The ISC Int'l Journal of
Information Security

Real-Time Intrusion Detection Alert Correlation and Attack Scenario

July 2012, Volume 4, Number 2 (pp. 125-136)

http://www.isecure-journal.org

Extraction Based on the Prerequisite-Consequence Approach™

Zeinab Zali V*, Massoud Reza Hashemi!, and Hossein Saidi'

1 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

ARTICLE INFO. ABSTRACT

Article history:

Received: 30 December 2012
Revised: 20 May 2013

Accepted: 21 July 2013
Published Online: 27 August 2013

Alert correlation systems attempt to discover the relations among alerts
produced by one or more intrusion detection systems to determine the attack
scenarios and their main motivations. In this paper a new IDS alert correlation
method is proposed that can be used to detect attack scenarios in real-time.

Keywords:

Attack, Intrusion, Attack Scenario,
Intrusion Detection System, IDS,
Alert, Alert Correlation, Graph.

The proposed method is based on a causal approach due to the strength
of causal methods in practice. To provide a picture of the current intrusive
activity on the network, we need a real-time alert correlation. Most causal

methods can be deployed offline but not in real-time due to time and memory
limitations. In the proposed method, the knowledge base of the attack patterns
is represented in a graph model called the Causal Relations Graph. In the offline
mode, we construct Queue trees related to alerts’ probable correlations. In
the real-time mode, for each received alert, we can find its correlations with
previously received alerts by performing a search only in the corresponding tree.
Therefore, the processing time of each alert decreases significantly. In addition,
the proposed method is immune to deliberately slowed attacks. To verify the
proposed method, it was implemented and tested using DARPA2000 dataset.
Experimental results show the correctness of the proposed alert correlation and
its efficiency with respect to the running time.

© 2012 ISC. All rights reserved.

1 Introduction various security systems and tools such as Intrusion
Detection Systems (IDS) are deployed in networks
to provide security. When an IDS observes any suspi-
cious event representing an unauthorized access, or
any kind of abusive or harmful activity which may
result in damaging systems and computer networks,
it produces alerts. But extracting useful information
from these alerts is not that easy due to the following
reasons:

Computer networks are an essential part of today’s
information society. These networks are usually con-
nected to the global internet network. Since security
had not been considered as one of the original inter-
net design goals, in recent decades securing networks
against attacks has become very important. Nowadays

¥ This article is an extended/revised version of an ISCISC’12

paper.

* Corresponding author.

Email addresses: z.zaliQec.iut.ac.ir (Z. Zali),
hashemim@cc.iut.ac.ir (M. R. Hashemi),
hsaidi@cc.iut.ac.ir (H. Saidi).

ISSN: 2008-2045 © 2012 ISC. All rights reserved.

e IDS may flag a large number of alerts every day,
resulting in a flood of alerts that may overwhelm
security officers.

e Among the alerts produced by IDS, false alerts

are mixed with true ones.
@

126

Real-Time Intrusion Detection Alert Correlation and Attack Scenario Extraction — Z. Zali et al.

e IDS cannot detect all the attacks and may miss
some alerts.

e There are some causal relationships between con-
tinuous steps of an attack scenario, but IDS does
not detect correlations among the alerts.

Therefore, it is necessary to analyze the thousands
of alerts produced by one or more IDSs to extract use-
ful information about intrusion attempts from thou-
sands of alerts produced by one or more IDSs. We
can assume each alert as a symptom of a low-level
attack. Alert correlation systems receive alerts from
various IDS sensors and after analyzing them produces
a high level view of the attack attempts against the
network. This analysis includes methods for alert ag-
gregation, alert fusion, alert reduction, removing false
alerts, missed alerts discovery and extracting alerts
correlations and its objective is detecting or predicting
attempted attack scenarios.

The reminder of the paper is organized as follows.
After reviewing existing methods in the next section,
we describe our model in Section 3. Our real-time
method for attack scenario extraction, based on the
new proposed model, is represented in Section 4. We
analyze the proposed model and algorithm in Section
5. Experimental results are given in Section 6. Section
7 concludes the paper with our future work.

2 Related Work

Valeur et al. [1] have proposed a framework for an alert
correlation system. It includes a comprehensive set of
components (including normalization, preprocessing,
alert fusion, alert verification, thread reconstruction,
attack session reconstruction, focus recognition, multi-
step correlation, impact analysis and prioritization)
for an alert analyzing system. They have considered
all required preprocessing and postprocessing steps of
an alert analyzing system and proposed a method for
each of the alert analyzing model components. We can
replace each component with our proposed method for
satisfying that component’s objective. We will review
some of the proposed methods for different phases of
alert analysis.

