
January 2009, Volume 1, Number 1 (pp. 35–54)

http://www.isecure-journal.org

CAMAC: A Context-Aware Mandatory Access Control Model

Jafar Haadi Jafarian a,∗, Morteza Amini a

aSharif Network Security Center, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

A R T I C L E I N F O

Article history:

Received: 26 April 2008

Revised: 4 August 2008

Accepted: 18 August 2008

Published Online: 28 January 2009

Keywords:
Mandatory Access Control,

Multilevel Security, Authorization,

Context Awareness,
Information Flow Control

A B S T R A C T

Mandatory access control models have traditionally been employed as a
robust security mechanism in multilevel security environments such as military
domains. In traditional mandatory models, the security classes associated with
entities are context-insensitive. However, context-sensitivity of security classes
and flexibility of access control mechanisms may be required especially in
pervasive computing environments. To this aim, we propose a context-aware
mandatory access control model (CAMAC) capable of dynamic adaptation
of access control policies to context, and of handling context-sensitive class
association, in addition to preservation of confidentiality and integrity as
specified in traditional mandatory access control models. In order to prevent
any ambiguity, a formal specification of the model and its elements such
as context predicates, context types, level update rules, and operations is
required. High expressiveness of the model allows specification of the traditional
mandatory access control models such as BLP, Biba, Dion, and Chinese Wall.
The model can also be considered as an information flow control model with
context-sensitive association of security classes.

c© 2009 ISC. All rights reserved.

1 Introduction

Access control models govern the access of users to
information based on some specified rules. The pur-
pose of access control is to limit actions or opera-
tions that a legitimate user of a computer system can
perform [1]. As computing technology becomes more
pervasive and mobile services more deployed, appli-
cations will need flexible access control mechanisms.
Unlike traditional approaches to access control, ac-
cess decisions for these applications depend on the
combination of the required credentials of users and
the context and state of the system.

∗ Corresponding author.

Email addresses: jafarian@ce.sharif.edu (J.H. Jafarian),
m amini@ce.sharif.edu (M. Amini).

ISSN: 2008-2045 c© 2009 ISC. All rights reserved.

Unlike discretionary and role-based access control,
mandatory access control models directly address
multilevel security environments where information
is classified based on its sensitivity. However, they
have been deployed in commercial sectors as well [2].
Mandatory access control is a means of restricting
access to objects based on the sensitivity (as repre-
sented by a label) of the information contained in the
objects and the formal authorization (i.e., clearance)
of subjects to access information of such sensitiv-
ity [3]. Specifically, security classes are associated
with every subject and object in the system; and,
access of a subject to an object is granted if some
axioms specified over the security classes of subjects
and objects are satisfied [4].

Numerous context-aware access control models
have been proposed in the literature. However, none
of the models directly target new security require-

36 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

ments of multilevel environments. Since mandatory
access control has traditionally been used in these
environments, a context-aware mandatory access
control model seems the most appropriate choice in
this regard.

In traditional mandatory access control models, ex-
cept for some special cases, security classes associ-
ated with entities are usually permanent and insen-
sitive to context. However, in some systems, we may
need dynamic and context-sensitive association of se-
curity classes. As an example, in most intelligence
agencies, the security level of documents decreases af-
ter a certain time. Moreover, in the forthcoming per-
vasive computing environment, applications in multi-
level security domains need more flexible mandatory
access control policies.

Incorporating context-awareness into mandatory
access control models gives rise to a flexible and
expressive model suitable for management of such
context-aware policies and dynamic class associa-
tions.

In this paper, we propose the Context-Aware
Mandatory Access Control (CAMAC) model capable
of dynamic adaptation of policies with context and
handling context-sensitive class association while
preserving confidentiality and integrity. In fact, CA-
MAC uses Bell-LaPadula and Biba properties to
preserve confidentiality and integrity of information.

Mandatory access control models have tradition-
ally been used in information flow control; and, due
to the context-sensitive class association in CAMAC,
the model can conveniently be considered as an in-
formation flow control model with context-sensitive
security levels.

The rest of the paper is organized as follows. In
the next section, rudimentary concepts of mandatory
access control and context-awareness are reviewed.
In section 3, related work is surveyed. Section 4 for-
mally introduces the CAMAC model. Section 5 pro-
vides a simple system based on CAMAC and ex-
plains its function in an access scenario. In section 6,
the expressiveness of CAMAC is scrutinized. In sec-
tion 7, we show that the CAMAC model is a lattice-
based model; and, due to its context-sensitive security
classes, it can be considered as an information flow
model in which security classes associated with en-
tities are context-sensitive. Finally, CAMAC is eval-
uated and compared to other mandatory models in
various aspects, followed by some conclusions.

2 Preliminaries

2.1 Mandatory Access Control

Numerous mandatory access control models and poli-
cies have been introduced in literature, most impor-
tant of which are Bell-LaPadula [5,6], Biba [7], Dion
[8], and Chinese Wall [2]. Since the Bell-LaPadula and
Biba models are explicitly used in CAMAC, a brief
overview of them is presented here. The Chinese Wall
policy will be further explored in section 6.2.

The Bell-LaPadula (BLP) model aims at preserv-
ing confidentiality and preventing unauthorized dis-
closure of information. Each entity (subject or ob-
ject) has a confidentiality 1 level defined by two com-
ponents: a classification and a set of categories. The
confidentiality levels with dominance (≥) relationship
form a lattice (c1 ≥ c2, s1 ⊇ s2). Let function λ maps
an entity (subject or object) into its confidentiality
level. The principles for reading and writing objects
are given by the Simple Security Property and the *-
Property as defined below.

Simple Security Property (no read-up): A
subject s is allowed to read the object o only if the
confidentiality level of the subject, λ(s), dominates
the confidentiality level of the object, λ(o).

*-Property (no write-down): A subject s is al-
lowed to write into an object o if the confidentiality
level of the object, λ(o), dominates the confidential-
ity level of the subject, λ(s) 2 .

The Biba model [7] aims at achieving integrity
by preventing unauthorized modification of informa-
tion 3 . Biba proposed several integrity policies where
the best known is strict integrity policy, which we re-
fer to as the Biba model; and, is specified in terms of
subjects, objects, and their integrity levels. Assuming
function ω maps an entity into its integrity level, the
principles for reading and writing objects are given
by the Simple Integrity Property and the Integrity
*-Property, as defined below. The principles are the
duals of principles no read-up and no write-down in
the BLP model.

1 In the original paper, the term security level is used. Here,
it is substituted with confidentiality level to prevent semantic
overlap with integrity level in the Biba model.
2 Many practical implementations do not allow write-up

(known as a blind write) and use the restricted *-property
based on which a subject s is allowed to write into an object

o only if λ(s) = λ(o). Since Biba properties are included in

CAMAC, integrity violation in the *-property is of no concern
here; and therefore, the original *-property is used.
3 Bell and LaPadula [5,6] introduced the concept of integrity;
but, their approach has serious flaws.

January 2009, Volume 1, Number 1 (pp. 35–54) 37

Simple Integrity Property (no read-down in-
tegrity): A Subject s is allowed to read object o only
if the integrity level of the object, ω(o), dominates
the integrity level of the subject, ω(s).

Integrity *-Property (no write-up integrity):
A subject s is allowed to write into an object o if
the integrity level of the subject, ω(s), dominates the
integrity level of the object, ω(o).

2.2 Context and Context-Awareness

The term context-aware first appeared in [9] where
context is defined as location, identities of nearby peo-
ple and objects, and changes to those objects. Such
enumerations of context examples were often used in
the beginning of context-aware history systems [10].

Pascoe [11] defines context to be the subset of phys-
ical and conceptual states of interest to a nearby en-
tity. Dey [12] enumerates context as the user’s emo-
tional state, focus of attention, location and orienta-
tion, date and time, objects and people in the user’s
environment.

A well-known definition of context can be found in
Dey et al. [13] as “any information that can be used
to characterize the situation of an entity. An entity
is a person, place, or object considered relevant to
the interaction between a user and an application,
including the user and applications themselves”.

A context-aware system is a system that adapts ac-
cording to its location of use, the collection of nearby
people and object, as well as changes to those ob-
jects over time [9]. Such systems are capable of using
context in providing relevant information and/or ser-
vices to user. In other words, context-aware systems
can extract, interpret, and use context information
and adapt their functionality to the current context
of use [14]. The adaptation process is accomplished
without explicit user interference and aims at enhanc-
ing functionalities and capabilities of the system.

3 Related Work

Many researches aim at applying context-awareness
to the RBAC model. Kumar et al. [15] proposed a
context-sensitive RBAC model that enabled tradi-
tional RBAC to enforce more sophisticated security
policies dependent on the context of an attempted op-
eration. Al-kahtani et al. [16] proposed the RB-RBAC
model, performing role assignment dynamically based
on users’ attributes or other constraints on roles. GR-
BAC [17] incorporates three types of roles; subject
roles which correspond to the traditional RBAC roles,
object roles to categorize objects, and environment
roles to capture environmental or contextual infor-

mation. Employment of such role types in specifica-
tion of access control policies incorporates context-
awareness into the model. Zhang et al. [18] proposed
DRBAC, a dynamic context-aware access control for
pervasive applications. In DRBAC, there is a role
state machine for each user and a permission state
machine for each role. Changes in context trigger
transitions in the state machine. Therefore, a user’s
role and a role’s permission are determined accord-
ing to the context. Georgiadis et al. [19] presented a
team-based access control model that is aware of con-
textual information associated with activities in ap-
plications.

Hu et al. [20] developed a context-aware access con-
trol model for distributed health-care applications.
The model defines context type as a property related
to every participant in an application when it is run-
ning. In simple cases, context type may be a con-
crete property familiar in everyday life, such as time
or location. Context set is defined as a set of context
types. By analyzing the system security requirements,
application designers determine which context types
are to be used to specify access. Context constraint
is a regular expression describing contextual require-
ments. It consists of triples (ct, op, value) in which
ct ∈ ContextSet, op is a logical operator, and value
is a specific value of ct. Authorization policy specifies
which context constraint should be satisfied for a sub-
ject to achieve a specific access to an object. When a
user wishes to acquire a specific permission on an ob-
ject, the system evaluates the corresponding autho-
rization policy and grants the access if the evaluation
is successful.

Ray et al. [21] proposed a location-based manda-
tory access control model by extending the BLP
model with the notion of location. In particular, ev-
ery location is associated with a security level and the
BLP no read-up and no write-down properties are
extended by taking security levels of locations into
consideration. Based on Baldauf et al.’s classification
of context-aware systems [10], the location-based
mandatory access control model can be categorized
as a location-aware system.

