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A B S T R A C T

Perturbed Quantization (PQ) steganography scheme is almost undetectable

with the current steganalysis methods. We present a new steganalysis method

for detection of this data hiding algorithm. We show that the PQ method

distorts the dependencies of DCT coefficient values; especially changes much

lower than significant bitplanes. For steganalysis of PQ, we propose features

extraction from the empirical matrix. The proposed features can be exploited

within an empirical matrix of DCT coefficients which some most significant

bit planes were deleted. We obtain four empirical matrices and fuse resulted

features from these matrices which have been employed for steganalysis. This

technique can detect PQ embedding on stego images with 77 percent detection

accuracy on mixed embedding rates between 0.05 − 0.4 bits per non-zero

DCT AC coefficients (BPNZC). Comparing the results, we also show that the

detection rates are effectively comparable with respect to current steganalysis

techniques for PQ steganography.

c© 2010 ISC. All rights reserved.

1 Introduction

Information hiding has become the focus of many re-
searches in recent years. This is the art of hiding a
message signal in a host signal, such as audio, video,
and still images without any imperceptible distortion
of the host signal. To embed a message, the host signal
is slightly modified by embedding techniques. With
the broad dissemination of large amounts of digital
media, the digital images have become a popular cover
medium for steganography tools, and these tools can
be downloaded freely from the Internet [1, 2]. In re-
cent years, several steganographic techniques, such as
Outguess [3], Model-Based (MB) [4], F5 [5], and PQ
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[6] have been presented for JPEG images.

Steganalysis is the art of detecting and discovering
such covert messages. A steganalysis method attempts
to detect the presence/absence of an embedded mes-
sage, when presented with a stego signal. The huge
diversity of natural images and the wide variation of
data embedding algorithms make steganalysis a tough
mission [7]. Several steganalysis techniques have also
been proposed in the literatures. Farid et al. presented
a general steganalysis scheme based on the high or-
der statistics of the image in the wavelet domain [8].
They decomposed images with separable quadrature
mirror filters and obtained these statistics as features
for steganalysis. To attack advanced JPEG stegano-
graphic techniques, these features couldn’t adequately
perform steganalysis.

Shi et al. proposed a universal steganalysis system
in [9]. The statistical moments of characteristic func-

ISeCure



120 Detection of PQ Steganography Based on Empirical Matrix —M. Abolghasemi, H. Aghaeinia, and K. Faez

tions of the image, its prediction-error image, and their
discrete wavelet transform (DWT) subbands were se-
lected as features. All of the low-low wavelet subbands
were also used in their system. In [10], Fridrich de-
veloped a feature-based steganalysis (FBS) scheme.
She obtained a set of distinguishing features from
the DCT and spatial domains. She decompressed the
JPEG image and then cropped its spatial represen-
tation by four lines of pixels in both horizontal and
vertical directions and again compressed it, and esti-
mated the statistics of the original image. She used
a set of functions that operate on both spatial and
DCT domains and obtained the difference between
the statistics from the image and its original estimated
version. The current stegnalysis methods are success-
ful in breaking some steganography techniques such
as Outguess, MB and F5, but Perturbed Quantiza-
tion (PQ) steganography is a quite successful data
hiding method for which current steganalysis methods
failed to work [11]. In other words, the current ste-
ganalysis methods can follow. Gökhan et al. proposed
singular value decomposition (SVD)-based features
for the steganalysis of JPEG-based PQ data hiding in
images [12]. They showed that JPEG-based PQ data
hiding distorts linear dependencies of rows/columns
of pixel values, and proposed that the features can be
exploited within a simple classifier.

Sullivan et al. [13] presented a steganalysis tech-
nique based on the Markov chain model which cap-
tures the inter-pixel dependencies in the image. Be-
cause the size of the calculated empirical transition
matrix is very large, e.g., 65536 elements for a gray-
level image for a bit depth of 8, its elements cannot
be used as features directly. The authors selected sev-
eral largest probabilities along the main diagonal, to-
gether with their neighbors, and randomly selected
some other probabilities along the main diagonal as
features, resulting in a 129-dimensional (129-D) fea-
ture vector. This technique was designated to attack
Spread Spectrum (SS) data hiding.