Some methods such as probabilistic, data mining
or neural networks methods, classify or correlate the
alerts based on the similarity of their chosen common
features [2-6]. This class of methods is useful for the
preprocessing steps of alert correlation such as alerts
classification, false alerts detection or alert reduction;
nevertheless, they are not sufficient (effective) for
attack scenarios detection. Some research works have
attempted to design and implement a language for
describing known attack scenarios [7-9]. Although
these languages provide standard ways to describe

18:0ured)

the attack scenarios, they limit the user to identify
specific and known scenarios. Thus, if a scenario is
slightly different from the defined scenarios it will not
be detected in this way.

In comparison with attack description languages,
causal approaches [10-13] have particularly important
advantages. By using a knowledge base of low-level
attacks and their prerequisites and consequences, it is
possible to detect any correlated sequences of low-level
attacks. Precise and complete definition of the knowl-
edge base is the main requirement of these methods.
Farhadi et al. [14] use a Causal Correlation Matrix
(CCM) which includes the correlation probability of
each pair of alerts. It uses association rules in data
mining to determine and update the CCM.

Most of the casual approaches are implementable
only offline. For real-time applications we need to
consider a time window for received alerts such as
[14]. But in this method we will not be able to detect
slowed or hidden attacks. For example, the attacker
can prevent correlation of the attack scenario alerts by
increasing the time intervals between the successive
steps of the attack scenario or alternatively by filling
the time window with useless and misleading alerts. So,
in real-time applications we must use some measures in
the knowledge base description and also the correlation
algorithm to address this problem.

Due to the strength of causal methods in practice,
we construct our method based on these methods and
propose a suitable model and algorithm for real-time
applications. The proposed method uses the “attack
graph” idea which has been used in the TVA approach
[15].

The causal methods have a knowledge base which
is usually considered as a table of records [11, 16].
Some new works like [17] use methods to construct the
knowledge base automatically. Authors in [17] employ
a Bayesian network to automatically extract informa-
tion about the constraints and causal relationships
among alerts. In our proposed method the knowledge
base is represented as a graph called the Causal Re-
lations Graph. This graph contains low-level attack
patterns in the form of their prerequisites and con-
sequences. In addition, it is a clear representation of
causal relations among the low-level attacks. A new
search is performed upon the arrival of each new alert,
in the correlation phase. Thus, the search time in real-
time is decreased significantly by constructing some
trees in the offline mode, before the correlation system
starts up.

In [11], looking for correlated alerts with a given
alert is performed using a query to the previously
received alert tables. This method has a high run time

July 2012, Volume 4, Number 2 (pp. 125-136)

and is useful only for offline applications. It should
be noted that some optimization is proposed in [18]
for this method. In other real-time causal methods
(except for the TVA method), the search leads to a
nested loop for pervious received alerts. The method
presented in [16] looks in previous correlated sets of
alerts for an existing alert set which can be correlated
to the new alert. Finding the desired set is an NP-
hard problem and so heuristic algorithms should be
used to solve it. There are some other new real-time
methods like [17, 19]. But we show in the experimental
results that our method is more time efficient. The
proposed method in this paper uses the benefits of
the TVA model, but does not require extracting the
vulnerability graph of the topological network.

3 Causal Relation Graph Model

The proposed model has been defined based on a graph
called the Causal Relation Graph (CRG). Describing
the CRG requires defining Condition and Alert Sig-
nature (AS) concepts. We can represent prerequisites
or consequences of a low level attack using a set of
conditions. Each attack pattern in the IDS which pro-
duces an alert is considered as the representative of
a low level attack event. Therefore every attack pat-
tern is defined with its prerequisites and consequences
which themselves are compositions of conditions. Our
definition for some concepts are similar to the con-
cepts in some other papers in the literature including
[13, 16, 20, 21], but not exactly the same. In the fol-
lowing sections we provide our definition for these con-
cepts according to our proposed model and algorithm
which are capable of real-time alert correlation, im-
plicit classification and aggregation of large volumes
of alerts.

3.1 Definition 1: Condition

Every Condition represents satisfaction of a condition
or property for an IP address or a port number, i.e., a
predicate with an IP address or a port number variable.
For example, OSSolaris(VictimIP) says that the
operating system of a host with IP address victimIP
is Solaris. Another example RootAccess(victimIP)
means that there is the capability of root access to a
host with victimI P address.

3.2 Definition 2: Alert Signature (AS)

Each AS is defined as AS = (Prerequisites, Conse-
quences). Prerequisites is the set of all required con-
ditions for launching the attack related to AS and
Consequences is the set of all the attack consequence
conditions. Every AS has four variables including
source IP address, source port number, destination

IP address, and destination port number. Every par-
ticipant condition variable in the Prerequisites and
Consequences sets is one of the four AS variables. For
example the Alert Signature as; which is related to
the Sadmind vulnerability exploit is represented as
as; = ({RPCService(dstIP),0SSolaris(dstIP),

SadmindService(dstI P)},{ Root Access(dstIP)}).