However, no general context-aware mandatory ac-
cess control model has been proposed so far. Since
mandatory access control models directly target
multilevel security environments in which entities
are classified based on their trust and sensitivity,
a context-aware mandatory access control model
would be the most appropriate choice in addressing
new security requirements of such environments.

38 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

4 CAMAC:AContext-AwareManda-
tory Access Control Model

CAMAC is a context-aware mandatory access con-
trol model which utilizes contextual information to
enhance expressiveness and flexibility of traditional
mandatory access control models. Incorporation of
context-awareness into the model changes traditional
models in two separate ways. Firstly, contextual infor-
mation can be used to define more sophisticated ac-
cess control policies. In particular, a subject’s access
to an object is contingent on contextual constraints as
well as confidentiality and integrity properties. As an
example, an access control policy might require that
some timing restrictions be satisfied for a subject to
acquire a read access to an object, e.g. time must be
between 8am and 1pm. CAMAC allows definition of
such sophisticated access control policies.

Secondly, the confidentiality and integrity level of
entities can change based on contextual information.
In traditional mandatory models, the levels initially
assigned to entities are not allowed to change based
on the circumstances 4 . For instance, confidentiality
level of objects might decrease as their lifetime in-
creases (and becomes accessible to less trustworthy
subjects). CAMAC also allows such dynamic level as-
sociations based on contextual information.

In addition, like most mandatory models, CAMAC
includes data structures for specification of discre-
tionary policies. Like BLP, CAMAC uses an access
control matrix denoted withD, in which for each sub-
ject s and object o, D[s, o] denotes the access rights
that s can have on o. For the sake of simplicity, details
related to the specification of discretionary policies
are omitted.

Before presenting a formal definition of the model,
we illustrate the motivation for access control mod-
els such as ours through an example application
enabled by a pervasive computing infrastructure in
a smart building of a military environment. The
building has many rooms, including administration
offices, conference rooms, training rooms, etc. Sen-
sors in the building can capture, process, and store
a variety of information all around the building, the
users, and their activities. Pervasive applications in
such an environment allow military forces to access
resources/information from any location at anytime

4 In all mandatory access control models, system administra-
tor is allowed to change security classes associated statically.
In BLP, a subject can change the confidentiality level of an

object under certain conditions. Also, the Lower-water-mark
policy in Biba allows the subject integrity level to decrease in

some circumstances.

using mobile devices (PDAs) and wireless networks.
While classification is still the basis for all the ac-
cess control decisions, the user’s context information
and application state should also be considered. For
example, an officer can only control the audio/video
equipment in a conference room if she/he is scheduled
to present in that room at the time by the manager in
charge. Similarly, the server should not allow access
if its load is above 80% or if the access is over an inse-
cure link. In such applications, privileges assigned to
the user will change as context changes. The above
examples illustrate many of the key ideas of the re-
search presented in this paper. To maintain system
security for such a pervasive application, we have
to dynamically adapt access permissions granted to
users as context information changes. Context infor-
mation includes environment of the user such as lo-
cation and time, where the user accesses the resource
and system information such as CPU usage and net-
work bandwidth. The traditional mandatory models
do not directly address the requirements of such an
application and although many context-aware access
controls have been proposed in the literature, they
are not appropriate for environments where security
is directly contingent upon classification. This paper
aims at presenting a flexible and expressive model ap-
propriate for multilevel security environments where
classification of information is an integral property
of the environment.

4.1 Formal Definition of CAMAC

CAMAC can be formally defined as 9-tuple 〈EntitySet,
RepOf,ConfLvl, IntegLvl, λ, ω, ContextPredicateSet,
ContextSet,OperationSet〉 where

• EntitySet is the set of all entities in the sys-
tem and is composed of four disjoint sets: User,
Subject, Object, and Environment. User,
Subject, and Object sets include users, subjects,
and objects of the system respectively, which are
disjointed. If an entity can play the role of both
a subject and an object, two data structures are
allocated to it; one in the Object set and the
other in the Subject set. The Environment set
has only one member called environment.
EntitySet = User ∪ Subject ∪ Object ∪
Environment
User ∩ Subject ∩Object ∩ Environment = ∅
• RepOf : Subject→ User assigns to each subject

the user who has initiated or activated it. In other
words, for s ∈ Subject, RepOf(s) represents the
user on behalf of whom the subject s acts.

• ConfLvl is a finite ordered set of confidentiality
levels such as 〈cn, cn−1, ..., c1〉 in which cn and c1
are the highest and lowest levels respectively. As
in BLP, each user, subject, and object is associ-

January 2009, Volume 1, Number 1 (pp. 35–54) 39

ated with a confidentiality level. It must be noted
that there is a difference between BLP and CA-
MAC in terms of confidentiality level. While BLP
confidentiality levels are defined by two compo-
nents (a classification and a set of categories),
CAMAC confidentiality levels only include the
first component, i.e. classification. In section 6.1,
we show that the second component, set of cat-
egories, is a contextual information and can be
easily incorporated into the model as a context
type.
• IntegLvl is a finite ordered set of integrity lev-

els such as 〈in, in−1, ..., i1〉 in which in and i1 are
the highest and lowest levels respectively. As in
the Biba model, each user, subject, and object is
associated with an integrity level. Moreover, the
above difference also applies here; i.e. CAMAC
integrity levels are defined by just the classifica-
tion component.
• λ is a mapping function which associates each

user, subject, and object with a confidential-
ity level; i.e., λ : User ∪ Subject ∪ Object →
ConfLvl
• ω is a mapping function which associates each

user, subject, and object with an integrity level;
i.e.,
ω : User ∪ Subject ∪Object→ IntegLvl
• ContextPredicateSet is the set of current con-

text predicates in the system. Each context pred-
icate is a statement about the value of a con-
textual attribute. More details on context pred-
icates are presented in section 4.2.
• ContextSet is an ordered set of context types.

A context type is a property related to ev-
ery entity or a subset of existing entities in
the system. A context type ct ∈ ContextSet
can be formally described as the 5-tuple ct =
〈V alueSetct, OperatorDefinerSetct,
RelatorSetct, EntityTypeSetct, LURSetct〉.
Context types are explored in section 4.3.
• OperationSet is the set of all operations in

the system. An operation can be executed by
a subject on an object under specific circum-
stances; and, may change the state of subject
and object. An operation opr ∈ OperationSet
can be formally defined as the pair opr =
〈AccessRightSetopr, Constraintopr〉. Details of
operations are discussed in section 4.4.

Figure 1 represents a schematic representation of the
CAMAC model.

4.2 Context Predicate

Each context predicate is a predicate representing a
value for a contextual attribute. As in [22] and [23], we

define a context predicate cp ∈ ContextPredicateSet
as the 4-tuple cp = 〈en, ct, r, v〉 where en ∈
{User, Subject, Object, Environment,
V alueSetct1 , ..., V alueSetctn}, ct ∈ ContextSet,
r ∈ RelatorSetct, v ∈ V alueSetct, and ct1, ..., ctn ∈
ContextSet.

For example, 〈John, Location, Is, Classroom〉 is a
context predicate, which indicates the current loca-
tion of subject John.

Managing and updating context predicates is the
responsibility of Context Management Unit (CMU).
The implementation details of CMU are beyond the
scope of this paper. Context Managing Framework
[24], the SOCAM project [25], CASS project [26], Co-
BrA architecture [27], the Context Toolkit [28], and
frameworks presented in projects like Hydrogen [29]
and Gaia [22] can be used as an infrastructure in the
implementation of CMU .

The value set of a context type can be a function
of other primary context types, e.g., a context type
Load would be a function of two primary context
types: CPU Usage and Bandwidth Load. It is the
responsibility of CMU to handle such correlations
among context types, and as such not included in
the model. In general, we assume that CMU up-
dates ContextPredicateSet according to environ-
ment, user, and system changes; and therefore, the
consistency and accuracy of ContextPredicateSet is
permanently preserved.

If 〈E,X,R, V 〉 is a context predicate, X[E][R] will
indicate the value assigned to the entity E for the
context type X and the relator R; i.e., X[E][R] =
V . If such a context predicate does not exist in
ContextPredicateSet, we assume that X[E][R] = ⊥
(read as null).

X[E][R] = V, 〈E,X,R, V 〉 ∈ ContextPredicateSet
X[E][R] = ⊥, 〈E,X,R, V 〉 6∈ ContextPredicateSet

Furthermore, for ContextPredicateSet to be consis-
tent, we assume X[E][R] is associated with a unique
value. That is, (〈E,X,R, a〉 ∈ ContextPredicateSet∧
〈E,X,R, b〉 ∈ ContextPredicateSet)→ a = b

4.3 Context Type

Informally, a context type is a property related
to every entity or a subset of existing entities
in the system. In fact, context type represents
a contextual attribute of the system; e.g., the
time or location of entities. Formally, a context
type ct ∈ ContextSet is defined as 5-tuple ct =
〈V alueSetct, OperatorDefinerSetct, RelatorSetct,
EntityTypeSetct, LURSetct〉.

Figure 2 shows a schematic representation of the

40 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

Figure 1. A schematic representation of CAMAC

Figure 2. A schematic representation of a context type ct

context type ct. More details on each component of
the context type ct are given in the following subsec-
tions.

4.3.1 Set of Admissible Values

V alueSetct denotes the set of values that can be as-
signed to variables of context type ct. For example,
the value set of context type Time can be defined as
V alueSet

T ime
= {n : N|0 ≤ n ≤ 24}.

The value set could be either finite or infinite and
either countable or uncountable. Furthermore, we de-
fine ⊥ as undefined value and assume that it belongs
to all value sets by default.