Pevny et al. [14] obtained a set of distinguishing
features from an image and its original estimated
version was obtained through a set of functions that
operated on both spatial and DCT domain. They also
merged these features with Markov transition features
which were proposed by Shi et al. [15] and used these
features for steganalysis of JPEG images.

Normally, natural images tend to be continuous
and smooth. The correlation between adjacent pix-
els or their DCT coefficients is strong. The hidden
data may often be independent of the cover media.
The steganography process may change the continuity,
causing random variations or reducing the correlation
among adjacent pixels, coefficients, bitplanes and im-

age blocks. Discovering the difference of some statisti-
cal characteristics between the cover and stego media
becomes the key issue in steganalysis. Some depen-
dencies between DCT coefficients are affected by PQ
embedding due to random modifications on discrete
cosine transform (DCT) coefficients. In this paper, we
extract features from Empirical Matrix (denoted by
EMBS) and the changes of dependencies are analyzed
by the empirical matrix [16]. By a statistical hypothe-
sis test, we justify the effectiveness of the features and
then use these features to build a classifier to classify
the cover and the stego-images which were embedded
using the JPEG-based PQ steganography method.

The rest of the paper is organized as follows. In
Section 2 we briefly review the perturbed quantization
steganography and investigate its effect on bitplanes
of DCT coefficients. We describe our algorithm for
extraction of the features from empirical matrix in
Section 3. Then in Section 4 we present experimental
results and investigate the different feature vectors and
their combination for steganalysis. By comparing our
algorithm with other steganalysis methods, we present
the results in this section. Finally, the conclusions are
drawn in Section 5.

2 PQSteganography and its Effects on
Bitplanes

The PQ embedding technique was proposed by
Fridrich et al. [7]. The quantization is perturbed ac-
cording to a random key for data embedding, therefore
called “Perturbed Quantization” (PQ) steganogra-
phy. This method is different from its DCT-based
counterparts, because it uses JPEG compression for
information reducing operation. In other words, the
message is embedded while the cover image undergoes
compression with a lower quality factor, where only a
selected set of DCT coefficients could be quantized
to an alternative bin with an error smaller than
some preset value. The embedding operation requires
solving a set of equations in GF(2) (Galois Fields
2) arithmetics. Finding the solution to the system
requires finding the rank of a k*n matrix, which is
computationally intensive. Therefore, to speed up the
embedding process, the image is broken into blocks of
smaller size, and the system is solved independently
for each block. In [11], Kharrazi et al. measured the
detection rates for three blind methods of steganalysis
used on a variety of steganography schemes. The term
“cover” is somewhat ambiguous for PQ JPEG hiding.
The original source, from which the stego image is
generated, is a once-compressed image. However,
PQ is designed to mimic twice-compressed images.
Because of this ambiguity, Kharrazi et al. measure
the detection rates of two cases, with the source
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Figure 1. Changes of the first three bitplanes for 100 images due to PQ embedding (0.4 BPNZC)

(single-compressed) images and comparing with re-
compressed (i.e., double-compressed) images. For the
first case, the detection is found to be possible, but
for the second case, it means the detection rates were
essentially random. We implemented the code for this
technique and obtained a stego data set created with
message lengths of 0.05, 0.1, 0.2, and 0.4 BPNZC. In
order to minimize the influence of the JPEG recom-
pression, we used the recompressed images without
data embedding as the cover image dataset. The re-
compressed images with data embedding were used as
the stego-image dataset which guarantees that the dif-
ferences between the cover image and the stego-image
were solely caused by the steganography itself.

In our proposed scheme, we apply a pre-processing
to the image before feature extraction. This pre-
processing is deletion of some of the most significant
bitplanes of DCT coefficients. We investigate the
embedding effects on bitplanes.

