
ISeCure
The ISC Int'l Journal of
Information Security

January 2010, Volume 2, Number 1 (pp. 47–66)

http://www.isecure-journal.org

A Context-Sensitive Dynamic Role-Based Access Control Model for

Pervasive Computing Environments

Sareh Sadat Emami a,∗, Saadan Zokaei b

aElectrical Engineering Department, K. N. Toosi University of Technology, Tehran, Iran and
Network Security Center (NSC), Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

bElectrical Engineering Department, K. N. Toosi University of Technology, Tehran, Iran

A R T I C L E I N F O.

Article history:

Received: 9 March 2009

Revised: 28 September 2009

Accepted: 13 December 2009

Published Online: 26 January 2010

Keywords:
Access Control, Pervasive

Computing Environment,

Long-Term Context, Short-Term
Context, Dynamic

Role-Assignment, Dynamic

Permission-Activation

A B S T R A C T

Resources and services are accessible in pervasive computing environments
from anywhere and at anytime. Also, due to ever-changing nature of such
environments, the identity of users is unknown. However, users must be able to
access the required resources based on their contexts. These and other similar
complexities necessitate dynamic and context-aware access control models
for such environments. In other words, an efficient access control model for
pervasive computing environments should be aware of context information.
Changes in context information imply some changes in the users’ authorities.
Accordingly, an access control model for a pervasive computing environment
should control all accesses of unknown users to the resources based upon the
participating context information, i.e., contexts of the users, resources and
the environment. In this paper, a new context-aware access control model is
proposed for pervasive computing environments. Contexts are classified into
long-term contexts (which do not change during a session) and short-term
contexts (which their steady-state period is less than an average time of a
session). The model assigns roles to a user dynamically at the beginning of
their sessions considering the long-term contexts. However, during a session
the active permission set of the assigned roles are determined based on the
short-term context conditions. Formal specification of the proposed model as
well as the proposed architecture are presented in this paper. Furthermore, by
presenting a real case study, it is shown that the model is applicable, decidable,
and dynamic. Expressiveness and complexity of the model is also evaluated.

c© 2010 ISC. All rights reserved.

1 Introduction

Pervasive computing environments (henceforth called
PCEs) contain heterogeneous users and resources.

∗ Corresponding author.

Email addresses: emami@ee.kntu.ac.ir (S. S. Emami),
szokaei@eetd.kntu.ac.ir (S. Zokaei).

ISSN: 2008-2045 c© 2010 ISC. All rights reserved.

Maybe, there exist different sorts of users and services,
which are not even predefined. Nevertheless, users
should be able to use authorized resources and ser-
vices at any time and location [1]. A PCE commonly
includes the following four elements [2]:

I. Devices: Users use these devices to communicate
with the environment (such as PDAs).

II. Pervasive Network: It is an infrastructure that

ISeCure

48 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

enables establishing connections between nodes;
i.e., users’ devices, resources, and service gener-
ators.

III. Middleware: It acts as a medium between the
pervasive network and applications. It manages
connections among the nodes of the network
according to the users’ requests and network
rules.

IV. Applications: Users access the pervasive network
using the applications. In fact, the applications
act as interfaces between users and the middle-
ware.

Since PCEs should involve the interaction of numer-
ous, casually accessible, and often invisible computing
devices, security (specifically access control) is impor-
tant challenge in such environments. An access control
system is incorporated into the middleware in a PCE
to control access requests in the network.

Access Control is the process by which an entity
such as a user gets the right required to perform an op-
eration. Access control in a distributed environment
should be determined as a result of evaluating the
request of an authenticated user for accessing some
resources, against various policies [3]. There are many
authorization mechanisms such as access control list
(ACL), role-based authorization, rule-based authoriza-
tion and identity-based authorization. But these mech-
anisms alone cannot satisfy the access requirements
of distributed environments. Because many factors
affect the access control in such environments, such
as privacy requirements of the requester, attributes
and identities of resources and requesters, and context
properties [4].

In other words, regarding mobility and heterogene-
ity of users in PCEs, context information and users’
attributes play a crucial role in the access control pro-
cess. Dey and Abowd [5] defined context as any infor-
mation that can be used to characterize the situation
of an entity. An entity might be a person, a place, or
an object that is relevant to the interaction between
a user and an application, including the user and ap-
plication themselves. Context may include entities’
attributes, date, time, location, system capabilities,
and any other information about the entities or the
environment.

Following the above discussion, context awareness
is necessary for an efficient access control in PCEs.
This requirement is not covered in traditional access
control models [6] such as Role-Based Access Control
(RBAC) models [7]. The RBAC models have drawn
the attention of recent access control systems since
they are easily administrable, and compatible with the
organizations’ structure. However, RBAC is not an
appropriate model for PCEs, because applying user-

role assignment in such environments is impossible due
to the existence of undefined users. Role management
is also hard due to the existence of numerous roles. Role
and permission assignments are static, and context
information is not taken into consideration in access
control decision procedure [8].

In this paper, we propose a role-based access con-
trol model which is compatible with the PCE prop-
erties. Prerequisite context predicates are defined for
role assignments, and dynamic user-role assignment
is applied in a session according to the changes in con-
text information. Hence, contextual preconditions are
defined for activating roles’ permissions.

The rest of this paper is organized as follows. Section
2 describes related work and other approaches to
access control in pervasive computing environments.
Our proposed access control model is presented in
Section 3; this section contains formal definition of
the model. A case study is demonstrated in Section
4. Section 5 introduces an architecture for the access
control system. Section 6 evaluates the model and the
architecture, and finally Section 7 concludes the paper.

2 Related Work

Every access control approach in pervasive computing
environments uses context. Some of them (e.g., see [9,
10]) use rules for granting permissions, but considering
lots of the objects and subjects in PCEs, rule-based
access control is not an effective solution. Most of the
proposed models for such environments are extended
RBAC; they limit role-permission assignments using
context, but do not assign roles to users dynamically.
Thus, in these models users are supposed to be known.
Also, there are lots of roles and users in these models,
which their management seems impossible in practice.
In this section, some proposed access control models
and frameworks for PCEs are studied.

A context-sensitive access control model based on
RBAC is proposed in [6]. The model has four prede-
fined roles for context management: Context Owner
(CO), Context Provider (CP), Context Broker (CB),
and Context-Aware Service Provider (CASP). They
focus on context information assurance and secure
transmission of context among the pervasive nodes.
The model needs an infrastructure for the collection,
management, and interpretation of context informa-
tion. This model is not a perfect model for PCEs,
because the signaling overhead of periodic polling of
fresh context information and its verification might
be too much for many context-aware infrastructures.
Furthermore, security policies and access control rules
are not observed in the model, and the specification
of security policies with contextual conditions is not

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 49

supported.

Zhang and Parashar [11] proposed a dynamic role-
based access control model that extends the RBAC
model. In this model, roles are assigned to users, analo-
gous to RBAC (static user-role assignment) and users’
roles are activated dynamically based on the context
changes in each session. Two state machines are de-
fined in this model, one for activating users’ roles in
sessions and another for role-permission assignment
for each object based on context changes. There is a
central authorizer which assigns a role state machine
to each user’s agent and changes the active role in the
state machine according to the user’s contexts changes.
Each object has a permission state machine, which is
modified when the contexts change. It means there is
one state machine for each object and one role-state
machine for each user. Since there are numerous users
and objects in pervasive environments, there are too
many state machines in the model that it is almost
impossible to generate. Hence, due to static user-role
assignment and countless state machines for users,
this model is not appropriate for PCEs.

Hengartner and Steenkiste [12] proposed two mod-
els for access control in PCEs; End-to-End and Step-
by-Step models. In the End-to-End model, a source
node validates that the sink node and every middle
node are authorized to receive the requested piece of
information emanating from the source node. The ad-
vantage of this model is that access control is done at
a single point; there are no redundant access control
checks. The drawback of the model is that, it puts a
heavy load on a source node. Also, a request for infor-
mation has to flow through the entire system to the
source node before an access control decision is made.
Intermediate nodes process the request and poten-
tially translate it into different requests. Therefore, the
End-to-End model is more prone to denial-of-service
attacks. In the Step-by-Step model, for each possible
pair of server/client nodes participating in the infor-
mation flow, the server node validates the client node.
The advantage of this model is that it distributes the
access control load over multiple nodes. In addition,
an invalid request can be thrown away immediately by
the first node receiving the request. Thus, this method
is less prone to denial-of-service attacks. The draw-
back of this model is that all nodes need to run access
control. Hence, there might be redundant checks. How-
ever, they introduce their architecture regarding the
Step-by-Step model. In this case some server nodes
must check the situation for sending requests, so poli-
cies are not hidden. In other words, access control is
distributed among some nodes. Receivers make de-
cisions for accesses to themselves and they must get
ensured over their requesters’ authenticity.

CACM, Context-aware Access Control Model,
based on UCONABC , is proposed in [13]. UCONABC

model is based on the following three criteria: 1)
decision factors that consist of Authorizations, oBli-
gations, and Conditions, 2) continuity of decision
being either pre or ongoing with respect to the access
in the question, 3) mutability that can allow updates
on subject or object attributes at different times.
CACM emphasizes on immutable attributes and
defines decision factors (Authorizations, Obligations
and Conditions) according to context information.
Subject and object attributes as well as environmen-
tal situations trigger changes in access privileges.
However, the model does not explain how to define
conditions. In other words, the definition of condi-
tions and context predicates is not clear. Moreover,
due to the infinity of context types, management of
context conditions is almost impossible.