4.3.2 Operator Definer Set

OperatorDefinerSetct is comprised of a finite
number of functions, each of which defines user-
defined operators on the value set of context

January 2009, Volume 1, Number 1 (pp. 35–54) 41

type ct. Each of the functions requires three ar-
guments; but, the types of the arguments are
different in different functions. Generally speak-
ing, for two arbitrary values A and B related to
V alueSetct and op ∈ a subset of OperatorSet, each
Operator-Definerct determines whether A op B is
evaluated as true or not. Since the signature of each
Operator-Definer function is unique, the signature
must be included along with the definition. The in-
formal signature of an Operator-Definer function is
as follows:

Operator-Definerct : A set of values related to
V alueSetct × A set of operators × A set of values
related to V alueSetct → {true, false}

4.3.3 Set of Admissible Relators

RelatorSetct represents the set of admissible relators
for context type ct. For instance, for the context type
location,RelatorSet

Location
can be defined as follows:

RelatorSet
Location

= {Is, Entering, Leaving}

4.3.4 Set of Admissible Entity Types

EntityTypeSetct denotes the set of entity types re-
lated to context type ct. In fact, EntityTypeSetct is
a subset of the set {Subject, Object, Environment,
V alueSetct1 , ..., V alueSetctn

}

As an example, the context type location repre-
sents a property which is only related to users, sub-
jects, or objects; and therefore:
EntityTypeSet

Location
= {User, Subject, Object}

On the other hand, the context type Time rep-
resents a property which does not concern users,
subjects, and objects; and, it is only related to
the environment. Therefore: EntityTypeSet

T ime
=

{Environment}

As another example, consider a context type
LocationLvl, which assigns a confidentiality level to
each value of context type Location. Then, we have:
EntityTypeSetLocationLvl = {V alueSet

Location
}

4.3.5 Level Update Rules

Each level update rule (LUR) describes how confi-
dentiality or integrity levels of users, subjects, and
objects are updated based on their contextual values
for a typical context type ct. Informally, a LUR ∈
LURSetct is a state machine in which confidentiality
or integrity levels represent states and conditions on
contextual values corresponds to transitions. When a
contextual value of a context type (related to an en-
tity) changes, the conditions are evaluated and the
entity’s (confidentiality or integrity) level is updated
based on the result of the evaluation.

LURSetct denotes a set which itself is comprised
of two sets of LURs: confidential level update rule set
or C-LURSetct and integral level update rule set or
I-LURSetct.

Confidential Level Update Rule Set (C-LURSetct):

C-LURSetct includes confidential level update rules
of type ct (C-LURct). A C-LURct specifies how the
confidentiality level of entities is updated based on
changes in context predicates of type ct. The confi-
dential level update rules of C-LURSetct are gener-
ally divided into four categories:

(1) The category which includes C-LURct,USR and
defines a level update rule for confidentiality
level of users based on changes in their contex-
tual value for context type ct.

(2) The category which includes C-LURct,SBJ and
defines a level update rule for confidentiality
level of subjects based on changes in their con-
textual value for context type ct.

(3) The category which includes C-LURct,OBJ and
defines a level update rule for confidentiality
level of objects based on changes in their con-
textual value for context type ct.

(4) The category which includes a group of
C-LURs in the form of C-LURct,en. Each of
these C-LURs defines a level update rule for
confidentiality level of a special entity based on
changes in its contextual value for context type
ct. For instance, C-LURct,en defines how con-
fidentiality level of an entity en changes based
on its contextual value for context type ct. It
is evident that if C-LURSetct contains a spe-
cialized C-LUR for an entity, it overrides the
general C-LURs defined in other categories.

Inclusion of the above categories in C-LURSetct is
optional; and, C-LURSetct might be even empty.

Integral Level Update Rule Set (I-LURSetct):

I-LURSetct includes integral level update rules of
context type ct (I-LURct). An I-LURct specifies
how integrity level of entities is updated based on
changes in the context predicates of type ct. The
integral level update rules of I-LURSetct are gen-
erally divided into four categories which are defined
analogous to the categories defined for confidential
level update rules. Notice that inclusion of these cat-
egories in I-LURSetct is optional and I-LURSetct

might be even empty.

Confidential/Integral Level Update Rule (LUR):

As mentioned earlier, each LUR is simply a state
machine. Also, LURs are divided into two categories:
C-LURs and I-LURs. For a C-LUR, ConfLvl de-
notes the set of states; and, for an I-LUR, IntegLvl
constitutes the set. The transitions, on the other

42 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

hand, are simply some conditions on contextual val-
ues of entities for a context type. For a LUR to act
in a correct way, we need to store the previous confi-
dentiality/integrity level of an entity before applying
the LUR. The reason for such need will be explained
later. Specifically, we need two extra variables for
every pair of (entity, context-type). For a pair like
(en, ct), these variables are represented by λct(en)
and ωct(en); and, are initialized in the following way:
∀ct ∈ ContextSet, ∀en ∈ (Subject ∪ Object ∪
User).λct(en) = λ(en) ∧ ωct(en) = ω(en)

Each transition is composed of a set of statements,
each of which is a conjunction of two conditions: one
on contextual value and the other one on previous
confidentiality/integrity levels. The transition takes
place if all conditions of all statements are evalu-
ated as true. For instance, suppose in a C-LURct

the following transition is defined: {(Is,≥, 10, (=
, TS)), (Is,≤, 20, (=, TS))}

This transition takes place if the following state-
ment is evaluated to be true:
(ct[en][Is] ≥ 10 ∧ λct(en) = TS) ∧ (ct[en][Is] ≤
20 ∧ λct(en) = TS)
Furthermore, the second condition is optional and can
be equal to (⊥,⊥); since sometimes there is no restric-
tion on the previous confidentiality/integrity level.
Formally, a LURct ∈ (C-LURSetct∪ I-LURSetct) is
defined as the triple LURct = 〈S, V, T 〉 where:

• S represents the set of states, and based on the
type of LUR, it can be equal to either ConfLvl
or IntegLvl.
• V : P (RelatorSetct×OperatorSet×V alueSetct×
PS) defines the alphabet, where
PS : (DomainOprSet ∪ ⊥)× (S ∪ ⊥) and
DomainOprSet = {=,≤,≥, <,>}; and,
• T : S × V → S defines the transition function.

Through an example, we clarify the definition.
Assume ConfLvl = 〈TS, S,C, U〉. Figure 3 de-
picts C-LURAge,OBJ and describes how objects’
confidentiality level is updated based on their Age.
C-LURAge,OBJ simply specifies that the confiden-
tiality level of an object decreases every decade with
the restriction that the confidentiality level of an
object can never decrease more than two levels.

In particular, assume a document named Doc is 10
to 20 years old; and, λ

Age
(Doc) = λ(Doc) = S. When

C-LURAge,OBJ is applied to Doc for the first time,
the following transition is evaluated to be true:

({(Is,≥, 10, (=, S)), (Is,≤, 20, (=, S))})
Therefore, λ

Age
(Doc) = S, λ(Doc) = C. In other

words, the above transition denotes the following
conditional statement:
(Age[Doc][Is] ≥ 10∧λ

Age
(Doc) = S)∧(Age[Doc][Is] ≤

Figure 3. Level update rules of context type Age for objects

20 ∧ λ
Age

(Doc) = S)

As long as the age of Doc is between 10 and 20,
the application of C-LURAge,OBJ on Doc causes no
change in levels, since none of the transitions from
state C to U are evaluated as true. When its age is
changed to above 20, the transition ({(Is,≥, 20, (=
, S))}) is evaluated to true, and thus λ

Age
(Doc) =

C, λ(Doc) = U .

Algorithms for Applying LURs to Entities: We
present two algorithms for applying C-LURs and
I-LURs to entities.

Algorithm 1 is employed to apply a C-LUR rule to
an entity.

Algorithm 1 Apply-CLUR(ct ∈ ContextSet, I ∈
C-LURSetct, e ∈ EntitySet \ {environment})
1: λct(e) = λ(e)

2: for all state s ∈ ConfLvl do
3: for all transition from λ(e) with label

{(r1, op1, v1, PS1), ..., (rn, opn, vn, PSn)} to s do

4: flag = True
5: for i = 1 to n do

6: if not {[PSi = (⊥,⊥) AND

Operator-Definerct(ct[e][ri], opi, vi)]
OR

[PSi = (doi, li) AND

Operator-Definerct(ct[e][ri], opi, vi) AND
λct(e) doi li]} then

7: flag = False
8: end if
9: end for

10: if flag = True then
11: λ(e) = s

12: end if

13: end for
14: end for

In order to preserve the confidentiality level of an
entity before its change, λ(e) is assigned to λct(e).
Next, each transition from state λ(e) to all other
states is evaluated. If the result of the evaluation for

January 2009, Volume 1, Number 1 (pp. 35–54) 43

a transition to a state s is true, s is assigned to λ(e).
If none of the transitions is evaluated to be true, λ(e)
is not changed.

Furthermore, for every statement (ri, opi, vi, PSi)
of a transition, if PSi = (⊥,⊥), then only the first
condition is evaluated; i.e.,
(Operator-Definerct(ct[e][ri], opi, vi)).
However, if PSi 6= (⊥,⊥), then both conditions are
evaluated; i.e.,
Operator-Definerct(ct[e][ri], opi, vi) AND ct(e)doili.
To apply C-LURct to an entity en, Apply-CLUR is
called as follows: Apply-CLUR(ct, C-LURct, en).

Analogously, algorithm 2 is employed to apply an
I-LUR rule to an entity.

Algorithm 2 Apply-ILUR(ct ∈ ContextSet, I ∈
I-LURSetct, e ∈ EntitySet \ {environment})
1: ωct(e) = ω(e)

2: for all state s ∈ IntegLvl do
3: for all transition from ω(e) with label

{(r1, op1, v1, PS1), ..., (rn, opn, vn, PSn)} to s do

4: flag = True
5: for i = 1 to n do

6: if not {[PSi = (⊥,⊥) AND

Operator-Definerct(ct[e][ri], opi, vi)]
OR

[PSi = (doi, li) AND

Operator-Definerct(ct[e][ri], opi, vi) AND
ωct(e) doi li] then

7: flag = False

8: end if
9: end for

10: if flag = True then
11: ω(e) = s

12: end if

13: end for
14: end for

Since the algorithm has minor changes compared to
Apply-CLUR (λ is substituted with ω and ConfLvl
is substituted with IntegLvl), we omit the details
here.

Why Storing Previous Levels of Entities: As
mentioned above, we need two extra variables for
each pair of (e, ct), where ct ∈ ContextSet and e ∈
EntitySet \ {environment}; one of them for stor-
ing previous confidentiality level of the entity before
being changed by one of C-LURs of ct, and another
one for storing its previous integrity level before be-
ing changed by one of I-LURs of ct. These variables
are represented by λct(en) and ωct(en) respectively.

Since, LURs are applied to entities only on special
occasions, for a change in context, it is impossible to
discover whether a LUR has already been applied to
an entity or not. In other words, when a change occurs
in context, there must be a way to recognize whether
this change has already been considered or not.

Figure 4. C-LURct,USR without considering the second con-

ditions

Figure 5. C-LURct,USR considering the second conditions

To illustrate the point, assume ConfLvl =
〈sn, ..., s1〉, ct ∈ ContextSet, and C-LURct,USR ∈
C-LURSetct. C-LURct,USR stipulates that if a con-
dition like α becomes true, the confidentiality level
of the user to which C-LURct,USR is applied must
be incremented only once. α denotes a condition on
ct[u][r] where u ∈ User and r ∈ RelatorSetct.