If we consider the absolute of DCT coefficients
as bitplanes, most of these changes are in the lower
significant bitplanes. To investigate these changes, 100
images were tested with different embedding rates. We
calculate the changes of different bitplanes of these
images with respect to cover images. For example the
changes for the first three bitplanes (least significant
bits) are shown in Figure 1 for the embedding rate of
0.4 BPNZC. Average changes for different bitplanes
of DCT coefficients bitplanes are shown in Figure 2
Also the percentages of these changes are shown in
table 1. As it can be noticed, most of the changes are
in the least significant bitplanes of DCT coefficients,
and the embedding processes have small effects on the
most significant bitplanes. These changes are rapidly
decreased for more than 3 bitplanes that is more than
95 percent of the changes which happened in the first

Table 1. Percentage of changes on each bitplane for different

embedding rates

Embedding

Rate

0.1

BPNZC

0.2

BPNZC

0.4

BPNZC

B1 80.65 84.39 79.40

B2 14.01 11.77 15.12

B3 3.74 2.64 3.89

B4 1.07 0.76 1.07

B5 0.36 0.29 0.35

B6 0.13 0.11 0.12

B7 0.05 0.03 0.05

3 biteplates. Therefore we expect that the deletion of
most significant bitplanes of the DCT coefficients has
not affected the steganalysis performance.
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Figure 3. Feature extraction from DCT confidents

3 Proposed Steganalysis Method

In the previous work, we presented a scheme based on
the empirical matrix for LSB data hiding method [17]
and provided some insights that have motivated our
steganalysis method in attacking PQ steganography.
Specifically, we investigated higher order statistics
in the DCT domain to attack PQ steganographic
technique [16]. Indeed in this paper we have extended
our work for steganalysis of PQ steganography.

The values of the neighbor DCT coefficients in
natural images are often correlated. After the data
embedding, however, the correlations between the
DCT coefficients have been reduced. We consider the
asymmetry of the empirical matrix and considering all
elements of empirical matrix to construct the feature
vector.

The empirical matrix, similar to the co-occurrence
matrix can be recognized as a matrix forming the
two-dimensional normalized histogram or used to es-
timate the joint probability mass function (PMF) of
an arbitrary source. This matrix is defined over an
image or its coefficients to be the distribution of co-
occurring values at a given offset. Mathematically, an
empirical matrix M is defined over an n×m matrix
I, parameterized by an offset (dx, dy) as [18]:

Md(m,n) =

{(x, y) | I(x, y) = m, I(x + dx, y + dy) = n}

The proposed method is depicted in Figure 3. As
it is shown, first we read the DCT coefficients from
JPEG file and construct DCT matrix from 8× 8 DCT
blocks (Figure 4), that is, we have the DCT matrix
with the same size of an image. Then we obtain the
absolute DCT values and consider only p-bitplanes
(p is between 1 to 4) of the DCT coefficients for re-
construction of the DCT matrix which means, for
feature dimension reduction, we delete most signifi-
cant bitplanes and afterward, calculate the empirical
matrix. Having these bitplanes removed, in addition
to obtaining feature vector with lower size, we also
highlight the effects of embedding process.

As shown in Figure 4 we consider the different di-
rections i.e., 0◦, 45◦, 90◦, 135◦, and dx=dy=d. We cal-
culate four co-occurrence matrices, M1

d, M2
d, M3

d, and
M4

d respectively. From these matrices, we calculate
the resultant co-occurrence matrix as follows:

0

4590135

Figure 4. Construction of DCT matrix from 8∗8 DCT blocks
and directions for computing empirical matrices

Md = (M1
d + M2

d + M3
d + M4

d)/4

We generate the following feature vectors:

Md = reshape(Md(I))

= {D−2p+1|...|D0|...|D2p |D2p−1}

Where p = 1, 2, 3, 4 and d = 1, 2, 3, 4 and reshape is
converting the matrix to vector with concatenation of
the rows of the matrix together. If we have 8 bitplanes
the size of the feature vector will be 65536 and if we
have 3 bitplanes the size of the feature vector will be
64.

Our algorithm for calculation of the feature vector
can be summarized as following:

Algorithm Feature Calculation

Step 1. Read the DCT coefficients from JPEG file
and construct a DCT matrix.

Step 2. Take the absolute values of DCT coeffi-
cients and reconstruct with least significant bit planes
(Delete most significant bit planes).

Step 3. Calculate empirical matrices for different
direction and obtain the mean of them and reshape
each matrix to reach the feature vector.