Cerberus, a context-aware security scheme for smart
spaces, is proposed in [10]. The Cerberus core service
of Gaia (a generic computational environment that
integrates physical spaces and their ubiquitous com-
puting devices into a programmable computing and
communication system [14]) aims at capturing con-
text information as much as possible by deploying
different devices and sensors, identifying entities, and
reasoning automatically in order to provide an un-
obtrusive computer environment. Cerberus consists
of four major components: 1) the security service, 2)
the context infrastructure, 3) a knowledge base (that
stores various security policies), and 4) an inference
engine (which performs automated reasoning and en-
forces the security policies). It allows principals to
define context-sensitive policies based on first-order
logic. It expresses context information with context
predicates, and single inference engine evaluates all
the authorization decisions. However, the scheme has
some drawbacks to be used in PCEs. For example,
since the scheme is rule-based, and there are numerous
rules in PCEs, rule management is time-consuming
and not sufficient for real time services. Also, context
fetching in Cerberus consumes a lot of time, which
causes some delay in the decisions.

Shen and Hong [15] presented a context-aware role-
based access control model (CGRBAC) for web ser-
vices. CGRBAC is an extension of RBAC model for
global services (composite services in the web ser-
vices) and context. When a user calls global services
in this model, he/she uses global roles. Global roles
are different from traditional roles, because they hold
the role information from other providers mapped to
them. In CGRBAC model, the user does not select
the activated role directly. Instead, the global role ac-
tivation depends on the security-relevant environmen-
tal context. Local roles activation depends on their

ISeCure

50 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

invocation of corresponding local services (atomic ser-
vices) by global services. Although the model covers
the PCEs regarding heterogeneity of users, it provides
limited services. So, CGRBAC is not a good solution
for multi-purpose environments.

Jafarian and Amini [16] proposed a context-aware
mandatory access control model, called CAMAC,
which preserves the confidentiality and integrity of
information as specified in the traditional mandatory
access control models. Moreover, it handles dynamic
adaptation of access control policies to the context,
and context-sensitive class association. The model is
capable of being deployed in multilevel security envi-
ronments and where the information flow control with
context-sensitive security classes is necessary. Also,
contextual information is represented using the no-
tion of context predicates, and context types. To show
high expressiveness, context information is described
formally. CAMAC uses context information perfectly;
nevertheless it is not convenient for PCEs. Since CA-
MAC is a mandatory access control model, it can be
used in specific environments such as the military ones.

CAP, a context-aware access control model for
PCEs, is proposed in [17]. Although the CAP model is
formed based on the concepts of RBAC model, it tries
to eliminate RBAC drawbacks to be used for PCEs.
As an example, user-role assignment is dynamic in
the CAP model. Context information affects user-role
assignment and roles’ permissions activation in ev-
ery request. Dynamic user-role assignment in CAP
makes heterogeneous user management possible, even
when they are unknown. However, this model has
some drawbacks as follows: 1) it needs to fetch many
context values to make a decision while some of them
may not be used, so it causes high overhead at the exe-
cution time, 2) it does not support role hierarchy, and
3) it uses limited combination of context conditions
for assigning roles or activating permissions.

Our proposed model, named iCAP 1 , is intro-
duced for access control in PCEs. iCAP improves
the CAP model and tries to solve its problems. So,
it is a role-based access control model based on the
RBAC concepts. iCAP defines a role hierarchy which
is assigned to users dynamically at the beginning
of sessions according to the current situations and
context information. So it can control accesses of
heterogeneous and even unknown users. The model
fetches context information when they are needed
for a decision and avoids gathering extra contexts,
because it is too time-consuming.

1 iCAP: improved Context-aware Access control model for

Pervasive computing environments

P-A
Permissions

User-
Session

U-A

RH

Users Roles

Sessions

Constraints

Session-Role

Figure 1. RBAC relational diagram.

3Context-Aware Access Control Model

RBAC model has four main elements including users,
roles, permissions and sessions. There are two sets of
assignments, user assignment (U-A) and permission
assignment (P-A). U-A is a relation that maps some
roles to each user, and P-A assigns some permissions
to each role. Each user can create some sessions and in
each session, he/she has some active roles from their
assigned roles.

RBAC0 is the core of RBAC, in which users are as-
sociated with roles (U-A) and roles with permissions
(P-A). RBAC1 extends RBAC0 by adding role hierar-
chy. In RBAC2, constraints on role assignments and
role activations are added to the core model. The com-
plete RBAC model, i.e., RBAC3, is the combination
of the RBAC1 and RBAC2 models. Figure 1 shows
the entity-relationship diagram of RBAC3 (which we
simply refer to as RBAC).

Although our model, iCAP, is role-based, it is not
really an extension of RBAC. Its definition of roles,
user-role assignment, and permission-role assignment
are different. Roles in RBAC accord with the specific
real roles in the organization. However, in iCAP, roles
are not actually equal to real roles in the organization.
In fact, roles in this model are sets of permissions.
Hence, the role concept in iCAP is more abstract than
that of RBAC.

iCAP is a context-aware model, because context
information affects assigning roles to users and acti-
vating permissions of users’ roles in each request.

3.1 Model Description

There are eight elements in the iCAP model as Users,
Roles, Prms, Sessions, LTC, STC, RAC and RPC.

• Users is a set of current users. Every user has
some roles in each session which are assigned
according to context information.

• Roles is a set of predefined roles in the system.
Role hierarchies in the form of arbitrary partial

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 51

order are defined among roles. The hierarchy im-
plies inheritances of permissions and users’ mem-
berships as well. Each role has some permissions
which are activated in specific conditions.
• Prms is a set of permissions. Each permission

is a pair of object and access right such as
〈book, read〉.
• Sessions is a set of sessions. A user can create

a session and obtain some accesses to objects
during the session. Each session is assigned to
exactly one user; however, each user can create
more than one session (similar to RBAC).
• LTC-Set is a set of Long-Term Contexts (LTC).

Long-term contexts do not change during a ses-
sion with very high probability. Taking ts as the
average session lifetime and µ as an integer vari-
able, LTCs are the contexts whose values do not
change during µ.ts. So, µ should be chosen as
high as possible, to ensure that the probability of
context changes during a session is insignificant.
Selection of LTCs depends on the system and
session lifetime. Assume average session time is
less than 1 or 2 hours and µ is 3, so we can select
date, age, and finger-print as LTCs.
• STC-Set is a set of Short-Term Contexts (STC).

A short-term context may change during a session
frequently. Considering the previous example,
time, location, and CPU load are Short-Term
Contexts. As another example, if average session
time is about 2 days and µ is 3, date would be a
Short-Term Context.
• RAC (Role-Assignment Condition) is the

mapping of role r onto a set of long-term context
conditions. In other words, some long-term con-
text conditions are defined for every role. Roles
are assigned to the session’s user according to
their assignment conditions and current LTC in-
formation at the beginning of a session.
• RPC (Role-Permission Condition) is the

mapping of role r and permission p to a set of
short-term context conditions. It means roles’ per-
mission can be activated if short-term context
conditions are satisfied. For every request of a
user in a session, if at least one of its assigned
roles has the requested permission and its condi-
tions are satisfied, the access permission would
be granted to the user.

According to the above descriptions, contextual con-
straints are applied to the model in two levels. Firstly,
Long-Term Context constraints are applied to the role-
hierarchy and session-role assignments. Secondly, the
role-permission activations are limited with STCs.

Using iCAP, everyone who wants to use services
in the environment, is known as a user with some
roles according to LTC information, even he/she is not

P-A

Session-Role
User-
Session

RH

Users Roles

Sessions

LTC
Constraints-

RAC

STC
Constraints -

RPC

Permissions

Figure 2. iCAP relational diagram.

known before. Then, when the user asks for an access,
the decision will be made considering the user’s roles,
requested permission conditions, and STC information.
Therefore, iCAP succeeds in controlling every user’s
accesses dynamically when conditions are changed.

The iCAP relational diagram is depicted in Figure
2. In the rest of this section, details of all parts of our
model are described.

3.1.1 Context

In iCAP, context predicate is represented as the
triple 〈contexttype, contextrelater, value〉 following
the Gaia project’s proposition [14]. In fact, context
predicate determines the value of a context type
according to the relater. A context predicate is used
to specify both context information and context con-
ditions. When it is used as a context information,
its relater is ”=” and it shows current value of the
context type. When it is used as a context condition,
its relater can be taken from the defined relaters in
CtxRelaterSet, considering the context type. For ex-
ample, 〈Age, ” > ”, 10〉 means if user’s age is greater
than 10, the context condition is satisfied.

As it is already mentioned, for providing dynamic
role assignments and permission activations, context
set (CtxSet) is divided into Long-Term Context Set
(LTC-Set) and Short-Term Context Set (STC-Set),
which is shown in (1). When the value of a context type
does not change in a session with a high probability,
it is therefore defined as a long-term context type;
otherwise, it is known as a short-term context type.
Authentication context types (such as finger-print, ID
card, password, certificate, etc) can be considered as
different types of long-term contexts.