Assume C-LURct,USR is applied to a user named a
for whom λ(a) = sk. Without considering the second
conditions, assume there is a transition from si to
si+1 for i = 1...n− 1 (see Figure 4).

Now if ct[a][r] changes in a way that α becomes
true, when C-LURct,USR is applied to a for the first
time, λ(a) changes to sk+1. Sometimes later, when
C-LURct,USR is applied to a for the second time, we
have no clue of the fact thatC-LURct,USR has already
been applied to a and λ(a) changes to sk+2.

To solve this problem, the aforementioned variables
are used. Assume the condition λct(a) = si is added
to every transition from the state si to si+1 for i =
1...n− 1 (see Figure 5).

Now the transition occurs for the first time, since
λct(a) = sk, and λct(a) and λ(a) will become equal to
sk+1 and sk respectively. But, the transition does not
take place after the second application, since λct(a) 6=
sk+1.

The Order of LUR Application: The ordering
based on which LURs of different context types are
applied to a specific entity influences the final result.
To clarify this point, assume ConfLvl = 〈sn, ..., s1〉,
ContextSet = 〈ct1, ct2, ...〉, C-LURct1,SBJ ∈
C-LURSetct1 , and C-LURct2,SBJ ∈ C-LURSetct2 .
Also assume that in C-LURct1,SBJ there is a transi-
tion α from si to sj and a transition β from sm to sn

(see the left side of Figure 6), and in C-LURct2,SBJ ,
there is a transition β from sj to sk and a transition
α from si to sm (see the right side of Figure 6). Also
John-Proc ∈ Subject and λ(John-Proc) = sk.

Suppose at some moment, α and β are true.
If C-LURct1,SBJ , is applied to John-Proc before
C-LURct2,SBJ , the final value of λ(John-Proc) is
equal to sk. But, if they are applied in the reverse
order, its final value is equal to sn. As you can see,

44 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

Figure 6. (left) C-LURct1,SBJ , (right) C-LURct2,SBJ

the order of application affects the final result.

To exert an ordering on the LURs of different
context types, we define ContextSet as an ordered
set of context types. So, if for the previous ex-
ample, ContextSet = 〈..., ct1, ..., ct2, ...〉, ct1 has
higher priority to ct2 in this respect; and therefore,
C-LURct1,SBJ is applied before C-LURct2,SBJ .

There is no general method to specify how sys-
tem designer must arrange context types. But, one
method would be to arrange context types based on
their changing rate; i.e., the less the changing rate,
the higher the priority. For instance, assume a sys-
tem includes two context types Age and Location
and the changing rate of Age is less than Location,
then its ContextSet can be defined as ContextSet =
〈Age, Location〉.

An Algorithm for Updating Levels of an Entity:

UpdateEntityLevels updates the confidentiality and
integrity levels of a specific entity (which is passed to
it as an argument) based on the appropriate LURs
of all context types in ContextSet. Algorithm 3 is
employed for this purpose.

Algorithm 3 UpdateEntityLevels(e ∈ EntitySet\
{environment}, ET ∈ {USR, SBJ,OBJ})
1: for all context type ct ∈ ContextSet in order do

2: if C-LURct,e ∈ C-LURSetct then
3: Apply-CLUR(ct, C-LURct,e, e)

4: else if C-LURct,ET ∈ C-LURSetct then

5: Apply-CLUR(ct, C-LURct,ET , e)
6: end if

7: if I-LURct,e ∈ I-LURSetct then

8: Apply I-LUR(ct, I-LURct,e, e)
9: else if I-LURct,ET ∈ I-LURSetct then

10: Apply-ILUR(ct, I-LURct,ET , e)
11: end if

12: end for

In this algorithm, ET represents the type of en-
tity. USR, SBJ , and OBJ represent User, Subject,
and Object sets respectively. The LURs of context
types are applied based on the ordering defined by
ContextSet. For each context type ct, the algorithm
first checks if there is a specificC-LUR defined for the
entity e (if C-LURct,e ∈ C-LURSetct) and if so, the
C-LUR is applied to the entity. Otherwise, it checks if
there is a general C-LUR based on the type of entity

(else if C-LURct,ET ∈ C-LURSetct) to be applied to
it. The same procedure is adopted for I-LURs.

The Time of LUR Application: If every change in
context predicates triggers corresponding LURs, the
overhead would be too high. Therefore, LURs must
be triggered on special occasions. In fact, at two times,
the confidentiality and integrity level of entities must
be updated. The first time is when a user creates
or activates a subject. Since the confidentiality and
integrity level of a subject must be dominated by the
corresponding levels of its user, the user’s level must
be updated before creation/activation.

The second time is before authorizing a request;
i.e., when constraints must be evaluated, since the ac-
curate value of the confidentiality and integrity level
of entities are needed prior to evaluation. More de-
tails on this issue are presented in section 4.5.

4.4 Operations

An Operation can be executed by a subject on an
object under specific circumstances; and, may change
the state of the subject and object. OperationSet is
the set of operations defined in the system. Formally,
an operation opr ∈ OperationSet is defined as pair
opr = 〈AccessRightSetopr, Constraintopr〉, where

• AccessRightSetopr is a subset of the set
{read,write} which denotes the access right set
of the operation opr. Note that the set of ac-
cess rights in CAMAC is comprised of read and
write. In CAMAC, every operation, based on
what it carries out, includes a subset of these
access modes; e.g., if it only does an observation
of information and no alteration, it only includes
read and so on.
• Constraintopr is composed of condition blocks

for the operation opr. Each operation includes a
constraint which denotes the prerequisite condi-
tions that must be satisfied before the operation
is executed.

There are three types of condition blocks: Confi-
dential condition blocks (C-CB), Integral condition
blocks (I-CB), and Contextual condition blocks
(Cxt-CB). In defining each condition block, we make
use of the variable USR, SBJ , and OBJ to represent
user, subject, and object respectively. Use of these
variables allows us to define generic constraints.

• Confidential Condition Block (C-CB): A con-
fidential condition block is defined as a triple
〈λ1, op, λ2〉, in which λ1, λ2 ∈ ConfLvl and op ∈
DomOperatorSet. For instance, 〈λ(SBJ),≥
, λ(OBJ)〉 is a C-CB denoting the simple secu-
rity property of BLP.
• Integral Condition Block (I-CB): An inte-

January 2009, Volume 1, Number 1 (pp. 35–54) 45

gral condition block is defined as a triple
〈ω1, op, ω2〉, in which ω1, ω2 ∈ IntegLvl and op ∈
DomOperatorSet. For instance, 〈ω(SBJ),≥
, ω(OBJ)〉 is an I-CB denoting the integrity
*-property of Biba.
• Contextual Condition Block (Cxt-CB): A con-

textual condition block is defined as a triple
〈V alue1, op, V alue2〉ct, in which V alue1, V alue2 ∈
V alueSetct{.element}, ct ∈ ContextSet,
and op ∈ OperatorSet. The subscript ct de-
termines that the Operator-Definer func-
tions of the context type ct are used to
evaluate the Cxt-CB. Instances of Cxt-CB
are 〈Time[environment][Is], <, 9〉

T ime
and

〈Age[SBJ][Is], >,Age[OBJ][Is]〉
Age

.

A Grammar for Derivation of Constraints: Con-
straints are built using the following unambiguous
grammar:

Constraint→ Constraint ∨ C1

Constraint→ C1

C1 → C1 ∧ C2

C1 → C2

C2 → (Constraint)
C2 → Cxt-CB|C-CB|I-CB

For example, for operation GenerateReport, the
following constraint may be defined using the above
grammar:
ConstraintGenerateReport = (〈λ(SBJ),≥, S〉) ∨
(〈λ(SBJ),=, C〉 ∧ 〈Time[environment][Is],≥
, 6〉

T ime
∧ 〈Time[environment][Is],≤, 12〉

T ime
)

4.5 Authorization of Users’ Requests

A subject’s request to access an object is repre-
sented by an action. Formally, an action A is a triple
〈s, o, opr〉 in which s ∈ Subject, o ∈ Object, and
opr ∈ Operation. Furthermore, the user of an action
is the user that the subject is acting on behalf of; i.e.,
u = RepOf(s). Algorithm 4 handles the authoriza-
tion of actions.

Upon occurrence of an action, initially the confi-
dentiality and integrity levels of user, subject, and
object of the action must be updated using the
UpdateEntityLevels algorithm. Since the confiden-
tiality and integrity levels of a subject must be dom-
inated by the corresponding levels of its user, after
updating levels of the user and the subject, the fol-
lowing assignments seem indispensable:
λ(s) = GLB(λ(s), λ(u))
ω(s) = GLB(ω(s), ω(u))

After updating the levels, the constraint of the
action must be evaluated. The constraint of an ac-

Algorithm 4 AuthorizeAction(A = 〈s, o, opr〉)
1: u = RepOf(s)

2: ConstraintA = Constraintopr

3: UpdateEntityLevels(u, USR)
4: UpdateEntityLevels(s, SBJ)

5: UpdateEntityLevels(o,OBJ)

6: λ(s) = GLB(λ(s), λ(u))
7: ω(s) = GLB(ω(s), ω(u))

8: if read ∈ AccessRightSetopr then
9: ConstraintA = ConstraintA ∧ (〈λ(SBJ),≥, λ(OBJ)〉

∧ 〈ω(OBJ),≥, ω(SBJ)〉)
10: end if
11: if write ∈ AccessRightSetopr then

12: ConstraintA = ConstraintA ∧ (〈λ(OBJ),≥, λ(SBJ)〉
∧ 〈ω(SBJ),≥, ω(OBJ)〉)

13: end if

14: assign u, s, o to USR, SBJ,OBJ in ConstraintA respec-

tively
15: return Evaluate(Constraintopr)

tion A is represented by ConstraintA and is initially
equal to operation constraint. Before evaluation takes
place, the corresponding confidentiality and integrity
constraints must be added to the constraint of the
action based on the access right set of the operation.
In other words, if read ∈ AccessRightSetopr, the
simple security property of BLP and simple integrity
property of Biba must be added to ConstraintA;
i.e., ConstraintA = ConstraintA ∧ (〈λ(SBJ),≥
, λ(OBJ)〉 ∧ 〈ω(OBJ),≥, ω(SBJ)〉).

Also, if write ∈ AccessRightSetopr, the *-
property of BLP and integrity *-property of Biba
must be added to ConstraintA; i.e., ConstraintA =
ConstraintA ∧ (〈λ(OBJ),≥, λ(SBJ)〉 ∧ 〈ω(SBJ),≥
, ω(OBJ)〉).

Finally, u, s, and o are assigned to USR, SBJ , and
OBJ respectively; and, the constraint is evaluated
using a parser, Operator-Definer functions of con-
text types, and dominance relationship. If the result
of evaluation is true, the action is granted; otherwise,
it is denied.

