Document Type: ORIGINAL RESEARCH PAPER
Authors
^{1} Department of Computer Engineering, University of Guilan, Rasht, Iran.
^{2} Department of Mathematics, University of Guilan, Rasht, Iran.
^{3} School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
Abstract
Keywords
[1] V. Lyubashevsky, and D. Micciancio, Generalized compact knapsacks are collision resistant, In Proceedings of ICALP, (2006), Vol. 4052 of LNCS, pages 144-155.
[2] C. Peikert, and A. Rosen, Lattices that admit logarithmic worst-case to average-case connection factors, In Proceedings of STOC, ACM, (2007), pages 478-487.
[3] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, Journal of ACM, (2009), Vol. 56, pages 6-34.
[4] C. Peikert, and B. Waters, Lossy trapdoor functions and their applications, In Proceedings of STOC, (2008), pages 187-196.
[5] V. Lyubashevsky, A. Palacio, and G. Segev, Public-key cryptographic primitives provably as secure as subset sum, In D. Micciancio, editor, Proceedings of TCC, (2010), Vol. 5978 of LNCS, pages 382-400.
[6] C. Gentry, C. Peikert, and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, In Proceedings of STOC, (2008), pages 197-206.
[7] V. Lyubashevsky, and D. Micciancio, Asymptotically efficient lattice-based digital signatures, In Proceedings of TCC, (2008), Vol. 4948 of LNCS, pages 37-54.
[8] D. Gordon, J. Katz, and V. Vaikuntanathan, A group signature scheme from lattice assumptions, Advances in Cryptology-ASIACRYPT, (2010), Springer Berlin Heidelberg, pages 395-412.
[9] S. Agrawal, D. Boneh, and X. Boyen, Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical ibe, Advances in Cryptology CRYPTO, (2010), Springer Berlin Heidelberg, pages 98-115.
[10] C. Gentry, S. Halevi, and V. Vaikuntanathan, A simple bgn-type cryptosystem from lwe, In H. Gilbert, editor, Advances in Cryptology EUROCRYPT, (2010), Vol. 6110 of Lecture Notes in Computer Science, pages 506-522.
[11] C. Gentry, Fully homomorphic encryption using ideal lattices, In Proceedings of STOC, ACM, (2009), pages 169-178.
[12] D. Stehle, and R. Steinfeld, Faster fully homomorphic encryption, In M. Abe, editor, ASIACRYPT, (2010), Vol. 6477 of Lecture Notes in Computer Science, pages 377-394.
[13] N. Ogura, G. Yamamoto, T. Kobayashi, and S. Uchiyama, An improvement of key generation algorithm for gentrys homomorphic encryption scheme, In IWSEC, (2010), Vol. 6434 of LNCS, pages 70-83.
[14] P. Cayrel, R. Lindner, M. Ruckert, and R. Silva, Improved zero-knowledge identification with lattices, Tatra Mountains Mathematical Publications 53.1 (2012), pages 33-63.
[15] V. Lyubashevsky, Lattice-based identification schemes secure under active attacks, In Proceedings of PKC, (2008), No. 4939 in LNCS, pages 162-179.
[16] P. Gaborit, J. Ohler, and P. Sole, CTRU, a polynomial analogue of NTRU, Technical report, INRIA, France, 2002. Available at ftp://ftp.inria.fr/INRIA/publication/ publipdf/RR/RR-4621.pdf.
[17] M. Coglianese, and B.M. Goi, MaTRU: A New NTRU-Based Cryptosystem, In Proceedings of the 6^{th} International Conference on Cryptology in India (INDOCRYPT), (2005), pages 232-243.
[18] N. Vats, NNRU, a Non-commutative Analogue of NTRU, The Computing Research Repository (CoRR), abs/0902.1891, (2009). Available at; http://arxiv.org/abs/0902.1891.
[19] R. Kouzmenko, Generalizations of the NTRU Cryptosystem, Master's thesis, Polytechnique Montreal, Canada, (2006).