CtxSet = LTC-Set ∪ STC-Set (1)

ISeCure

52 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

LTC-Set⊆LTC-TypeSet×CtxRelaterSet×LTC-V alSet(2)

LTC-TypeSet = Set of long-term context types

CtxRelaterSet = {” = ”, ” 6= ”, ” > ”, ” < ”, ” ≥ ”, ” ≤ ”}

LTC-V alSet = possible values of long-term context types

STC-Set⊆STC-TypeSet×CtxRelaterSet×STC-V alSet(3)

STC-TypeSet = Set of short-term context types

CtxRelaterSet = {” = ”, ” 6= ”, ” > ”, ” < ”, ” ≥ ”, ” ≤ ”}

STC-V alSet = possible values of short-term context types

According to the relation (2), LTC-Set is a set of
long-term context predicates, while every element of
the set contains a long-term context type (an element
of LTC-TypeSet), a context relater (an element of
CtxRelaterSet) and its possible value (an element of
LTC-ValSet). Likewise, the definition of STC-Set is
shown in relation (3), which defines STC-Set as a
subset of short-term context predicates. STC-Set is
a subset of the Cartesian product of short-term con-
text type set (STC-TypeSet), context relater set, and
short-term context value set (STC-ValSet). For every
context type, the set of possible values is a subset of
allowable context values.

Every context type is related to only one type of
the entities. For example, location and fingerprint are
related to users, or temperature and time belong to
the environment. In iCAP, the entity is a user or the
environment that its context information potentially
affects the authorization. Relation (4) shows the entity
set (EntSet) as the union of the environmental entity
set (EnvEntity) (which the environment (env), is the
only element of it) and user set (Users).

EntSet = Users ∪ EnvEntity (4)

Users = Set of users

EnvEntity = {env}

Since every element of LTC-Set is related to either
Users or EnvEntity, LTC-Set can be divided into two
sets of environmental LTCs (E-LTC-Set) and user-
related LTCs (U-LTC-Set). Similarly, STC-Set is the
union of environmental STCs (E-STC-Set) and user-
related STCs (U-STC-Set), as shown in relations (5)
and (6), respectively.

LTC-Set = E-LTC-Set ∪ U -LTC-Set (5)

STC-Set = E-STC-Set ∪ U -STC-Set (6)

According to the division of CtxSet into LTC-Set and
STC-Set, current context information is categorized
into the following groups; LTCI, which is current Long-
Term Context Information, and STCI, that includes

current Short-Term Context Information. Relation (7)
shows the definition of LTCI, which is an element of
the power set of the Cartesian product of EntSet and
LTC-Set. Likewise, STCI is an element of the power
set of the Cartesian product of the EntSet and STC-
Set (i.e., relation (8)). In the following relations, 2S

refers to the power set of the set S.

LTCI = 2(EntSet×LTC-Set) (7)

STCI = 2(EntSet×STC-Set) (8)

3.1.2 Role-Assignment Condition

At the beginning of a session, appropriate roles are
assigned to the session’s user according to the cur-
rent LTCI. So the sufficient LTC conditions need to
be defined for a role assignment. According to the
relation (9), LTC condition set (LTC-Cond) is the
Cartesian product of the power set of U-LTC-Set and
the power set of E-LTC-Set. Also in (10), Role Assign-
ment Condition (RAC) is a many-to-many mapping,
LTC condition-to-role assignment relation. Hence, rac
in (11) is the mapping of role r onto a set of LTC
conditions (LTC-Cond). Formally, rac(r) = {ltcset ∈
2LTC−Cond|(r, ltcset) ∈ RAC}.

LTC-Cond = 2U-LTC-Set × 2E-LTC-Set (9)

RAC ⊆ Roles× 2LTC-Cond (10)

rac(r ∈ Roles)→ 22LT C-Cond
(11)

Henceforth, for every (r, ltcset) ∈ RAC, rac(r).lcond
refers to every ltc∈ ltcset. Also for every (u-set, e-set)∈
ltc, rac(r).lcond(ltc).uset refers to u-set, and
rac(r).lcond(ltc).eset refers to e-set.

Logically, every ltc ∈ LTC-Cond is the logical con-
junction of its elements (i.e., a set of some user-related
LTC conditions and a set of environmental LTC con-
ditions). Moreover, every cset ∈ 2LTC-Cond is the logi-
cal disjunction of its elements. It means if at least one
member of cset (which is a member of the LTC-Cond
set) is satisfied, the role is assigned to the user. Logical
description of rac for every role r ∈ Roles is as follows:

rac(r) =
∨
i∈N

[∧
j∈N

u-ltcij ∧
∧

k∈N

e-ltcik

]
,

u-ltcij ∈ U -LTC-Set, e-ltcik ∈ E-LTC-Set

As an example, assume the role “teacher” is assigned
to a session user in two different situations: 1) when
his/her fingerprint is “f1” and ID is “122”, and he/she
tries on a weekday; or 2) when his/her fingerprint is
“f2”, and he/she tries on a weekday and not in summer.

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 53

rac (teacher) = {{<Fingerprint,”=”, f1> and <ID,”=”, 122345>}
 and {<Day,”=”, weekday>}}

 OR {{<Fingerprint, “=”, f2>}
and {<Day, “=”, weekday> and <Season, “≠ ”, summer>}}

Figure 3. Role-Assignment-Condition Example

r1

r2

r3

r4

Figure 4. A sample of role hierarchy.

So, as shown in Figure 3, role assignment conditions
for the role “teacher” is as follows:

3.1.3 Role Hierarchy

Role hierarchies in iCAP are modeled by a Directed
Acyclic Graph (DAG), whose roles are its vertexes.
Similar to RBAC, role hierarchy defines an inheritance
relationship among roles. In the graph, each edge
represents an inheritance relationship between two
roles. As an example in Figure 4, there is an indirect
relationship from r1 to r3 that means r1 is the parent
of r3, or r1 dominates r3. It is obvious that, every role
dominates itself.

Role hierarchies in RBAC support the concept of
multiple inheritances, which provides the ability to
inherit permission from two or more role sources and
to inherit user membership from two or more role
sources. Thus, according to RBAC [7], if r1 inherits
r2 (r1 � r1), all permissions of r2 are also permissions
of r1, and all users of r1 are users of r2 as well.

Likewise, inheritance relationship in iCAP defines
both the permission inheritance and user inheritance
relationships. In other words, if r1 inherits r2:

• According to the user inheritance, all users of r1
are users of r2. This principle is applied during
the role assignment process. If role r1 is assigned
to a user in a session, consequently role r2 is
assigned to the user in that session.
• Considering the permission inheritance, r1 inher-

its all permissions of r2. It means, if r1 is autho-
rized for permission in a specific situation, defi-
nitely, r2 is authorized for the permission in that
situation.

3.1.4 Session Assignment

Each session belongs to exactly one user. The relation
(12) demonstrates S-U as the mapping of session s
onto a user u.

S-U(s ∈ Sessions) → Users (12)

After a session starts, authorized roles are assigned to
the session’s user. S-R in (13) is the mapping of session
s onto a set of the roles that are authorized. Figure 5
shows the definition of S-R(s). Authorized roles con-
tain direct-roles and indirect-roles. A role rl is a mem-
ber of direct-roles when there is a ltc ∈ rac(r1).lcond
(line 1 in the relation), that LTCI satisfies its users-
related context conditions (line 2 in the relation) and
environmental assignment conditions (line 3 in the
relation). According to the user inheritance relation-
ship when a role is assigned to a user, its children in
the role hierarchies are assigned to the user as well.
Hence, indirect-roles are dominated by direct roles.

S-R(s ∈ Sessions) → 2Roles (13)

Thus, S-R(s) includes roles which are assigned to
the session’s user dynamically when the session starts.
These roles do not change during the session.

3.1.5 Role-Permission Condition

In iCAP, each role has some permissions, which are
activated when their preconditions are satisfied. Per-
mission activation conditions are short-term context
conditions and they are defined statically as Role-
Permission Conditions in the core of the model. In
other words, iCAP activates roles’ permissions ac-
cording to the user-related and environmental STC
conditions that have been defined before, and the
current STCI. According to the relation (14)), STC
condition set (STC-Cond) is defined as the Cartesian
product of the power set of U-STC-Set and the power
set of E-STC-Set. Therefore, in (15), Role Permission
Condition (RPC) is the Cartesian product of roles,
permissions, and the power set of STC conditions.

STC-Cond = 2U-STC-Set × 2E-STC-Set (14)

RPC ⊆ Roles× Prm× 2STC-Cond (15)

Condition definition must follow the permission in-
heritance relationship. Therefore, if role r1 dominates
role r2:

• defined permission set of r2 must be a subset of
defined permission set of r1, and

• for every defined permission of r2, the permission
activation condition of r1 must not be more lim-
ited than the permission activation condition of

ISeCure

54 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

S-R(s)= direct-roles(s) ∪ indirect-roles(s)

direct-roles(s) ={rl ∈ Roles|
1.∃ltc∈ rac(rl).lcond

2.[∀t ∈ LTC-TypeSet,r ∈ CtxRelaterSet, v ∈ LTC-V alSet

[〈t, r, v〉 ∈ rac(rl).lcond(ltc).uset ∧ 〈S-U(s), t, r, v〉LTCI]

∧
3.∀t′ ∈ LTC-TypeSet, r′ ∈ CtxRelaterSet, v′ ∈ LTC-V alSet

[〈t′, r′, v′〉 ∈ rac(rl).lcond(ltc).eset ∧ 〈env, t′, r′, v′〉LTCI]]}
indirect-roles(s) = {rl′ ∈ Roles|rl′ ∈ direct-roles(s)[rl � rl′]}

Figure 5. S-R Relation

r2. Because, if role r2 is authorized for a permis-
sion in a specific situation, role r1 must be autho-
rized for the permission in the same situation.