5 Case Study

Mandatory models have been primarily used in mul-
tilevel security environments in which classification
of information is an inherent characteristic. The fol-
lowing case study introduces a military environment,
and uses CAMAC to satisfy its security requirements.
In a military system, the entities are confidentially
categorized as TopSecret, Secret, Confidential,
and Unclassified. With respect to integrity, entities
are categorized as Crucial, V eryImportant, and
Important. Two kinds of read operation are defined:
a normal read operation which reads Unclassified
and Confidential documents; and, a military read
operation which reads Secret and TopSecret ones.

46 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

The only restrictions to normal read, beyond BLP
and Biba properties, is that the confidentiality
level of the object must be less than or equal to
Confidential. On the other hand, the military read
requires several prerequisites:

• The read operation must be done locally; i.e., the
location of subject and object must be equal.
• The read operation must be done only between

8 and 13.
• The confidentiality level of subject must be

higher than or equal to S.

Moreover, there are other rules in the system such
as:

• The confidentiality level of objects decreases ev-
ery 10 years with a maximum of two level de-
crease.
• Before any operation can take place, the subject

and object must be in reliable locations and the
location of the user must be similar to the loca-
tion of the subject.

If every location is associated with a confidentiality
level based on its significance and security, then a re-
liable location for an entity is a place which has a
confidentiality level higher than or equal to the confi-
dentiality level of that entity [21]. The definition can
be extended to take integrity into consideration too.

5.1 System Definition

We utilize CAMAC to design a system which satis-
fies the requirements of the environment. The system
is designated as MilitarySystem and is formally de-
fined below.

MilitarySystem= 〈EntitySet, RepOf,OperatorSet,
ConfLvl, IntegLvl, λ, ω, ContextPredicateSet,
ContextSet,OperationSet〉

• EntitySet = {User, Subject, Object, Environment}
◦ User = {Stephan,David}
◦ Subject = {Stephan-Proc,David-Proc}
◦ Object = {MilitaryDoc,OfficeDoc}
• RepOf(Stephan-Proc) = Stephan,
RepOf(David-Proc) = David
• OperatorSet = {>,≥, <,≤,=, 6=,⊂,⊆,⊃,⊇}
• ConfLvl = 〈TS, S,C, U〉
• IntegLvl = 〈C, V I, I〉
• λ(Stephan) = TS, λ(David) = S,
λ(Stephan-Proc) = TS, λ(David-Proc) = C,
λ(MilitaryDoc) = TS, λ(OfficeDoc) = U

• ω(Stephan) = C, ω(David) = V I,
ω(Stephan-Proc) = C, ω(David-Proc) = V I,
ω(MilitaryDoc) = C, ω(OfficeDoc) = I
• ContextPredicateSet

◦ 〈Stephan, Location, Is,HeadOffice〉
◦ 〈David, Location, Is,GuestRoom〉
◦ 〈David-Proc, Location, Is,GuestRoom〉
◦ 〈Stephan-Proc, Location, Is,HeadOffice〉
◦ 〈MilitaryDoc, Location, Is,HeadOffice〉
◦ 〈OfficeDoc, Location, Is,GuestRoom〉
◦ 〈MilitaryDoc,Age, Is, 27〉
◦ 〈OfficeDoc,Age, Is, 11〉
◦ 〈environment, T ime, Is, 9〉
◦ 〈HeadOffice, LocationLvl, Is, TS〉

• ContextSet = 〈Age, Location, T ime〉. The de-
tailed definition of context types is given in Sec-
tion 5.2.
• OperationSet= {NormalRead,MilitaryRead}.

The detailed definition of operations is given in
section 5.3.

5.2 Definition of Context Types

The ContextSet of MilitarySystem includes three
context types which are formally described as follows.

Time = 〈V alueSet
T ime

, OperatorDefinerSet
T ime

,
RelatorSet

T ime
, EntityTypeSet

T ime
, LURSet

T ime
〉

• V alueSet
T ime

= {n : N |0 ≤ n ≤ 24}
• OperatorDefinerSet

T ime
is added as an exter-

nal module
• RelatorSet

T ime
= {Is}

• EntityTypeSet
T ime

= {Environment}
• LURSet

T ime
= {C-LURSet

T ime
, I-LURSet

T ime
}

◦ C-LURSet
T ime

= ∅
◦ I-LURSet

T ime
= ∅

Age = 〈V alueSet
Age

, OperatorDefinerSet
Age

,
RelatorSet

Age
, EntityTypeSet

Age
, LURSet

Age
〉

• V alueSet
Age

= {n : N|n ≥ 0}
• OperatorDefinerSet

Age
is added as an external

module
• RelatorSet

Age
= {Is}

• EntityTypeSet
Age

= {User, Subject, Object}
• LURSet

Age
= {C-LURSet

Age
, I-LURSet

Age
}

◦ C-LURSet
Age

= {C-LURAge,OBJ = Figure
3}

◦ I-LURSet
Age

= ∅

Location = 〈V alueSet
Location

,
OperatorDefinerSet

Location
, RelatorSet

Location
,

EntityTypeSet
Location

, LURSet
Location

〉

• V alueSet
Location

= {HeadOffice,GuestRoom,
Basement, ...}
• OperatorDefinerSet

Location

{
Operator-Definer

Location
(A ∈ V alueSet

Location
,

o ∈ OperatorSet, B ∈ V alueSet
Location

)
{
(A = HeadOffice∧B = Basement∧o =′⊆′)

January 2009, Volume 1, Number 1 (pp. 35–54) 47

...
}
}
• RelatorSet

Location
= {Is, Entering}

• EntityTypeSet
Location

= {User, Subject, Object}
• LURSet

Location
= {C-LURSet

Location
,

I-LURSet
Location

}
◦ C-LURSet

Location
= ∅

◦ I-LURSet
Location

= ∅

LocationLvl = 〈V alueSet
LocationLvl

,
OperatorDefinerSet

LocationLvl
, RelatorSet

LocationLvl
,

EntityTypeSet
LocationLvl

, LURSet
LocationLvl

〉

• V alueSet
LocationLvl

= {TS, S,C, U}
• OperatorDefinerSet

LocationLvl

{
Operator-Definer

LocationLvl
(

A ∈ V alueSet
LocationLvl

,
o ∈ OperatorSet, B ∈ V alueSet

LocationLvl
)

{
(A = TS ∧B = S ∧ o =′≥′)
...

}
}
• RelatorSet

LocationLvl
= {Is}

• EntityTypeSet
LocationLvl

= {V alueSet
Location

}
• LURSet

LocationLvl
= {C-LURSet

LocationLvl
,

I-LURSet
LocationLvl

}
◦ C-LURSet

LocationLvl
= ∅

◦ I-LURSet
LocationLvl

= ∅

5.3 Definition of Operations

The OperationSet of MilitarySystem includes two
operations: NormalRead and MilitaryRead. These
operations are formally defined here.

• NormalRead = 〈AccessRightSetNormalRead,
ConstraintNormalRead〉
◦ AccessRightSetNormalRead = {read}
◦ ConstraintNormalRead = 〈λ(OBJ),≤, C〉 ∧
〈LocationLvl[Location[SBJ][Is]][Is],≥,
λ(SBJ)〉

LocationLvl
∧

〈LocationLvl[Location[OBJ][Is]][Is],≥,
λ(OBJ)〉

LocationLvl

• MilitaryRead = 〈AccessRightSetMilitaryRead,
ConstraintMilitaryRead〉
◦ AccessRightSetMilitaryRead = {read}
◦ ConstraintMilitaryRead = 〈λ(SBJ),≥, S〉 ∧
〈Time[environment][Is],≥, 8〉

T ime
∧

〈Time[environment][Is],≤, 13〉
T ime

∧
〈Location[SBJ][Is],=,

Location[OBJ][Is]〉
Location

∧
〈LocationLvl[Location[SBJ][Is]][Is],≥,
λ(SBJ)〉

LocationLvl
∧

〈LocationLvl[Location[OBJ][Is]][Is],≥,

λ(OBJ)〉
LocationLvl

5.4 Handling Actions

By defining the operations, the specification of
MilitarySystem was finalized. Now let’s consider
some exemplary actions and the consequence of the
AuthorizeAction algorithm on them.

• A : 〈David-Proc,NormalRead,MilitaryDoc〉
Since Age[MilitaryDoc][Is] = 27 and based
on C-LURAge,OBJ , the confidentiality level of
MilitaryDoc decreases from TS to S. Notice
that the C-LURSet

Location
and C-LURSet

T ime

are empty. Therefore, λ(MilitaryDoc) = S and
λ

Age
(MilitaryDoc) = TS. Now, the constraint

must be evaluated:
ConstraintA = 〈λ(MilitaryDoc),≤, C〉 ∧
〈LocationLvl[Location[David-Proc][Is]][Is],≥
, λ(David-Proc)〉

LocationLvl
∧

〈LocationLvl[Location[MilitaryDoc][Is]][Is],≥
, λ(MilitaryDoc)〉

LocationLvl

The constraint fails because (〈λ(MilitaryDoc),≤
, C〉) is not evaluated to true.

• B : 〈Stephan-Proc,MilitaryRead,MilitaryDoc〉
Since Age[MilitaryDoc][Is] = 27 and based
on C-LURAge,OBJ , the confidentiality level
of MilitaryDoc is decreased from TS to
S. Therefore, λ(MilitaryDoc) = S and
λ

Age
(MilitaryDoc) = TS. Now, the constraint

must be evaluated.
ConstraintB = 〈λ(Stephan-Proc),≥, S〉 ∧
〈Time[environment][Is],≥, 8〉

T ime
∧

〈Time[environment][Is],≤, 13〉
T ime

∧
〈Location[Stephan-Proc][Is],=,
Location[MilitaryDoc][Is]〉

Location
∧

〈LocationLvl[Location[Stephan-Proc][Is]][Is]),≥
, λ(Stephan-Proc)〉

LocationLvl
∧

〈LocationLvl[Location[MilitaryDoc][Is]][Is]],≥
, λ(MilitaryDoc)〉

LocationLvl

The above constraint is evaluated to true since
all the conditions are satisfied.

6 CAMAC Expressiveness

In this section, we explore CAMAC in terms of
expressiveness, with which various mandatory con-
cepts are defined. The expression of the Dion
model has also been done, but is omitted here
due to the lack of space and can be accessed in
http://nsc.sharif.edu/OnlineAppendixes/camac.htm.