4 Experimental Results

We used an image database partly consisting of 3000
JPEG images. Members of our research group in dif-
ferent places took some of these images (1650) at dif-
ferent time with different digital cameras. We down-
loaded the other 1350 images from the Internet [19].
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Figure 5. Some examples of database images
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Figure 6. True detection rates for different embedding rates (T=(TN+TP)/2)

The quality of images is more than 80. These images
were downsized to 512× 768 and were saved in BMP
format. This was done to minimize JPEG compression
artifacts. Then these images were converted to gray
level images and were saved with factor 80 quality.
These test images contained a variety of images includ-

ing bright colours, reduced and dark colours, textures
and fine details, and we utilized them to generate
different stego images for evaluation of our method.
Some of these images are shown in Figure 5. For each
image in the database, we have prepared stego-images
generated by the PQ JPEG steganographic technique.
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Table 2. Performance for steganalysis of PQ steganography for different bitplanes and distance d (0.05 BPNZC) (TN stands for

true negative rate, TP for true positive rate, and T for detection accuracy T=(TN+TP)/2)

1B 2B 3B 4B

TP NT T TP NT T TP NT T TP NT T

d = 1 54.18 55.08 54.58 54.65 55.02 54.83 55.84 55.95 55.89 51.53 51.57 51.55

d = 2 49.39 49.36 49.38 51.31 51.31 51.31 49.55 49.54 49.55 46.27 46.06 46.17

d = 3 49.36 49.39 49.37 51.72 51.69 51.70 49.75 49.72 49.73 48.08 47.98 48.03

d = 4 45.71 45.95 45.83 49.21 49.04 49.13 46.77 47.01 46.89 45.66 45.22 45.45

fusion 57.12 57.24 57.18 66.35 65.97 66.16 66.89 66.90 66.89 66.07 65.72 65.89

Table 3. Performance for steganalysis of PQ steganography for different bitplanes and distance d (0.1 BPNZC)

1B 2B 3B 4B

TP NT T TP NT T TP NT T TP NT T

d = 1 56.22 57.36 56.74 62.43 65.48 63.79 66.23 67.53 66.86 61.70 63.04 62.33

d = 2 51.14 51.95 51.44 54.90 55.60 55.23 55.69 55.99 55.83 55.77 53.84 53.81

d = 3 50.37 51.18 50.57 55.62 55.98 55.80 56.15 57.28 56.67 52.51 52.90 52.69

d = 4 53.44 53.85 53.64 53.44 53.85 53.64 52.46 53.07 52.73 48.05 48.09 48.07

fusion 59.27 59.14 59.20 73.72 74.86 74.28 78.59 77.28 77.92 80.15 81.04 80.59

Table 4. Performance for steganalysis of steganography for different bitplanes and distance d (0.2 BPNZC)

1B 2B 3B 4B

TP NT T TP NT T TP NT T TP NT T

d = 1 57.24 58.37 57.77 62.70 65.17 68.83 67.20 69.03 68.07 63.72 64.75 64.20

d = 2 52.13 52.44 52.27 56.49 56.85 56.67 58.52 58.60 58.56 53.98 53.94 53.96

d = 3 51.37 52.26 51.70 56.03 59.09 56.06 56.58 57.49 57.01 54.78 55.04 54.91

d = 4 54.21 51.72 51.44 54.10 55.94 54.85 53.00 55.00 54.00 52.04 52.06 52.05

fusion 59.83 59.07 59.43 76.86 78.22 77.52 80.26 81.99 81.10 81.60 83.09 82.33

Table 5. Performance for steganalysis of PQ steganography for different bitplanes and distance d (0.4 BPNZC)

1B 2B 3B 4B

TP NT T TP NT T TP NT T TP NT T

d = 1 57.24 59.45 58.20 61.29 63.74 62.39 65.81 66.88 66.33 64.34 65.95 65.09

d = 2 51.02 51.16 51.08 55.22 55.79 55.49 57.06 57.43 57.23 53.39 53.68 53.52

d = 3 51.25 52.10 51.53 54.40 54.94 54.64 56.23 57.10 56.63 54.23 54.41 54.32

d = 4 50.97 51.00 50.98 53.92 54.41 54.15 53.43 54.28 58.81 57.46 59.31 58.28

fusion 59.10 59.03 59.06 74.53 74.06 74.28 77.77 77.74 77.73 86.13 82.95 84.45

As mentioned before we generated cover and stego-
images with PQ for different embedding rates between
0.05 to 0.4 BPNZC.
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Figure 7. ROC curves for different embedding rates and bitplanes