Considering the aforementioned definitions, permis-
sion activation conditions are divided into two parts
for every role and permission:

• Explicit conditions are explicitly defined for acti-
vating permission p of role r in RPC.
• Implicit conditions are inherited from parents of

the role r for the permission p. Note that, these
conditions are the explicit conditions of the parent
roles.

RPC is the collection of explicit conditions for activat-
ing each role’s permission. Therefore, activation-cond
is defined to return explicit and implicit conditions
for activating a role’s permission. According to (16),
activation-cond is the mapping of role r and permis-
sion p onto a set of STC conditions, which is formally
defined in (17).

activation -cond(r ∈ Roles, p ∈ Prm)→ 22ST C-Cond
(16)

activation -cond(r ∈ Roles, p ∈ Prm) = (17)

{stcset ∈ 2STC-Cond|∀r′ � r, (r′, p, stcset) ∈ RPC}

Henceforth, for every (r, p, stcset)∈RPC, activation-
cond(r,p).xcond refers to stcset, and for every
stc∈stcset, activation-cond(r,p).xcond(stcset).scond
refers to stc. For every (u-set, e-set)∈stc, activation-
cond(r,p).xcond(stcset).scond(stc).uset refers tou-set ,
and activation-cond(r,p).xcond(stcset).scond(stc).eset
refers to e-set.

Logically, similar to LTC-Cond, every stc ∈
STC-Cond is the logical conjunction of its elements
(i.e., a set of some user-related STC conditions and
a set of environmental STC conditions). Also, every
cset ∈ 2STC-Cond is the logical disjunction of its ele-
ments. Moreover, activation-cond(r, p) is the logical
conjunction of explicit conditions for activating the
permission p for every role r′ � r. It means permission
p is activated for role r, if for every role r′ � r and
stc ∈ 2STC-Cond that (r′, p, stc) ∈ RPC, at least one
member of stc (which is a member of the STC-Cond

set) is satisfied. Logical description of activation-cond,
for every role r ∈ Roles and permission p ∈ Prm, is
as follows:

activation-cond(r, p) =
∧

r′�r

[∨
i∈N

[∧
j∈N

u-stcij ∧
∧

k∈N

e-stcik

]]
,

u-stcij ∈ U -STC-Set, e-stcik ∈ E-STC-Set

Table 1is an example of RPC definition for the de-
fined roles in Figure 4. Each ui refers to a user-related
STC condition, and each ei refers to an environmental
STC condition.

3.1.6 Access Control

After a session starts and authorized roles are assigned
to the session’s user, for every access request of the
user, iCAP checks conditions of this permission in
RPC in comparison with STCI. Actually, iCAP checks
the availability of the permission for only root roles in
the assigned role hierarchies (i.e., the direct-roles set
in Figure 5). Because, following the permission inheri-
tance principle, if a role is authorized for a permission,
its children are also authorized for the permission.
Moreover, if at least one activated role is authorized
for the permission, the requested access is permitted.

In (18), Access Decision Function (ADF) is de-
scribed. ADF is the mapping of session s and
permission p onto the decision set (which includes
”Grant” and ”Deny”). Showing in Figure 6, ADF(s,
p) grants the permission p to the session’s user if
there is an assigned role rl (which is a root role in
assigned role hierarchies) that its activation condi-
tions are met in STCI. In other words, a permis-
sion p is activated for role rl if for every stcset ∈
activation-cond(rl, p).xcond (line 1), there exists a
stc ∈ activation-cond(r, p).xcond(stcset).scond (line
2), that STCI satisfies its user-related context condi-
tions (line 3) and environmental context conditions
(line 4).

ADF (s ∈ Sessions, p ∈ Prm) → {Grant, Deny} (18)

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 55

Table 1. A sample of Role-Permission Conditions.

activation-cond(role,prm) Implicit Conditions Explicit Conditions

activation-cond(r1,p) {} {{(u1 and u2) and (e1 and e2)} or {(u1) and (e2 and e3)}}

activation-cond(r2,p) activation-cond(r1,p) {(u3 and u4) and (e3 and e4)}

activation-cond(r4,p) {} {{(u5) and (e6)} or {(u6) and (e6 and e7)}}

activation-cond(r3,p) activation-cond(r1,p) and {(u5 and u6) and (e5 and e6)}

activation-cond(r4,p)

ADF (s, p) =

Grant, if ∃rl ∈ direct-roles(s)

1. [∀stcset ∈ activation-cond(rl, p).xcond

2. [∃stc ∈ activation-cond(rl, p).xcond(stcset).scond

3.[∀〈t∈STC-TypeSet, r∈CtxRelaterSet, v∈STC-V alSet〉∈activation-cond(r, p).xcond(stcset).scond(stc).uset

[〈S-U(s), t, r, v〉 ∈ STCI]]

∧

4.[∀〈t′∈STC-TypeSet, r′∈CtxRelaterSet, v′∈STC-V alSet〉∈activation-cond(r, p).xcond(stcset).scond(stc).eset

[〈env, t′, r′, v′〉 ∈ STCI]]]]

Deny, otherwise

Figure 6. ADF function.

Employee

Librarian

Undergraduate

Postgraduate

Professor

Figure 7. Role hierarchies of the library system.

4 Case Study

In this section, the access control of a university li-
brary is modeled using iCAP. Consider there are two
types of objects in the library, namely reference books
and common books. Users can reserve and borrow
books and also extend their borrowed books or take
them out of the library. Figure 7 demonstrates the
role hierarchies in the system, which covers the Un-
dergraduate student, Postgraduate student, Professor,
Employee, and Librarian roles. Permission set is also
shown in Figure 8.

 Prms = {<ReferenceBooks, Reserving>, // as Res-Ref
 <ReferenceBooks, Borrowing>, // as Brw-Ref
 <ReferenceBooks, Extending>, // as Ext-Ref
 <ReferenceBooks, TakingOut>, // as Tko-Ref
 <ReferenceBooks, Adding>, // as Add-Ref
 <ReferenceBooks, Deleting>, // as Del-Ref
 <CommonBooks, Reserving>, // as Res-Com
 <CommonBooks, Borrowing>, // as Brw-Com
 <CommonBooks, Extending>, // as Ext-Com
 <CommonBooks, TakingOut>, // as Tko-Com
 <CommonBooks, Add>, // as Add-Com
 <CommonBooks, Delete> // as Del-Com
 }

Figure 8. Permission set of the library system.

U-LTC-TypeSet = {Fingerprint, IP-Address, CardID, Card-Pass}
E-LTC-TypeSet = {Season}
U-STC-TypeSet = {Location, BrwRefID (Browed Reference book ID),

BrwRefNo (Number of Browed Reference book), BrwComID
(Browed Common book ID), BrwComNo (Number of Browed
Common book), Delay, ResRefID (Reserved Reference book ID),
ResComID (Reserved Common book ID)}

E-STC-TypeSet = {Date, Time, Day}

Figure 9. Context sets of the library system.

Average session time is assumed around five hours.
So, as Figure 9 shows, required context types are di-
vided into four types of user-related and environmen-
tal long-term contexts, and user-related and environ-
mental short-term contexts.

In Figure 10, required conditions for role assign-
ments are defined according to long-term contexts.

ISeCure

56 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

activation-cond (Professor, Res-Ref) = {{}, {}}
activation-cond (Professor, Brw-Ref) = {{<BrwRefNo,”<”, 3>},

{<Day,”=”, Weekday> and <Time, “<”, EndTime> and
 <Time, “>”, StartTime>}}

activation-cond (Professor, Ext-Ref) = {{<BrwRefID, “=”, RefID>},
{<Day,”=”, Weekday> and <Time, “<”, EndTime> and
<Time, “>”, StartTime>}}

activation-cond (Professor, Tko-Ref) = {{<BrwRefID, “=”, RefID>},
{<Day,”=”, Weekday> and <Time, “<”, EndTime> and
 <Time, “>”, StartTime>}}

activation-cond (Professor, Res-Com) = {{}, {}}
activation-cond (Professor, Brw-Com) = {{<BrwComNo,”<”, 5>},

{<Day,”=”, Weekday> and <Time, “<”, EndTime> and
<Time, “>”, StartTime>}}

activation-cond (Professor, Ext-Com) = {{<BrwComID, “=”, ComID>},
{<Day,”=”,Weekday> and <Time, “<”, EndTime> and
<Time, “>”, StartTime>}}

activation-cond (Professor, Tko-Com)={{<BrwComID,“=”, ComID>},
{<Day,”=”,Weekday> and <Time, “<”, EndTime>
and <Time, “>”, StartTime>}}

Figure 11. Activation conditions for the Professor role.

activation-cond (Postgraduate, Res-Ref) =
 activation-cond (Professor,Res-Ref) and {{<Delay,“=’, 0>}, {}}

activation-cond (Postgraduate, Brw-Ref) =
 activation-cond (Professor, Brw-Ref) and
 {{<BrwRefNo,”<”, 1> and <ResRefID, “=”, RefID>
and <Delay, “=’, 0>}, {}}

activation-cond (Postgraduate, Tko-Ref) =
 activation-cond (Professor, Tko-Ref) and {{}, {}}

activation-cond (Postgraduate, Res-Com) =
activation-cond (Professor, Res-Com) and {{}, {}}

activation-cond (Postgraduate, Brw-Com) =
activation-cond (Professor, Brw-Com) and {{<BrwComNo,”<”,4>}, {}}

activation-cond (Postgraduate, Ext-Com) =
activation-cond (Professor, Ext-Com) and {{}, {}}

activation-cond (Postgraduate, Tko-Com) =
activation-cond (Professor, Tko-Com) and{{}, {}}

Figure 12. Activation conditions for the Postgraduate role.