6.1 Set of Categories

As discussed in section 2.1, the confidentiality levels
in the original BLP model are defined by two com-

48 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

ponents: a classification and a set of categories. On
the other hand, as defined in section 4.1, the confi-
dentiality levels of CAMAC consist of the first com-
ponent; the set of categories is simply ignored. The
same statement holds for the integrity levels of Biba.
We intend to show that the set of categories is inher-
ently a contextual concept and can be simply mod-
eled as a context type. Here, we take confidentiality
levels into consideration. The set of categories for in-
tegrity levels can be modeled in a similar way.

The set of categories is a subset of a non-
hierarchical set of elements; and, the elements of this
set depend on the considered environment. They re-
fer to the application area to which information per-
tains or where data is to be used. A classic example
of such set is {Nato,Nuclear, Crypto}, which de-
notes the categories in which the classification of the
confidentiality level is defined. We define a context
type C-Category as follows:

C-Category = 〈V alueSet
C-Category

,
OperatorDefinerSet

C-Category
, RelatorSet

C-Category
,

EntityTypeSet
C-Category

, LURSet
C-Category

〉

• V alueSet
C-Category

= P({Nato,Nuclear, Crypto})
• OperatorDefinerSet

C-Category

{
Operator-Definer

C-Category
(A ∈ V alueSet

C-Category
,

o ∈ OperatorSet, B ∈ V alueSet
C-Category

)
{
(A = {Nato} ∧ B = {Nato,NuClear} ∧

o =′⊆′)
...

}
}
• RelatorSet

C-Category
= {Is}

• EntityTypeSet
C-Category

= {User, Subject, Object}
• LURSet

C-Category
= {C-LURSet

C-Category
,

I-LURSet
C-Category

}
◦ C-LURSet

C-Category
= ∅

◦ I-LURSet
C-Category

= ∅

The constraints of all operations in OperationSet are
changed in the following way:

for all opr ∈ OperationSet do
if read ∈ AccessRightSetopr then
Constraintopr = (Constraintopr)∧
(〈C-Category[OBJ][Is],⊆,

C-Category[SBJ][Is]〉
C-Category

)
end if
if write ∈ AccessRightSetopr then
Constraintopr = (Constraintopr)∧
(〈C-Category[SBJ][Is],⊆,

C-Category[OBJ][Is]〉
C-Category

)
end if

end for

Assume that:
opr ∈ OperationSet and read ∈ AccessRightSetopr.
The confidentiality level L1 = (c1, s1) is higher or
equal to (dominates) the level L2 = (c2, s2) if and
only if c1 ≥ c2 and s1 ⊇ s2.

Notice that an action A = 〈s, o, opr〉 is authorized
if the following condition blocks are true:

〈λ(s),≥, λ(o)〉
〈C-Category[o][Is],⊆, C-Category[s][Is]〉

These condition blocks denote the first and second
relationships respectively. Since both of these condi-
tions must be satisfied for an action including opr to
be authorized, it has the same effect as incorporating
a set of categories into confidentiality levels.

6.2 Chinese Wall Policy

The Chinese Wall policy proposed by Brewer and
Nash [2] arises from that segment of the commercial
sector that provides consulting services to other com-
panies. Consultants deal with confidential company
information for their clients. However, a consultant
should not have access to information about, say, two
banks or two oil companies because such information
creates a conflict of interest in the consultant’s anal-
ysis and is a disservice to clients. To incorporate Chi-
nese Wall policy into CAMAC, a lattice-based model
for enforcing this policy, which was introduced by
Sandhu [30], is used. In this model, company infor-
mation is categorized into mutually disjoint conflict-
of-interest classes. The Chinese Wall policy requires
that a consultant not be able to read information
for more than one company in any given conflict-of-
interest class. This policy applies uniformly to users
and subjects.

The policy for writing public or company informa-
tion is derived from its consequence on providing pos-
sible indirect read access contrary to mandatory read
controls. In this respect, users and subjects (possibly
infected with Trojan horses) must be treated differ-
ently. According to [31], the policy for writing is es-
sentially the same as the BLP *-property. To make
this statement meaningful, the model defines a lat-
tice of labels in a way that the BLP properties can be
effectively used to enforce the policy.

Assume there are n conflict-of-interest classes:
COI1, COI2,... ,COIn each with mi companies, so
that COIi = {1, 2, ...,mi}, for i = 1, 2, ..., n. Each ob-
ject in the system is labeled with the companies from
which it contains information. Thus, an object that
contains information from the bank A and the oil
company OC is labeled {bank A, oil company OC}.
Assume that banks and oil companies are distinct

January 2009, Volume 1, Number 1 (pp. 35–54) 49

conflict-of-interest classes. Then, labels such as
{bank A, bank B, oil company OC} are clearly
contrary to the Chinese Wall policy.

Each label is defined as an n-element vector
[i1, ..., in], where either ik ∈ COIk or ik = ⊥ for
k = 1...n. An object labeled [i1, ..., in] is interpreted
as (possibly) containing information from company
i1 of COI1, company i2 of COI2, and so on. When an
element of the label is ⊥ rather than a number, the
object can not have information from any company
in the corresponding COI class.

A newly enrolled user in the system is assigned
the clearance [⊥,⊥, ...,⊥]. As the user reads company
information, his/her label is updated. For example,
by reading information about company 1 in COI1,
his/her label changes to [1,⊥, ...,⊥]. The floating up
of a user’s clearance corresponds with the ability to
create subjects with new labels for that user. Each
subject has a fixed label dominated by the label of its
user at the time (s)he logged in.

The dominance relation among labels is defined as
l1 ≥ l2 provided l1 and l2 agree wherever l2 6= ⊥. For
example, [1, 3, 2] ≥ [1, 3,⊥] while [1, 3, 2] and [1, 2, 3]
are incomparable. Based on these labels, the BLP
simple security property and *-property can be ex-
ploited to enforce the Chinese Wall policy.

In this respect, based on the previous assumptions,
a context type CWP is defined as follows:
CWP = 〈V alueSet

CW P
, OperatorDefinerSet

CW P
,

RelatorSet
CW P

, EntityTypeSet
CW P

, LURSet
CW P
〉

• V alueSet
CW P

.m1 = (COI1 ∪ {⊥})
V alueSet

CW P
.m2 = (COI2 ∪ {⊥})

...
V alueSet

CW P
.mn = (COIn ∪ {⊥})

• OperatorDefinerSet
CW P

{
Operator-Definer

CW P
(A ∈ V alueSet

CW P
,

o ∈ OperatorSet, B ∈ V alueSet
CW P

)
{

(o =′≥′ ∧(B.m1 = A.m1∨B.m1 = ⊥)∧ ...∧
(B.mn = A.mn ∨B.mn = ⊥))
∨
...

}
}
• RelatorSet

CW P
= {Is}

• EntityTypeSet
CW P

= {User, Subject, Object}
• LURSet

CW P
= {C-LURSet

CW P
, I-LURSet

CW P
}

◦ C-LURSet
CW P

= ∅
◦ I-LURSet

CW P
= ∅

Constraints of all operations in OperationSet must
be changed in the following manner:

for all opr ∈ OperationSet do

if read ∈ AccessRightSetopr then
Constraintopr = (Constraintopr)∧
(〈CWP [SBJ][Is],≥, CWP [OBJ][Is]〉

CW P
)

end if
if write ∈ AccessRightSetopr then
Constraintopr = (Constraintopr)∧
(〈CWP [OBJ][Is],≥, CWP [SBJ][Is]〉

CW P
)

end if
end for

It is evident that augmenting constraints with such
condition blocks incorporates the Chinese Wall policy
into the model.

6.3 Location-Based Mandatory Access Con-
trol Model

The location-based mandatory access control model
presented by Ray et al. [21] is an extension of the
BLP model. In this model, a confidentiality level is
assigned to every location; and, BLP’s simple security
property and *-property are extended with the notion
of location and its confidentiality level.

Specifically, at first a set of locations is defined and
the relations = and ⊆ are determined on this set.
LocA ⊆ LocB denotes that LocA is included in LocB ;
and, LocA = LocB means that both relationships
LocA ⊆ LocB and LocB ⊆ LocA hold.

Also, a confidentiality level is assigned to every lo-
cation. An entity is in a reliable location if the confi-
dentiality level of that location dominates the confi-
dentiality level of the entity.

Accordingly, a subject s, the representative of a
user u, can read an object o (simple security property)
if:
λ(s) ≥ λ(o) ∧ Locs ⊆ Locread sub∧
Loco ⊆ Locread obj ∧ λ(s) ≤ λ(Locread sub)∧
λ(o) ≤ λ(Locread obj) ∧ Locu = Locs

Also, a subject s, the representative of a user u, can
write in an object o (*-property) if:
λ(o) = λ(s) ∧ Locs ⊆ Locwrite sub∧
Loco ⊆ Locwrite obj ∧ λ(s) ≤ λ(Locwrite sub)∧
λ(o) ≤ λ(Locwrite obj) ∧ Locu = Locs

In these relations, Locu, Locs, and Loco represent
the location of the user, the subject, and the object
respectively. Also, Locread sub and Locread obj denote
the permissible location of the subject and the object
before a read operation can take place. Locwrite sub

and Locwrite obj represent the same for a write oper-
ation.

Assume that LocationSet = {loc1, ..., locn}.
Notice that Locread sub, Locwrite sub, Locread obj ,
Locwrite obj ∈ LocationSet.

In order to incorporate this model into CAMAC,

50 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

at first, a context type Location is defined as follows.
Location = 〈V alueSet

Location
,

OperatorDefinerSet
Location

, RelatorSet
Location

,
EntityTypeSet

Location
, LURSet

Location
〉

• V alueSet
Location

= LocationSet = {loc1, ..., locn}
• OperatorDefinerSet

Location
{

Operator-Definer
Location

(A ∈ V alueSet
Location

,
o ∈ OperatorSet, B ∈ V alueSet

Location
)

{
(A = loci ∧B = locj ∧ o =′⊆′)
∨
...

}
}
• RelatorSet

Location
= {Is}

• EntityTypeSet
Location

= {User, Subject, Object}
• LURSet

Location
= {C-LURSet

Location
,

I-LURSet
Location

}
◦ C-LURSet

Location
= ∅

◦ I-LURSet
Location

= ∅

Notice that OperatorDefinerSet
Location

defines the
operator ⊆ on LocationSet. Furthermore, the con-
text type LocationLvl is defined. This context type
simply assigns a confidentiality level to every loca-
tion in LocationSet.
LocationLvl = 〈V alueSet

LocationLvl
,

OperatorDefinerSet
LocationLvl

, RelatorSet
LocationLvl

,
EntityTypeSet

LocationLvl
, LURSet

LocationLvl
〉

• V alueSet
LocationLvl

= ConfLvl = {l1, ...ln}
• OperatorDefinerSet

LocationLvl
{

Operator-Definer
LocationLvl

(
A ∈ V alueSet

LocationLvl
, o ∈ OperatorSet,

B ∈ V alueSetLocationLvl)
{

(A = li ∧B = li+1 ∧ o =′≥′)
...