4.1 Experimental Results for Different Fea-
ture Vectors

For testing the effects of different bitplanes, we extract
features for different cases. For different distances,
d = 1, 2, 3, 4, we calculate four empirical matrices. So
we have 16 feature vectors as F p

d where p = 1, 2, 3, 4
and d = 1, 2, 3, 4. We also consider the fusion of the
feature vectors by concatenating the features:

Ffus = norm{F p
1 |F

p
2 |F

p
3 |F

p
4 }

For Ffus the size of the feature vector will be 4 times
as large as F p

d . We extract these features for cover
and stego images with different embedding rates 0.05,
0.1, 0.2, and 0.4 BPNZC and obtain the performance
results. We adopt support vector machine (SVM) with
Gaussian kernel as the classifier in our experiments

(MATLAB Ver. 7.3). In the classification process, we
randomly select half of the original images and the
corresponding half of the stego-images for training and
the remaining half pairs of the cover images and stego-
images for testing the trained classifier. These results
are shown in Figure 6 and more detailed results are
also presented in tables 2 to 5. As it can be observed,
for the fusion case the performance is increased by
fusing the features and considering more than one
bitplanes.

Receiver operating characteristics (ROC) curves of
Ffus are depicted in Figure 7. By considering four
bitplanes, the dimension of the feature vector Ffus is
4×256 and we obtain 65.9, 80.6, 82.3, and 84.5 percent
detection rates for 0.05, 0.1, 0.2, and 0.4 BPNZC
embedding rates respectively.
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Table 6. Performance for steganalysis of PQ steganography for different steganalysis methods

Embedding Rate

(BPNZC)
WBS FBS SVBS F-274 Proposed

0.4 61.35 64.3 78.2 85.5 84.45

0.2 53.8 54.54 76.67 81.2 82.33

0.1 50.1 51.1 71.13 79.2 80.59

0.05 49.8 50.3 68.2 63.2 65.89

Combined
embedding rates

54.1 56.3 73.2 74.2 76.65
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Figure 8. Comparison results. ROC curves for different embedding rates and algorithms

4.2 Comparison of the Results

In order to compare the results, we have also imple-
mented the steganalysis schemes proposed by Shi et

al. [9] Fridrich [10], Gökhan et al. [12], and Pevny et
al. [14] (denoted by WBS, FBS, SVBS, and F-274,
respectively). Then we applied them to the same set
of images. The same training and testing procedures
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were used and we obtained the detection rates for each
case. The performance of each steganalyzer is sum-
marized in Table 6 for different embedding rates. A
ten-time repetition of the test has led to the experi-
mental results. Also for steganalyzer techniques, the
results as the receiver operating characteristics (ROC)
curves are depicted in Figure 8. As it can be seen in
Table 6 and Figure 8, it is clear that our proposed
scheme outperforms WBS, FBS, SVBS methods by a
significant margin under all embedding bit rates and
comparable with F-274 algorithm for steganalysis of
PQ technique.

5 Conclusions

In this paper, we have proposed an Empirical Matrix-
Based Steganalysis (EMBS) method for the steganal-
ysis of JPEG-based PQ embedding. We have shown
with experimental results that the PQ embedding
distorts dependencies of least significant bit planes
of DCT coefficients and the empirical matrix which
was computed from these bitplanes can capture these
changes. The proposed features can be used for the
steganalysis of JPEG-based PQ. Experimental results
over images indicated the validity of the proposed
scheme. The proposed steganalysis scheme outper-
formed the existing methods [9, 10, 12] by a significant
margin under all embedding bit rates and comparable
with [14] for steganalysis of PQ technique. Although
the size of the features is high (4 × 256), other fu-
sion techniques can be used for size reduction and
performance increase. We investigated these fusion
techniques for future works.
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