For instance, the Undergraduate role can be assigned
to a user, when his/her CardID and Card-Pass are
equal to the defined values in rac(Undergraduate) and
he/she does not try in summer.

Figures 11 to 15 show the activation conditions
for the system roles’ permissions. Assume professors
can borrow at most three reference books and five
common books; they can take them out of the library
and extend the borrowing time on their books on loan
(Figure 11).

Considering Figure 12, a postgraduate student can
borrow at most one reference book, if he/she has
already reserved it and does not have any overdue
loans. In a similar situation, they can take the book
out of the library. Postgraduate students can borrow
at most four common books and extend the borrowed
time. They can also take borrowed books out of the
library.

Undergraduate students need to reserve common
books and reference books, firstly. Then they are
allowed to borrow them. An undergraduate student
can borrow one reference book and three common
books at the same time, if he/she is in the library,

activation-cond(Undergraduate, Res-Ref) =
activation-cond (Postgraduate, Res-Ref)and {{}, {}}

activation-cond (Undergraduate, Brw-Ref)=
activation-cond (Postgraduate, Brw-Ref) and
{{<Location,“=”,library>},{}}

activation-cond(Undergraduate, Res-Com) =
activation-cond (Postgraduate, Res-Com) and
 {{<Delay, “=’, 0>}, {}}

activation-cond (Undergraduate, Brw-Com) =
activation-cond (Postgraduate, Brw-Com) and
{{<BrwComNo,”<”, 3> and <ResComID, “=”, ComID>
 and <Delay, “=’, 0> and <Location, “=”, library>}, {}}

activation-cond(Undergraduate, Ext-Com)=
activation-cond (Postgraduate, Ext-Com) and
{{<Delay, “=’, 0>}, {<Date, “≤”, DeliveryDate>}}

activation-cond(Undergraduate, Tko-Com)=
activation-cond (Postgraduate, Tko-Com) and
{{<Delay, “=’, 0>}, {}}

Figure 13. Activation conditions for the Undergraduate role.

activation-cond (Librarian, Res-Ref) = {{<Delay, “=’, 0>, {}}
activation-cond (Librarian, Brw-Ref) = {{<Location, “=”, library> and

<BrwRefNo,”<”, 1> and <ResRefID, “=”, RefID> and
<Delay, “=’, 0>}, {<Day,”=”, Weekday>}}

activation-cond (Librarian, Tko-Ref) = {{<Delay, “=’, 0> and
<BrwRefID, “=”, RefID>}, {<Day,”=”, Weekday> and
 <Time, “<”, EndTime> and <Time, “>”, StartTime>}}

activation-cond (Librarian, Res-Com) = {{}, {}}
activation-cond (Librarian, Brw-Com) = {{<BrwComNo,”<”, 3> and

<ResComID, “=”, ComID> and <Location, “=”, library>},
{<Day,”=”, Weekday>}}

activation-cond (Librarian, Ext-Com) = {{<BrwComID, “=”, ComID>},
{<Date,“≤”,DeliveryDate>}}

activation-cond (Librarian, Tko-Com) = {{<BrwComID,“=”, ComID>},
{<Day,”=”,Weekday>}}

activation-cond (Librarian, Add-Ref) = {{}, {<Day,”=”, Weekday> and
<Time,“<”,EndTime> and <Time, “>”, StartTime>}}

activation-cond (Librarian, Del-Ref) = {{}, {<Day,”=”, Weekday> and
<Time, “<”, EndTime> and <Time, “>”, StartTime>}}

activation-cond (Librarian, Add-Com) = {{}, {<Day,”=”, Weekday> and
<Time,“<”,EndTime> and <Time, “>”, StartTime>}}

activation-cond (Librarian, Del-Com) = {{}, {<Day,”=”, Weekday> and
<Time, “<”,EndTime> and <Time, “>”, StartTime>}}

Figure 14. Activation conditions for the Librarians role.

and has returned all borrowed books by the due date.
Undergraduates can only take common books out of
the library. Figure 13 shows activation conditions for
the Undergraduate role.

Figure 14 explains that librarians are able to add
new books to the library list and delete out-of-order
books from the list. Such actions can only take place
when they are in the library and only during prede-
fined working hours of weekdays. A librarian can bor-
row at most three common books and take them out
on weekdays, if he/she has no overdue loans. More-
over, they are able to borrow one reference book after
reservation, only when they are in the library and only
on weekdays. However, they are not allowed to take
the reference books out of the library. A librarian can
extend borrowing time of common books before their
due dates.

Finally, considering Figure 15, an employee can re-

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 57

rac (Teacher) = {{<Fingerprint,”=”, f1>}, {}} or {{<Fingerprint,”=”, f2>}, {}} or {{<Fingerprint,”=”, f3>}, {}}

rac (Postgraduate) = {{<CardID,”=”, 84026> and <Card-Pass,”=”, jsd4>}, {}} or
{{<CardID,”=”, 84027> and <Card-Pass,”=”, j4nt>}, {}} or

 {{<CardID,”=”, 84028> and <Card-Pass,”=”, 8rh4>}, {}}

rac (Undergraduate) = {{<CardID,”=”, 84110> and <Card-Pass,”=”, frt5>}, {<Season, “≠”, Summer>}} or

 {{<CardID,”=”, 84111> and <Card-Pass,”=”, j45u>}, {<Season, “≠”, Summer>}} or
 {{<CardID,”=”, 84112> and <Card-Pass,”=”, 8rh4>}, {<Season, “≠”, Summer>}} or

 {{<CardID,”=”, 84113> and <Card-Pass,”=”, 9r3r>}, {<Season, “≠”, Summer>}} or
 {{<CardID,”=”, 84114> and <Card-Pass,”=”, mc46>}, {<Season, “≠”, Summer>}} or
 {{<CardID,”=”, 84115> and <Card-Pass,”=”, fhj5>}, {<Season, “≠”, Summer>}} or
 {{<CardID,”=”, 84116> and <Card-Pass,”=”, jd6f>}, {<Season, “≠”, Summer>}}

rac (Librarian) = {{<IP-Address,”=”, 192.162.16.1> and <Fingerprint,”=”, f4>}, {}} or

 {{<IP-Address,”=”, 192.162.16.2> and <Fingerprint,”=”, f5>}, {}} or
 {{<IP-Address,”=”, 192.162.16.3> and <Fingerprint,”=”, f6>}, {}} or
 {{<IP-Address,”=”, 192.162.16.4> and <Fingerprint,”=”, f7>}, {}} or

 {{<IP-Address,”=”, 192.162.16.5> and <Fingerprint,”=”, f8>}, {}}

rac (Employee) ={{<CardID,”=”, 12120> and <Card-Pass,”=”, frt5> and <IP-Address,”=”, 192.162.34.1>}, {}} or

 {{<CardID,”=”, 12121> and <Card-Pass,”=”, j45u> and <IP-Address,”=”, 192.162.34.2>}, {}} or
 {{<CardID,”=”, 12122> and <Card-Pass,”=”, 8rh4> and<IP-Address,”=”, 192.162.34.3>}, {}} or
 {{<CardID,”=”, 12123> and <Card-Pass,”=”, 9r3r> and <IP-Address,”=”, 192.162.34.4>}, {}} or
 {{<CardID,”=”, 12124> and <Card-Pass,”=”, mc46> and <IP-Address,”=”, 192.162.34.5>}, {}}

Figure 10. Role-Assignment-Conditions for the library system.

serve reference books and common books on weekdays
and during working hours, under the circumstances
that he/she is in the library and does not have any
overdue loans. Employees can borrow at most one
reference book as the same constraints as the librar-
ians. But they are not allowed to take the reference
books out of the library. They can borrow two com-
mon books, after satisfying the permission activation
conditions for both the Librarian and the Professor
roles. Additionally, their borrowed books must not be
overdue. Likewise, borrowed common books can be
taken out of the library, when the permission activa-
tion conditions for the Professor and the Librarian
roles are satisfied. An employee is not allowed to ex-
tend the borrowing time of the books.

Implicit conditions are inherited from the parents
of each role in the role hierarchy. For example, the
Employee role inherits explicit conditions of the Pro-
fessor and the Librarian roles for all of its permissions.
Hence, activating condition of the Brw-Com permis-
sion (borrowing a common book) for the Employee
role is as follows:
activation-cond(Employee, Brw-Com) =

activation-cond(Professor, Brw-Com)AND

activation-cond(Librarian, Brw-Com)AND

{{〈BrwComNo, ” < ”, 2〉and〈Delay, ” = ”, 0〉}, {}}
activation-cond(Employee, Brw-Com) =

{{〈BrwComNo, ” < ”, 5〉}, {〈Day, ” = ”, Weekday〉and

〈T ime, ” < ”, EndT ime〉and〈T ime, ” > ”, StartT ime〉}}
AND

{{〈BrwComNo, ” < ”, 3〉and〈ResComID, ” = ”, ComID〉
and〈Location, ” = ”, library〉}, {〈Day, ” = ”, Weekday〉}}
AND {{〈BrwComNo, ” < ”, 2〉and〈Delay, ” = ”, 0〉}, {}}

It is clear that, some conditions may be repeated in
the implementation (such as BrwComNo in the last

activation-cond (Employee, Res-Ref) =
activation-cond (Professor, Res-Ref) and
activation-cond(Librarian, Res-Ref) and
{{<Location, “=”, library>}}, {<Day,”=”, Weekday> and
<Time, “<”, EndTime> and <Time, “>”, StartTime>}}

activation-cond (Employee, Brw-Ref) =
activation-cond (Professor, Brw-Ref) and
 activation-cond (Librarian, Brw-Ref) and
 {{}, {}}

activation-cond (Employee, Res-Com) =
activation-cond (Professor, Res-Com) and
activation-cond (Librarian, Res-Com) and
{{<Delay, “=’, 0> and <Location, “=”, library>},
{<Day,”=”, Weekday> and <Time,“<”, EndTime>
 and <Time, “>”, StartTime>}}

activation-cond (Employee, Brw-Com) =
 activation-cond (Professor, Brw-Com) and
 activation-cond (Librarian, Brw-Com) and
{{<BrwComNo,”<”, 2> and <Delay, “=’, 0 >}, {}}

activation-cond (Employee, Tko-Com) =
activation-cond (Professor, Tko-Com) and
activation-cond (Librarian, Tko-Com) and
 {{<Delay, “=’, 0>}, {}}

Figure 15. Activation conditions for the Employee role.

example), but they are gathered just one time and so
this problem does not increase the execution time.