}
}
• RelatorSet

LocationLvl
= {Is}

• EntityTypeSet
LocationLvl

= {V alueSet
Location

}
• LURSet

LocationLvl
= {C-LURSet

LocationLvl
,

I-LURSet
LocationLvl

}
◦ C-LURSet

LocationLvl
= ∅

◦ I-LURSet
LocationLvl

= ∅

Now, we define two operations: LocBased-Read
representing the simple security property and
LocBased-Write representing the *-property.
LocBased-Read = 〈AccessRightSetLocBased-Read,
ConstraintLocBased-Read〉

• AccessRightSetLocBased-Read = {read}
• ConstraintLocBased-Read = 〈Location[SBJ][Is],⊆
, Locread sub〉Location

∧

〈Location[OBJ][Is],⊆, Locread obj〉Location

∧〈LocationLvl[Locread sub][Is],≥,
λ(SBJ)〉LocationLvl

∧〈LocationLvl[Locread obj][Is],≥,
λ(OBJ)〉LocationLvl

∧〈Location[SBJ][Is],=, Location[USR][Is]〉
Location

LocBased-Write = 〈AccessRightSetLocBased-Write,
ConstraintLocBased-Write〉

• AccessRightSetLocBased-Write = {write}
• ConstraintLocBased-Write = 〈Location[SBJ][Is],⊆
, Locwrite sub〉Location

∧
〈Location[OBJ][Is],⊆, Locwrite obj〉Location

∧〈LocationLvl[Locwrite sub][Is],≥,
λ(SBJ)〉LocationLvl

∧〈LocationLvl[Locwrite obj][Is],≥,
λ(OBJ)〉LocationLvl

∧〈Location[SBJ][Is],=, Location[USR][Is]〉
Location

It is evident that these two operations exactly have
the same effect as those of the Location-based Manda-
tory Access Control model.

7 CAMAC as a Context-Sensitive In-
formation Flow Control Model

Information flow control defines the way through
which information moves throughout a system. Typ-
ically, information flow control policies are designed
to preserve confidentiality of data or integrity of
information. In the former, the policy’s goal is to
prevent information from flowing to an entity not au-
thorized to receive it. In the latter, information may
flow only to entities that are no more trustworthy
than the data [32].

Information flow is usually controlled through as-
signing a security class to every entity. Whenever in-
formation flows from object x to object y, there is
an accompanying information flow from the security
class of x to the security class of y. Denning [33] de-
fined the concept of an information flow policy as a
triple 〈SC,→,⊕〉where SC is a set of security classes,
→ ⊆ SC × SC is a binary can-flow relation on SC,
and ⊕ : SC × SC is a class-combining or join opera-
tor on SC [33].

Based on this definition, we specify the CAMAC
information policy here. A security class in the CA-
MAC model is defined as an ordered pair 〈c, i〉 in
which c ∈ ConfLvl and i ∈ IntegLvl. Assume that
ConfLvl = 〈λn, ..., λ1〉 and IntegLvl = 〈ωm, ..., ω1〉.
Therefore, SC contains n ∗m security classes.

Information can flow from a security class sci =
〈λx, ωy〉 to another security class scj = 〈λz, ωw〉 if
λx ≥ λz and ωw ≥ ωy

January 2009, Volume 1, Number 1 (pp. 35–54) 51

Figure 7. The Hass diagram of the CAMAC information flow

policy for m = n = 3

Since can-flow relationship is transitive, it can be de-
fined in the following manner:
〈λi, ωj〉 → 〈λi+1, ωj〉 for i : 1..n− 1; j : 1..m
〈λi, ωj〉 → 〈λi, ωj−1〉 for i : 1..n; j : 2..m

Furthermore, join operator can be defined as follows:
〈λx, ωy〉 ⊕ 〈λz, ωw〉 = 〈λmax(x,z), ωmin(y,w)〉

for x, z : 1..n; y, w : 1..m

Figure 7 shows the Hass diagram of this information
policy for m = n = 3. Denning showed that under
the following assumptions, an information flow policy
can form a finite lattice [33]:

(1) The set of security classes SC is finite.
(2) The can-flow relation (i.e.,→) is a partial order

on SC.
(3) SC has a lower bound with respect to→.
(4) The join operator (i.e., ⊕) is a totally defined

least upper bound operator.

The information flow policy defined above satisfies
the first assumption, since the number of members of
SC is finite and equal tom∗n. It also satisfies the sec-
ond assumption, since can-flow relationship is defined
as a partial order on SC. Furthermore, it satisfies the
third assumption, since SC has a lower bound with
respect to the can-flow relationship; i.e., 〈λ1, ωm〉 .
The fourth assumption is also satisfied, because ⊕ is
defined as a least upper bound operator and it is to-
tal; i.e., for every pair of security classes, ⊕ defines
their least upper bound. Therefore, the CAMAC in-
formation flow policy is a lattice.

Security classes assigned to entities in the CAMAC
model can be updated according to context. As men-
tioned in section 4.3.5,LURs define how such updates
occur based on changes in contextual values. There-
fore, contrary to traditional lattice-based access con-
trol models, security classes associated with entities
are context-sensitive in CAMAC. This property al-
lows CAMAC to be considered as an information flow
control model with a context-sensitive security class
association.

8 Evaluation

The CAMAC model could be evaluated and com-
pared with other mandatory models based on var-
ious criteria; i.e., authorization time, complexity of
policy description, support for context-awareness, ex-
pressiveness, and objective. The models and policies,
which we consider for this purpose, are BLP, Biba,
Dion, Chinese Wall, and the Location-based Manda-
tory Access control model presented by Ray et al. [21].

8.1 Authorization Time

One important metric would be the computational
time needed to authorize an action. Assuming that
the retrieval of an entity’s confidentiality and in-
tegrity level can take place in O(G(e)), where e is
the total number of entities in the system and G(e)
is a function of e, it is easy to show that the BLP,
Biba, and Dion models authorize an action based on
a finite number of level comparisons; therefore, their
computational time for authorization of an action
would be O(G(e)). Furthermore, time complexity of
the location-based mandatory access control model
is higher than the BLP model, but still less than
CAMAC.

Let’s compute the computational time needed to
authorize an action in the CAMAC model. Our ob-
jective is to authorize the action Act = 〈s, o, opr〉
using the AuthorizeAction algorithm. Assume that
RepOf(s) = u. The time needed for retrieval of
a contextual value is dependant on the implemen-
tation. If c is the average number of predicates in
ContextPredicateSet, then the retrieval time will be
equal to F (c) where F is a function of c. In the worst
case, F (c) = c. The time for retrieval of a level is sim-
ply G(e). In general, F (c) is more costly than G(e);
i.e., retrieval of contextual values takes more time
than retrieval of confidentiality and integrity levels.

Assume n different context types are defined in the
system. AuthorizeAction includes the following pri-
mary steps:

• Updating the Confidentiality and Integrity Level
• Evaluating the Constraint

Confidentiality and Integrity Level Updates: In
the worst case, the LURSet of every context type
includes a LUR applicable to u, s, and o. Assume,
ContextSet includes n context types. k denotes the
maximum number of statements that must be consid-
ered for any transition; e.g., forMilitarySystem pre-
sented in section 5, k is 3, since three statements must
be evaluated for transition from the state S to the
state C. Also, m denotes the maximal computational

52 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

cost of all Operator-Definer functions in the sys-
tem. Each call ofOperator-Definer function requires
two retrievals of contextual values; and therefore, the
maximum time needed to call Operator-Definer is
m+ 2F (c).

Note that the computational cost for evaluations
of relationships among integrity and confidentiality
levels is assumed to be 1, and considering two level
retrievals, the total cost would be 2G(e) + 1.

Therefore, the evaluation of each transition in
LURs has a maximum computational cost of
k(G(e) + m + 2F (c)). Since the number of states
is finite, and at most three LURs of each context
type are applicable to the entities of the action, the
cost of level update for all context types would be
O(n.k.m+ n.k.F (c) + n.k.G(e)).

Constraint Evaluation: In the worst case, all
condition blocks are of type Cxt-CB; therefore,
they all use Operator-Definer functions. Suppose
the Constraintopr includes at most p number of
Cxt-CBs. One C-CB and one I-CB are added to
the constraint of operation before the authorization.
Also, assume that parsing of constraint takes place in
an efficient way, and its cost is a linear function of CB
numbers, i.e., O(p). Since each C-CB and I-CB can
be evaluated in (2G(e) + 1) time, and each Cxt-CB
can be evaluated in (m + 2F (c)) time, the cost of
constraint evaluation is O(p.m+ p.F (c) +G(e)).

Therefore, based on the above calculations, the
total computational time of AuthorizeAction is
O(n.k.m+ n.k.F (c) + n.k.G(e) + p.m+ p.F (c)). Be-
sides, factors p, s and k, as seen in the example of sec-
tion 4.3.5 and MilitarySystem presented in section
5, are usually small numbers (less than 10) and n, m
and F (c) are the dominant factors of computational
cost. As a result of this consideration, the cost is
O(nm+nF (c)). Notice that G(e) can be ignored due
to F (c). In other words, computational time in the
CAMAC model is mostly dependant on the number
of context types, number of context predicates, and
maximum time complexity of all Operator-Definer
functions.

Also notice that the number of context predicates
is at most the number of entities multiplied by the
number of context types; i.e. c = n ∗ e. If the num-
ber of entities is polynomial in terms of the number
of context types (which is true in almost all cases),
O(n.F (c)) is polynomial. Thus, for the computational
time to be polynomial,m, the maximum of time com-
plexities of all Operator-Definer functions, must be
polynomial. This assumption may not be necessarily
true in all cases.

8.2 Other Metrics

Another important metric would be the effort needed
to specify policies in the model. There is no accurate
measure to evaluate the degree of complexity. Infor-
mally, although CAMAC is flexible in the specifica-
tion of access control policies, it requires more efforts
and complicated processes than BLP and other mod-
els.

In terms of expressiveness, as shown in section 6,
many mandatory models can be specified by the CA-
MAC model; therefore, it is more expressive than
other mandatory models and policies.

Furthermore, CAMAC, like Dion, preserves both
confidentiality and integrity of information. In this
respect, BLP and Chinese Wall only preserve confi-
dentiality, while Biba only preserves integrity.

