2N -dimensional lattice and lat-
tice attacks are not effective for N = 251. Hence,
it’s key size is reduced approximately by factor of
2. In this paper, as we see, the EEH cryptosystem
has 4N -dimensional lattice therefore it’s key size is
reduced approximately by factor of 4. For example,
let there is an 400-dimensional lattice, then we have
N = 400

4 = 100, q = 81ζ3 and d(q) = 6561. For
this lattice the polynomials modulo q will take about
Ndlog2 d(q)e = 100dlog2 6561e = 1300 bits, so public
key takes 1300

8 = 162.5 ≈ 0.163KBytes, which is much
smaller than the key sizes of both GGH and GGH us-
ing HNF expression [27]. Table 3 shows the results of

the above formulas to comparison of key sizes of the
EEH, GGH, GGH(HNF), and NTRU. Moreover, Ta-
ble 4 summarizes operating characteristics for NTRU,
ETRU, GGH, and EEH.

6 Conclusion

We proposed a lattice based public key cryptosys-
tem using polynomial representations over the Eisen-
stein integers. The proposed EEH cryptosystem is an
improvement of the GGH system. Our scheme has
stronger lattice security than GGH and NTRU, re-
quires less storage and is comparable in terms of speed.
Furthermore, our scheme is practical in key sizes com-
pared with the GGH.

As we see, we can make various lattices with repre-
sentations of polynomials. By studying various repre-
sentations and size of coefficients of polynomials, the
key size might be decreased and the efficiency could be
increased. Moreover, the security of the cryptosystem
is closely related to the choice of representations.

The EEH is a probabilistic cryptosystem since a
single plaintext leads to many different ciphertexts
due to the choice of the random perturbation e. This
leads to a potential danger if one sends the same
message twice using different random perturbations,
or sends different messages using the same random
perturbation. Thus future works can include applying
a hash function to the plaintext M for determining
the random perturbation e and developing padding
schemes for EEH cryptosystem in practice.
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