Using these definitions, now we follow a scenario.
Assume that Bob is a user. He connects to the library
system, and starts a new session. First of all, he is
assigned to a session, called s1; i.e., S-U(s1) = Bob.
Suppose long-term context information at this time
is as follows:

LTCI = {〈Bob, IP -Address, ” = ”, 192.162.16.1〉,
〈Bob, F inger-Print, ” = ”, f4〉, 〈Bob, CardID, ” = ”, 12345〉,
〈Bob, Card-Pass, ” = ”, jsd4〉}

ISeCure

58 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

Regarding LTCI and RAC, assignment conditions
of the Postgraduate and Librarian roles are satis-
fied. However, the Undergraduate role is assigned
implicitly to this session, because it is the child of
the Postgraduate role in the role hierarchies. Hence,
session assigned roles are as follows: S-R(s1) =
{Postgraduate, Undergraduate, Librarian}. As-
sume STCI is as follows:

STCI ={〈Bob, BrwRefNo, ”=”, 0〉, 〈env, Day, ”=”, F riday〉,
〈Bob, Delay, ” = ”, 0〉, 〈Bob, Location, ” = ”, home〉,
〈Bob, ResRefID, ” = ”, RefID〉}

Now Bob sends a request for borrowing a reference
book. The decision function (ADF) checks activation
conditions of this permission for the Librarian and the
Postgraduate roles. Role-Permission-Conditions for
these roles and borrowing reference book permission
are as follows:

activation-cond(Librarian, Brw-Ref) =

{{〈Location, ” = ”, library〉and〈BrwRefNo, ” < ”, 1〉
and〈ResRefID, ” = ”, RefID〉and〈Delay, ” = ”, 0〉},
{〈Day, ” = ”, Weekday〉}}

activation-cond(Postgraduate, Brw-Ref) =

activation− cond(Professor, Brw-Ref) AND

{{〈BrwRefNo, ” < ”, 1〉and〈ResRefID, ” = ”, RefID〉
and〈Delay, ” = ”, 0〉}, {}}

activation-cond (Postgraduate, Brw-Ref) =

{{〈BrwRefNo, ” < ”, 3〉}, {〈Day, ” = ”, Weekday〉and

〈T ime, ” < ”, EndT ime〉and〈T ime, ” > ”, StartT ime〉}}
AND

{{〈BrwRefNo, ”<”, 1〉and〈ResRefID, ”=”, RefID〉
and〈Delay, ” = ”, 0〉}, {}}

Activation conditions of the Brw-Ref permission
are not satisfied for the librarian role, but activation
conditions of the permission for the Postgraduate role
are satisfied. Thus, ADF assigns Grant to this request
in the session and Bob can borrow the reference book.

As another example, consider STCI defined as fol-
lows:

STCI = {〈Bob, BrwRefNo, ” = ”, 0〉, 〈Bob, Delay, ” = ”, 0〉,
〈Bob, ResRefID, ”=”, RefID〉, 〈Bob, Location, ”=”, home〉,
〈env, Day, ” = ”, Saturday〉}

Now if Bob sends the request again, ADF assigns
Deny to the request of borrowing a reference book.
Since Bob’s current location is home and it is Satur-
day, activation conditions of the Brw-Ref permission

for the Librarian and the Postgraduate roles are not
satisfied.

5 Architecture

Due to heterogonous characteristics of pervasive en-
vironments, authorization should be decentralized in
such areas. Hence, PCEs are divided into different do-
mains using different access control systems. Context
gathering is an important part of the access control
process in pervasive computing environments and can
significantly affect the decision. In iCAP, for every
session, roles are assigned to the session user accord-
ing to the long-term contexts. Then, every request of
the user is checked considering the session roles and
short-term contexts. Therefore, access control can be
enforced by two agents; Domain Authority (DA) and
Session Agent (SA). DA creates a session for the user
and assigns authorized roles to the session, while SA
controls the user’s accesses in the session. There is
one DA in every domain which assigns sessions and
roles to users. DA sets up an SA for each session. So,
each session has its own SA that controls access re-
quests. Figure 16 demonstrates components of the
architecture.

Domain Authority (DA) generates sessions for
users and provides long-term context information
(LTCI). It assigns authorized roles to a session user
at the beginning of the session based on the provided
LTCI and prerequisite conditions of the role assign-
ments. Hence, DA updates the S-U and S-R sets in
the domain.

DA contains dynamic and static datasets. Static
datasets include Role-Assignment Conditions (RAC),
Role Hierarchies (RH), and Role-Permission Condi-
tion (RPC); also dynamic dataset is only composed of
Session-Roles (S-R). The basic components of a DA
are as follows:

• Long-Term Context Manager provides long-
term context values from different sources, such
as environmental and user-related sensors. Also
interprets contexts values and stores them in the
specific format as LTCI.
• Session Manager receives requests from ses-

sion’s users, assigns a session and an SA to every
user. Then asks Dynamic User-Role Assigner to
determine the activated roles of the session’s user.
It fills the RPC dataset of the SA according to
the assigned roles.

• Dynamic User-Role Assigner assigns roles to
the session with respect to LTCI, RAC, and RH,
and then, fills S-R dataset.

Session Agent (SA) controls user’s accesses in the
session. It collects short-term context information

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 59

Session Agent (SA)

Domain Authority (DA)

Long‐Term Context
Manager RAC RPC

Session Manager
Dynamic User‐Role

Assigner
Session Request

RH
S‐R

Setting up
session
agents

Short‐Term
Context Manager

 RPC

Permission
Authorizer

Access
request

Access
response

RH

Session Agent (SA)

Short‐Term
Context Manager

RPC

Permission
Authorizer

Access
request

Access
response

RH
….

Figure 16. iCAP architecture.

and evaluates each user’s request considering RPC,
STCI, and assigned roles. If the requested permission
is accepted by the decision function (ADF), the access
is granted, otherwise the request is denied.

SA contains some dynamic datasets which are filled
by DA, including Role-Permission Conditions (RPC)
and Role Hierarchies (RH). These datasets are filled
when an SA is set up. The main components of an SA
are as follows:

• Short-Term Context Manager works as the
same as Long-Term Context Manager in DA,
but it collects Short-Term Contexts Information
(STCI).
• Permission Authorizer makes appropriate de-

cisions about the user’s access requests according
to session roles, role hierarchies, and the prereq-
uisite context conditions for activating the re-
quested permission.

5.1 Compatibility with XACML Standard

XACML [18] is the standard of OASIS for access con-
trol in context-aware environments. XACML consists
of two models: policy language model and data-flow
model.

Policy language model describes access control poli-
cies compatible with XML. The main components of
the model are rule, policy, and policy set.

Figure 17 shows XACML data-flow diagram. Com-
ponents of the model and their relationships are de-
scribed in the diagram. The most important compo-
nents of the model are as follows:

• PAP (Policy Administration Point) collects poli-
cies and makes them available to be used in PDP.

• PDP (Policy Decision Point) makes a decision for
each request by gathering policies from PAP and
necessary contexts from Context Handler.

• PEP (Policy Enforcement Point) manages access
control.

• Context Handler gathers context information
from PIP and resources, and changes XACML
format of showing contexts to native format and
vice versa.
• PIP (Policy Information Point) obtains requested

contexts and sends them for context handler.

First of all, PEP receives an access request and
sends it to Context Handler. Next, Context Handler
notifies PDP with this request, and then, receives
the needed context types from PDP and gathers the
context values from PIP and resources, and then,
transmits them to PDP. After that, PDP makes a
response by fetching policies from PAP and sends
the response to Context Handler. Finally, Context
Handler transmits the request response to PEP and
it obligates the user by this response.

The proposed architecture is compatible with
XACML standard. There are equivalent components
in XACML data-flow model with the proposed archi-
tecture.

Equivalent components of DA and data-flow model
are PEP with Session Manager, Context Handler and
PIP with Long-Term Context Manager, PDP with Dy-
namic User-Role Assigner and PAP with the datasets.

Figure 18a shows DA architecture corresponding to
XACML. As can be seen in the figure, PEP (Session
Manager) sends a request to Context Manager, and
then Context Manager requests the list of required
contexts from PDP (Dynamic User-Role Assigner).