A primary objective of CAMAC is provision of
context-awareness. As mentioned in section 2.2,
location-based mandatory access control model can
be categorized as a location-aware mandatory model.

Table 1 compares mandatory access control models
with different criteria.

9 Conclusion

In this paper, we explained the need for a context-
aware mandatory access control model and presented
CAMAC as a model which satisfies such a need. CA-
MAC model utilizes context-awareness to provide dy-
namicity of levels and definition of more sophisticated
mandatory policies. We showed that the authoriza-
tion time of CAMAC has increased in comparison
with the BLP and Biba models. This results from the
ability of incorporating various mandatory controls
into the CAMAC model. In CAMAC, BLP policy
and Biba strict integrity policy are the built-in part
of the model and other Biba policies, Chinese Wall
policy and somehow Dion policy can be appended to
the model using context types. Furthermore, combi-
nation of mandatory policies can be used simultane-
ously. For instance, BLP, Biba strict integrity policy
and Chinese Wall policy can all be deployed at once.

Also, CAMAC can be deployed in the environments
where information flow control with context-sensitive
security class association is needed.

Granted increase in the authorization time and
complexity of the model, integration of context-
awareness into the model can enhance its flexibility
in certain ways. It allows us to define more sophisti-
cated mandatory policies using contextual informa-
tion. Moreover, context-sensitivity of confidentiality
and integrity levels, enables the model to directly

January 2009, Volume 1, Number 1 (pp. 35–54) 53

Table 1. Comparison of different MAC models

CAMAC BLP Biba Dion Chinese Wall LMAC

Policy Specification Complexity high low low medium medium medium

Preserves Confidentiality and Integrity both confidentiality integrity both confidentiality confidentiality

Supports Context-Awareness yes no no no no only locations

Expressiveness high low low medium low medium

Computational Cost high low low low medium medium

address a group of security requirements of multi-
level security environments which have been simply
overlooked in other context-aware models.

References

[1] Ravi S. Sandhu and Pierangela Samarati. Access Controls:

Principles and Practice. IEEE Communications, 32:40–

48, 1994.

[2] D. F. C. Brewer and M. J. Nash. The Chinese Wall

Security Policy. In Proceedings of the IEEE Symposium
Research in Security and Privacy, pages 215–228, Los

Alamitos, CA, 1989. IEEE CS Press.

[3] DoD. US Department of Defense Trusted Computer

System Evaluation Criteria (The Orange Book). US

Department of Defence, Washington DC, 1987.

[4] Silvana Castano, Maria Grazia Fugini, Giancarlo

Martella, and Pierangela Samarati. Database Security.
Addison-Wesley and ACM Press, 1995.

[5] David E. Bell and Leonard J. LaPadula. Secure Computer
System: Unified Exposition and Multics Interpretation.

Technical report, MITRE Corporation, 1976.

[6] David E. Bell and Leonard J. LaPadula. Secure Computer

Systems: Mathematical Foundations. Technical report,

MITRE Corporation, 1976.

[7] K. Biba. Integrity Considerations for Secure Computer

Systems. Technical report, 1977.

[8] L. C. Dion. A Complete Protection Model. In Proceedings

of the IEEE Symposium on Security and Privacy, pages
49–55, Oakland, CA, 1981.

[9] Bill N. Schilit, Norman I. Adams, and Roy Want.
Context-aware Computing Applications. In Proceedings

of the Workshop on Mobile Computing Systems and

Applications, pages 85–90, Santa Cruz, CA, USA, 1994.
IEEE Computer Society.

[10] Matthias Baldauf and Schahram Dustdar. A Survey on
Context-Aware Systems. Technical report, Distributed

Systems Group , Technical University of Vienna, 2004.

[11] J. Pascoe. Adding Generic Contextual Capabilities to

Wearable Computers. In Proceedings of the Second

International Symposium on Wearable Computers, pages
92–99, Pittsburgh, PA, USA, 1998. EEE Computer
Society Press.

[12] Anind K. Dey. Context-Aware Computing: The
CyberDesk Project. In Proceedings of the AAAI Spring

Symposium on Intelligent Environments, pages 51–54,
Menlo Park, CA, 1998. Technical Report, SS-98-02.

[13] Anind K. Dey and Gregory D. Abowd. Towards a
Better Understanding of Context and Context-Awareness.

In Proceedings of the 1st International Symposium on

Handheld and Ubiquitous Computing (HUC’99), pages

304–307, London, UK, 2000. Springer-Verlag.
[14] Mari Korkea-Aho. Context-Aware Applications Survey,

2000.
[15] Arun Kumar, Neeran Karnik, and Girish Chafle. Context

Sensitivity in Role Based Access Control. Proceedings of
the ACM SIGOPS Operating Systems Review, pages 53–

66, 2002.
[16] Mohammad A. Al-Kahtani and Ravi Sandhu. A Model for

Attribute-Based User-Role Assignment. In Proceedings

of the 18th Annual Computer Security Applications

Conference, pages 353–364, Las Vegas, NV, USA, 2002.
IEEE Computer Society Press.

[17] M. Covington, M. Moyer, and M. Ahamad. Generalized

Role-Based Access Control for Securing Future
Applications. In Proceedings of the 23rd National

Information Systems Security Conference, Baltimore,

MD, USA, 2000.
[18] G. Zhang and M. Parashar. Context-Aware Dynamic

Access Control for Pervasive Applications. In Proceedings

of the Communication Networks and Distributed Systems
Modeling and Simulation Conference, pages 219–225, San

Diego, CA, USA, 2004.
[19] C.K. Georgiadis, I. Mavridis, G. Pangalos, and R.K.

Thomas. Flexible Team-based Access Control Using

Contexts. In Proceedings of the Sixth ACM Symposium

on Access Control Models and Technologies, pages 21–27,
Chantilly, VA, USA, 2001. ACM Press.

[20] J. Hu and A. C. Weaver. A Dynamic, Context-

Aware Security Infrastructure for Distributed Healthcare
Applications. In Proceedings of the First Workshop on

Pervasive Privacy Security, Privacy, and Trust, Boston,

MA, USA, 2004.
[21] Indrakshi Ray and Mahendra Kumar. Towards

a Location-Based Mandatory Access Control Model.

Computers & Security, 25:36–44, 2006.
[22] Manuel Roma’n, Christopher Hess, Renato Cerqueira, and

Anand Ranganathan. A Middleware Infrastructure for

Active Spaces. IEEE Pervasive Computing, 1(4):74–83,
2002.

[23] Amir Reza Masoumzadeh, Morteza Amini, and Rasool

Jalili. Context-Aware Provisional Access Control. In
Proceedings of the Second International Conference On

Information Systems Security, volume 4332, pages 132–

146, Kolkata, India, 2006. Published in Lecture Notes in
Computer Science.

[24] Panu Korpipaa, Jani Mantyjarvi, Juha Kela, Heikki

Kernen, and Esko-Juhani Malm. Managing Context
Information in Mobile Devices. IEEE Pervasive

Computing, 2(3):42–51, 2003.
[25] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da Qing

Zhang. A Middleware for Building Context-Aware Mobile

54 CAMAC: A Context-Aware Mandatory Access Control Model —J.H. Jafarian, M. Amini

Services. In Proceedings of the IEEE Vehicular Technology

Conference, volume 5, pages 2656–2660, Milan, Italy,
2004.

[26] Patrick Fahy and Siobhan Clarke. CASS: Middleware for

Mobile, Context-Aware Applications. In Proceedings of
the Workshop on Context Awareness at MobiSys, pages

304–308, Boston, 2004.

[27] Harry Chen, Tim Finn, and Anupam Joshi. Using OWL
in a Pervasive Computing Broker. In Proceedings of

the Workshop on Ontologies in Open Agent Systems
(AAMAS’03), pages 9–16, Melbourne, Australia, 2003.

[28] Anind K. Dey, Daniel Salber, and Gregory D. Abowd.

A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications.

Human-Computer Interaction (HCI) Journal, 16(2-4):97–

166, 2001.
[29] Thomas Hofer, Wieland Schwinger, Mario Pichler,

Gerhard Leonhartsberger, Josef Altmann, and Werner

Retschitzegger. Context-Awareness on Mobile Devices
- the Hydrogen Approach. In Proceedings of the 36th

Hawaii International Conference on System Sciences,

Hawaii, USA, 2003.
[30] Ravi S. Sandhu. A Lattice Interpretation of the Chinese

Wall Policy. In Proceedings of the 15th NIST-NCSC
National Computer Security Conference, pages 329–339,

Washington, D.C., 1992. US Government Printing Office.

[31] Ravi S. Sandhu. Lattice-Based Access Control Models.
IEEE Computer, 26(11):9–19, 1993.

[32] Mat Bishop. Computer Security: Art and Science.

Addison-Wesley, 2003.
[33] D. Denning. A Lattice Model of Secure Information Flow.

Communications of the ACM, 19(5):236–243, 1976.

Jafar Haadi Jafarian received the BS de-

gree in software engineering from University

of Tehran, Tehran, Iran, in 2003 and the MS
degree in IT from Sharif University of Tech-

nology, Tehran, Iran, in 2007. He is currently

the manager of a CERT group in Sharif Net-
work Security Center (security research lab

of Sharif University of Technology), Tehran,
Iran. His research interest are access control, privacy and

anonymity, and vulnerability analysis.

Morteza Amini received the BS degree in
software engineering from Shahid Beheshti

University, Tehran, Iran, in 2001 and the MS

degree in software engineering from Sharif
University of Technology, Tehran, Iran, in
2004. He is currently a PhD candidate in soft-
ware engineering in Sharif University of Tech-
nology. His research interests include com-

puter security, access control, intrusion de-
tection systems, and e-banking security. He also handles ac-

cess control research group in Sharif Network Security Cen-
ter (security research lab of Sharif University of Technology),
Tehran, Iran.

	1 Introduction
	2 Preliminaries
	2.1 Mandatory Access Control
	2.2 Context and Context-Awareness

	3 Related Work
	4 CAMAC: A Context-Aware Mandatory Access Control Model
	4.1 Formal Definition of CAMAC
	4.2 Context Predicate
	4.3 Context Type
	4.4 Operations
	4.5 Authorization of Users' Requests

	5 Case Study
	5.1 System Definition
	5.2 Definition of Context Types
	5.3 Definition of Operations
	5.4 Handling Actions

	6 CAMAC Expressiveness
	6.1 Set of Categories
	6.2 Chinese Wall Policy
	6.3 Location-Based Mandatory Access Control Model

	7 CAMAC as a Context-Sensitive Information Flow Control Model
	8 Evaluation
	8.1 Authorization Time
	8.2 Other Metrics

	9 Conclusion