[20] C. Karimianpour, Lattice-Based Cryptosystems, Master's thesis, University of Ottawa, Canada, (2007).
[21] M. Nevins, C. Karimianpour, and A. Miri, NTRU over rings beyond Z, Designs, Codes and Cryptography, (2010), vol. 56, no. 1, pages 65-78.
[22] E. Malekian, A. Zakerolhosseini, and A. Mashatan, QTRU: Quaternionic Version of the NTRU Public-Key Cryptosystems, The int'l Journal of information Security (ISeCure), (2011), vol. 3, no. 1, pages 29-42.
[23] A.H. Karbasi and R.E. Atani, ILTRU: An NTRU-Like Public Key Cryptosystem Over Ideal Lattices, The 7^{th} International IEEE Symposium on Telecommunications (IST2014), Tehran, Iran, (2014).
[24] O. Goldreich, Sh. Goldwasser, and Sh. Halevi, Public-key cryptosystems from lattice reduction problems, In CRYPTO '97: Proceedings of the 17^{th} Annual International Cryptology Conference on Advances in Cryptology, London, UK, (1997), pages 112-131.
[25] R.J. McEliece, A public-key cryptosystem based on algebraic coding theory, Deep Space Network Progress Report, (1978), No. 44, pages 114-116.
[26] P. Nguyen, Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto '97, Advances in Cryptology-Crypto '99, LNCS 1666, (1999), pages 288-304.
[27] D. Micciancio, Improving lattice based cryptosystems using the Hermite normal form, In Cryptography and Lattices Conference (CaLC), (2001), pages 126-145.
[28] M. Ajtai, and C. Dwork, A Public-Key Cryptosystem with Worst-Case/Average-Case Equivalence, In 29^{th} ACM Symposium on Theory of Computing, (1997), pages 284-293.
[29] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms, Theor. Comput. Sci., (1987), No. 53(2-3), pages 201-224.
[30] S. Paeng, B. Jung, and K. Ha, A Lattice Based Public Key Cryptosystem Using Polynomial Representations, In Y.G. Desmedt (Ed.), PKC, (2003), Vol. 2567 of LNCS, Springer, pages 292-308.
[31] K. Jarvis, and M. Nevins, ETRU: NTRU over the Eisenstein Integers, Designs, Codes and Cryptography 74.1, (2015), pages 219-242.
[32] K. Ireland, and M. Rosen, A Classical Introduction to Modern Number Theory, Second Edition. New York: Springer-Verlag, (1990).
[33] J. Hoffstein, J. Pipher, and J.H. Silverman, An Introduction to Mathematical Cryptography, Springer-Verlag, 1^{st} edition, (2008).
[34] J. Hoffstein, N. Howgrave-Graham, J. Pipher, J.H. Silverman, and W. Whyte, NTRU Sign: digital signatures using the NTRU lattice, In Topics in cryptology CT-RSA, (2003), Vol. 2612 of Lecture Notes in Comput. Sci., Springer, pages 122-140.
[35] J.H. Silverman, High-Speed Multiplication of (Truncated) Polynomial Rings, NTRU Cryptosystems Technical Report 11, (1999), Available from: http://www.ntru.com. Accessed: Dec 2010.
[36] G. Bourgeois, and J. Faugere, Algebraic attack on NTRU using Witt vectors and Grobner bases, In Journal of Math. Crypt., (2009), Vol. 3, pages 205-214.
[37] V. Shoup, NTL: A Library for doing Number Theory, http://www.shoup.net/ntl/. Accessed: Aug. (2010).
[38] J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: a ring-based public key cryptosystem, In Algorithmic Number Theory, Portland OR, (1998), Vol. 1423 of Lecture Notes in Comput. Sci., pages 267-288.
[39] A.H. Karbasi and R.E. Atani, "PSTRU: A provably secure variant of NTRU Encrypt over extended ideal lattices," The 2^{nd} National Industrial Mathematics Conference, Tabriz, Iran, (2015).