ISeCure

60 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

Access requester PEP Obligation services

PDP

PAP

Context
handler

resource

PIP

environmentSubjects

2) access request 13) obligations

3) request 12) response

4) request notification
5) attributes queries

10) attributes

11) response context

9) resource content

6) attribute query 8) attribute

7a) subject attributes

7c) resource attributes

7b) environment
1) policy

Figure 17. XACML data-flow diagram [18].

Since in iCAP model, PDP knows nothing about the
needed context types at first, context handler has to
collect all context type values and transmit them to
PDP (because every role assignment condition should
be checked). It causes a high overhead in the system,
because all context type values are not usually needed
for assigning authorized roles. To improve execution
time, we change the sequence of PDP and Context
Handler in the data-flow.

Figure 18b shows the improved DA data-flow con-
sidering the XACML data-flow. PEP sends a request
to PDP and PDP requests the needed contexts from
Context Handler. Context Handler receives context
values from PIP and sends it to PDP. This process
(steps 4 to 7) may repeat several times for gathering
all required context values. But, whenever a context
value rejects a role, there is no need to gather other
context values in the role-assignment conditions.

Compatibility of SA architecture with XACML
data-flow can be shown analogous to the DA architec-
ture. As illustrated in Figure 19a, the SA components
can be corresponded to the XACML components in
the following way: PEP and PDP with Permission
Authorizer, Context Handler and PIP with Context
Manager, and PAP with the datasets. According
to the data-flow, PEP notifies Context Handler for
evaluating requests. Context Handler asks required
short-term context values from PDP. Context Han-
dler has to collect all context values that are defined
as role-permission conditions. To improve execution
time, similar to the DA data-flow, we change the SA
data-flow to Figure 19b.

6 Evaluation

To evaluate the proposed model, we have collected a
number of criteria by reviewing the evaluation proce-
dure of various related work. We do not claim that
the criteria set presented here is complete; however,
due to their use in the evaluation of different models,
such criteria can help us to compare iCAP with the
relevant models.

6.1 Decidability and Complexity

Decisions are made by S-R and ADF functions in
iCAP. Thus, for proving the decidability of iCAP, we
should prove these functions are decidable.

Role assignments and permission activations are
based on contextual conditions. Due to the fact that
the set of context types, context values and relaters
are finite, it can be concluded that the role assignment
conditions and role-permission activation conditions
can be checked in a finite time. Likewise, these func-
tions have been implemented and are executed in a
finite time. Therefore, both ADF and S-R functions
are decidable, and as a result iCAP is also decidable.

Figure 20 shows the algorithm of S-R(s), which as-
signs authorized roles to the session s. The function
gathers required user-related LTC values and environ-
mental LTC values according to RAC. To optimize
execution time of the algorithm, a sorted list of long-
term contexts (SLTC) is generated. SLTC is an array
of long-term context types which are arranged in order
of the number of their occurrences in the conditions.
For example, if the Date context type exists in more

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 61

2) Request

PEP‐Session Manager

PDP ‐ Dynamic User‐Role Assigner

PAP Context Manager

1) Session Request 10) Setup an SA

8) Assigning Roles

RH RAC
6) LTCI

5) LTCs‐Query
Ctx‐Handler PIP

3b) Fetching RH
3a) Fetching RAC

4) Request LTCs

7) Result LTCs

RPC

9) Fetching RPC

PAP

PEP‐Session Manager

Context Manager

1) Session Request 12) Setup an SA

10) Assigning Roles

7) LTCI

6) LTCs‐Query
Ctx‐Handler PIP

3) Request LTCs

PDP ‐ Dynamic User‐Role Assigner

RH RAC

5) Needed LTCs

8) LTCI
9) Assigning Roles

4b) Fetching RH
4a) Fetching RAC

RPC

2) Request

11) Fetching RPC

a) DA data-flow based on XACML

b) Improved DA data-flow

Figure 18. Domain authority (DA) data-flow.

conditions than the Age context type, index of Date
is less than index of Age in the array. Role-assignment
conditions are checked, in order of the sorted array.
Contexts which are checked sooner exist in more role
assignment conditions. Thus, they affect acceptance
or rejection of more roles. As a result, using SLTC,
execution time is optimized.

Complexity of the S-R function depends on the num-
ber of long-term context types and roles. Consider l as
the number of long-term context types (including user-
related and environmental LTC types) and r as the
number of roles. So, complexity of the first part of the
algorithm which provides direct-roles is O(r.l2). The

second part of the algorithm which provides indirect-
roles uses depth-first manner for traversing the role
hierarchy graph. If adjacency matrix is used for stor-
ing the graph, the complexity of depth-first traversing
is O(r2). Thus, the complexity of the second part is
O(r3). Hence, the complexity of S-R is O(r.l2 + r3).

Figure 21 shows the algorithm ADF function which
uses activation-cond function for finding activation
conditions of permission p in session s. It checks ac-
tivation conditions of p for every session role, which
is a root role in the assigned role hierarchies. If the
permission activation conditions are satisfied for at
least one session role, ADF returns Grant, otherwise

ISeCure

62 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

2) Request

PEP‐Permission Authorizer

PDP‐Permission Authorizer

PAP Context Manager

1) Access Request 9) Obligation

8) Response

RH RPC
6) STCI

5) STCs‐Query
Ctx‐Handler PIP

3b) Fetching RH
3a) Fetching RPC

4) Request STCs

7) Result STCs

PAP

2) Request

PEP‐Permission Authorizer

Context Manager

1) Access Request 11) Obligation

10) Response

7) STCI

6) STCs‐Query
Ctx‐Handler PIP

3) Request STCs

PDP‐Permission Authorizer

RH RPC

5) Needed STCs

8) STCI
9) Response

4b) Fetching RH
4a) Fetching RPC

a) SA data-flow based on XACML

b) Improved SA data-flow

Figure 19. Session Agent (SA) data-flow.

returns Deny. Complexity of ADF depends on the
number of short-term context types and roles. Sup-
pose n is the number of short-term context types (in-
cluding user-related and environmental STC types)
and r is the number of roles. Thus, the complexity of
the algorithm is O(r.n3). Likewise, depth-first manner
is used for traversing the role hierarchy graph in the
activation-cond function. Thus, the complexity of the
activation-cond function is O(r2). The complexity of
ADF is O(r.n3 + r2).

It is worthwhile to note that, in the context-aware
models, the most time-consuming part is context eval-

uation. In iCAP, this part is performed in an opti-
mal approach by dividing contexts into long-term and
short-term contexts. LTCs are checked at the begin-
ning of a session and thus they do not require to be
checked during a session. However, STCs are evalu-
ated in a session by receiving each access request. This
is one of the main contributions of our model which
makes it more applicable in comparison with other
context-aware models.

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 63

Algorithm 1 S-R(Session s)
for every rl ∈ Roles do

ltc-flag = true
for every ltc ∈ rac(rl).lcond do

for every e-ltc ∈ rac(rl).lcond(ltc).eset in order to SLTC do
value = Fetch(e-ltc− > CtxType, LTCI)
if value does not satisfy e-ltc then

ltc-flag = false
break

end if
end for
for every u-ltc ∈ rac(rl).lcond(ltc).uset in order to SLTC do

value = Fetch(u-ltc− > CtxType, LTCI)
if value does not satisfy u-ltc then

ltc-flag = false
break

end if
end for
if ltc-flag = true then

Add rl to direct-roles
break

end if
end for

end for
for every role rl′ ∈ Roles do

if rl � rl′ then
Add rl′ to indirect-roles

end if
end for
return the union of direct-roles and indirect-roles

Figure 20. Session role assignment algorithm.

6.2 Expressiveness

iCAP supports an unrestricted combination of context
conditions for role assignment and role-permission ac-
tivation. As described earlier, RAC stores the logical
disjunction of the logical conjunction of user-related
and environmental LTC conditions, for every role.
Likewise, the logical disjunction of the logical conjunc-
tion of user-related and environmental STC condi-
tions is stored in RPC for every role and its assigned
permission.

iCAP can express the specifiable constraints in
RBAC, including static and dynamic separation of
duties. Furthermore, it supports the principle of least
privilege. In RBAC, Static Separation of Duties (SSD)
is applied on user-role assignment and role hierarchies
[7]. For user-role assignment, a collection of pairs (rs,
n) is defined, in which rs is a role set and n is a
natural number greater than 1. For every (rs, n), no
user is authorized for n or more roles in rs. SSD on
role hierarchies means two roles are mutually exclusive
only if none of them inherits the other, and no role
can inherit from both. Dynamic Separation of Duties
(DSD) is also a collection of pairs (rs, n). But it means
that for each (rs, n), no user can activate n or more
roles in rs in the same session.

SSD on role hierarchies is applied in iCAP similar
to RBAC. In iCAP roles are assigned to users dynam-
ically at the beginning of the sessions. Hence, we can
apply both SSD and DSD at the role assignment time.
By defining a context type for each pair (rs, n), we can
apply SSD and DSD. For example, we have a pair of
(teacher, student, 2), it means that both teacher and
student roles must not be assigned to a session user,
simultaneously. A long-term context type is defined,
namely T-S, which shows the number of assigned roles
in the set of teacher, student. Then a user-related LTC
condition is added to the teacher and student assign-
ment conditions as 〈T -S, ” < ”, 1〉. When DA assigns
roles to a user, it checks the value of T-S, which is the
number of assigned roles in the set teacher, student ;
if it is less than 1 it assigns the role to the user.

According to the RBAC model, DSD properties pro-
vide extended support for the principle of least privi-
lege. The principle supports the idea that every user
may need different levels of permissions at different
times, depending on the role being performed. These
properties ensure that permissions do not persist be-
yond the time that they are required for performance
of duty. This aspect of least privilege is often referred
to as timely revocation of trust. Since iCAP supports

ISeCure

64 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

Algorithm 1 ADF(Permission p, Session s)
for every rl ∈ direct-roles(s) do

stc-flag = true
for every stcset ∈ activation-cond(rl, p).xcond do

for every stc ∈ activation-cond(rl, p).xcond(stcset).scond do
for every e-stc ∈ activation-cond(rl, p).xcond(stcset).scond(stc).eset
in order to SSTC do

value = Fetch(e-stc− > CtxType, STCI)
if value does not satisfy e-stc then

stc-flag = false
break

end if
end for
for every u-stc ∈ activation-cond(rl, p).xcond(stcset).scond(stc).uset
in order to SSTC do

value = Fetch(u-stc− > CtxType, STCI)
if value does not satisfy u-stc then

stc-flag = false
break

end if
end for
if stc-flag = true then

break
end if

end for
if stc-flag = false then

break
end if

end for
if stc-flag = true then

return ”Grant”
end if

end for
return ”Deny”

activation-cond(Role r, Permission p)
for every role r′ � r do

if exists a stcset ∈ 2STC-CondAND(r′, p, stcset) ∈ RPC then
Add stcset to rpc-set

end if
end for
return rpc-set

Figure 21. Decision function algorithm.

DSD, similar to RBAC, it provides the extended sup-
port for the principle of least privilege.

6.3 Scalability

A suitable access control model for pervasive com-
puting environment must necessarily take scalability
issues into account [8]. In the iCAP model, the envi-
ronment is divided into some domains which are ad-
ministrated individually. In each domain, permissions
are defined according to the domain requirements and
can be activated according to the current context in-
formation. The set of roles are not fixed and new roles
might be added to the model. Furthermore, users are

unknown in the model, and policy rules which are
applied to a user are based on context information.
Hence, the model is intrinsically distributed that im-
poses scalability of the model.

6.4 Dynamicity

RBAC is a static model; it defines user-permission
and role-permission assignments statically. Some ex-
tensions of RBAC such as DRBAC [11] and CGR-
BAC [15]] tried to create a dynamic model based on
RBAC by making it context-aware. However, most of
them use context as conditions for role-permission as-
signment and they do not consider dynamic user-role

ISeCure

January 2010, Volume 2, Number 1 (pp. 47–66) 65

assignment. iCAP not only controls accesses to the
objects and activates the roles permissions according
to the context information, but also assigns roles to
users dynamically based on their context at the begin-
ning of the sessions. In short, iCAP is dynamic in both
user-role assignment and role-permission activation.

7 Conclusion

In this paper, iCAP, a context-aware access control
model for PCEs was proposed. Since iCAP model is
dynamic and scalable, it can control access of heteroge-
neous and unknown users in different situations. Con-
text types are divided into two types of long-term and
short-term ones, according to the average of chang-
ing periods of their values. Both long-term and short-
term contexts are used in decision making. The model
is role-based and dynamically assigns roles to users
according to long-term contexts. Users’ accesses are
limited by short-term context information. The model
was described in a formal manner, and also a real case
study was presented to demonstrate the applicabil-
ity of the model. Likewise, a complying architecture
was proposed for the model, and the model was imple-
mented based on the architecture. Finally, the model
was evaluated based on some common criteria. Thus,
expressiveness and complexity of the model was ex-
amined, also it is concluded that iCAP is applicable,
decidable and dynamic.

References

[1] L. Kagal, T. Finin, and A. Joshi. Trust-based
Security in Pervasive Computing Environments.
IEEE Computer, 34:154–157, 2001.

[2] D. Saha and A. Mukherjee. Pervasive Comput-
ing: A Paradigm for the 21st Century. IEEE
Computer, 36(3):25–31, 2003.

[3] J. L. Vivas, C. Fernandez-Gago, J. Lopez,
and A. Benjumea. A Security Frame-
work for a Workflow-based Grid Develop-
ment Platform. Computer Standards and
Interfaces (being published by ELSEVIER),
doi:10.1016/j.csi.2009.04.001, 2009.

[4] S. Singh and S. Bawa. A Privacy, Trust and Policy
based Authorization Framework for Services in
Distributed Environments. The International
Journal of Computer Science, 2(2):85–92, 2007.

[5] A. K. Dey. Understanding and Using Context.
Personal and Ubiquitous Computing, 5:4–7, 2001.

[6] R. J. Hulsebosch, A. H. Salden, M. S. Bargh,
P. W. G. Ebben, and J. Reitsma. Context Sen-
sitive Access Control. In Proceedings of the
10th ACM Symposium on Access Control Models
and Technologies (SACMAT’05), pages 111–119,

Stockholm, Sweden, 2005.
[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, and

R. Chandramouli. Proposed NIST Standard for
Role Based Access Control. ACM Transactions
on Information and System Security, 4:224–274,
2001.

[8] A. Kern and C. Walhorn. Rule Support for Role-
Based Access Control. In Proceedings of the
10th ACM Symposium on Access Control Models
and Technologies (SACMAT’05), pages 130–138,
Stockholm, Sweden, 2005.

[9] W. Jih, S. Cheng, J. Y. Hsu, and T. Tsai. Context-
aware Access Control on Pervasive Healthcare.
In Proceedings of the IEEE Workshop on Mobil-
ity, Agents, and Mobile Services (MAM), 2005
IEEE International Conference on e-Technology,
e-Commerce, and e-Service, pages 21–28, Hong
Kong, 2005.

[10] J. Al-Muhtadi, A. Ranganathan, R. H. Campbell,
and M. D. Mickunas. Cerberus: A Context-Aware
Security Scheme for Smart Spaces. In Proceed-
ings of the 1st IEEE International Conference on
Pervasive Computing and Communications (Per-
Com 2003), pages 489–496, Fort Worth, Texas,
USA, 2003.

[11] G. Zhang and M. Parashar. Context-Aware Dy-
namic Access Control for Pervasive Applications.
In Proceedings of the Communication Networks
and Distributed Systems Modeling and Simula-
tion Conference, pages 219–225, San Diego, USA,
2004.

[12] U. Hengartner and P. Steenkiste. Access Control
to Information in Pervasive Computing Environ-
ments. In Proceedings of the 9th ACM Workshop
on Hot Topics in Operating Systems (HotOSIX),
volume 9, pages 157–162, Lihue, Hawaii, 2003.
USENIX Association.

[13] F. Pu, D. Sun, Q. Cao, H. Cai, and F. Yang.
Pervasive Computing Context Access Control
Based on UCONABC Model. In Proceedigns of
the IEEE International Conference on Intelligent
Information Hiding and Multimedia Signal Pro-
cessing (IIH-MSP’06), pages 689–692, 2006.

[14] M. Roman, C. Hess, R. Cerqueira, A. Ran-
ganathan, R. H. Campbell, and K. Nahrstedt.
A Middleware Infrastructure for Active Spaces.
IEEE Pervasive Computing, 1(4):74–83, 2002.

[15] H. Shen and F. Hong. A Context-Aware Role-
Based Access Control Model for Web Services. In
Proceedings of the IEEE International Conference
on e-Business Engineering (ICEBE 2005), pages
220–223, 2005.

[16] J. H. Jafarian and M. Amini. CAMAC:AContext-
AwareMandatory Access Control Model. ISe-
Cure: The ISC International Journal of Informa-
tion Security, 1(1):35–54, 2009.

ISeCure

66 Context-Sensitive Dynamic Role-Based Access Control Model —S.S. Emami and S. Zokaei

[17] S. S. Emami, M. Amini, and S. Zokaei. A Context-
Aware Access Control Model for Pervasive Com-
puting Environments. In Proceedings of the In-
ternational Conference on Intelligent Pervasive
Computing (IPC 2007), pages 51–56, Jijo Island,
Korea, 2007. IEEE Computer Society.

[18] T. Moses. eXtensible Access Control Markup
Language (XACML), Version 2.0, 2005. OA-
SIS Standard, Technical Report, Available at
http://docs.oasis-open.org Accessed 01, Mar
2009.

Sareh Sadat Emami received the BS de-
gree in software engineering from Bu-Ali Sina

University, Hamedan, Iran, in 2004 and the
MS degree in IT- secure communication- from

K.N. Toosi Uneversity of Technology, Tehran,
Iran, in 2008. She is currently a member of
the CERT group in Sharif Network Security
Center (security research lab of Sharif Uni-

versity of Technology), Tehran, Iran. Her re-
search interests are Computer Security, Ubiquitous/Pervasive
Computing, Context-Awareness, and Cryptography.

Saadan Zokaei received the MS degree

in electrical engineering from University of
Tehran, Tehran, Iran and the PhD degree in

electrical engineering from the Department of

Communication and Information Technology,
University of Tokyo, Japan in 1994. He is

with the Department of Electrical Engineer-
ing, K.N.Toosi University of Technology. His

current research interests are Information Security, Wireless

Networks, and Next Generation Networks.

ISeCure

	1 Introduction
	2 Related Work
	3 Context-Aware Access Control Model
	3.1 Model Description

	4 Case Study
	5 Architecture
	5.1 Compatibility with XACML Standard

	6 Evaluation
	6.1 Decidability and Complexity
	6.2 Expressiveness
	6.3 Scalability
	6.4 Dynamicity

	7 Conclusion