3.3 Definition 3: Causal Relation Graph
(CRG)

CRG is a directed graph with labeled edges and two
types of vertices.

e AS: a vertex in CRG for every AS in a specific
IDS.

e Condition: a vertex in CRG for every defined
condition participant in at least one AS.

There are also two types of edges in CRG.

e Prerequisite edges: There are some edges in
CRG from every Condition vertices related to
prerequisites of an AS to that AS vertex.

e Consequence edges: There is an edge in CRG
from every AS vertex to all the Condition vertices
related to their consequences.

The label of each edge is the condition variable that
can be the source IP address, source port number, des-
tination IP address, or destination port number of the
related AS. Please note that there is no edge between
any pairs of conditions or pairs of ASs. We should de-
fine an AS for every attack pattern that exists in the
IDS. A complete knowledge base on low level attacks
is required for producing Alert Signature sets. For con-
structing the CRG, a vertex is considered for every
AS related to an attack pattern in the knowledge base.
There is also a Condition vertex for every Condition
in AS definitions in CRG. As vertices are added to the
graph, related edges link the graph vertices according
to the definition. Figure 1 represents a part of CRG
which includes vertices related to asj.

3.4 Definition 4: Causal Relation Queue
Tree (CRQT)

CRQT is a data structure based on CRG. For con-
structing CRQT, we consider a queue with the length
of g for every CRG vertex. The elements which are
placed in queues of AS and Condition vertices are re-
spectively alerts and condition variables (IP address
or port number). Then for every AS vertex as;, two
trees with root as, are extracted from CRG.

e Forward Queue Tree (FQT): If a breadth first
search is done starting from vertex as, and in the
direction of edges’ direction, a tree called FQT is
obtained. Please note that the tree vertices are

1S¢0ured)

128

Real-Time Intrusion Detection Alert Correlation and Attack Scenario Extraction — Z. Zali et al.

dstPort

as; = RPC sadmind query with root
credential attempt UDP

¢,= RPCService

c,= OSSolaris

c3= SadmindService

c.= RootAccess

Figure 1. A part of sample CRG

a subset of CRG vertices. It is sufficient to have
some pointers linking the desired vertices of the
CRG to construct every FQT.

e Backward Queue Tree (BQT): This tree is
constructed in the same way as FQT is con-
structed, with the difference that the search is
done in the reverse direction of CRG edges.

The ideas of CRG and FQT (BQT) are not the same
as the ones in [15, 21]. These are the main concepts
of our distinct model. We use them efficiently in our
real-time correlation.

4 The Proposed Algorithm Using
CRG

The proposed model for representing our knowledge
base about low level attacks related to distinct IDS
was described in the previous section. In this section,
we focus on the proposed algorithm for real time alert
correlation and attack scenario extraction using our
model.

After constructing Queue Trees, the alert correla-
tion system is ready to receive alerts and perform alert
correlation. For this purpose, any arriving alert in real
time, enters the queue of corresponding AS vertex.
Every alert in IDS has a unique ID. In addition, there
is exactly one AS in CRG for every type of alert in
IDS. Therefore we can construct an index of alert IDs

18:0ured)

which maps each type of alert to its related vertex in
CRG. In this way, upon the arrival of each alert, the
corresponding vertex is specified without consuming
time. Over time, all the vertices’ queues and implicitly
queue trees are gradually filled. Simultaneously with
the arrival of alerts, alert analysis and correlation is
performed.

4.1 Attack Scenario Extraction Algorithm

Stepl- With the arrival of each alert a;, the CRG
vertex related to AS as; is determined. If in the queue
of the determined AS vertex, alert a; exists which is
replaceable with a;, then alert a; will be dequeued
and a; will replace it. Otherwise, a; is added to the
queue. We can consider various criteria to examine
the possibility of replacing two alerts. Propositional
formulas (1) and (2) are two such criteria where their
validity satisfies a; and is replaceable with a;.

(a;.dstIP = aj.dstI P)&(a;.srcIP = aj.srcIP) (1)

(a;.dstIP = aj.dstIP)&(|a;.t —ajt| < d) (2)

In these formulas, dstIP and srcIP are destina-
tion IP address and source IP address of the alert,
respectively. By using (1), repeated alerts will be ex-
cluded. In (2), a;.t and a;.t are respectively, a; and
a; generation time (timestamp) and J is a constant
timing threshold. Formula (2) replaces an alert with
the previous one if both are related to the same attack
destined to same destination. The equality of source
addresses requirement is not mentioned in (2). This
criterion is considered for aggregating alerts related
to cooperation between two attackers. Consider a; is
the ¢;’s element of as; vertex queue.

Step 2- After the arrival of alert a; to as; queue,
all the consequent conditions queues will be updated
as explained in the following. As was described in
Definition 1 (Section 3.1), every condition has one
of the IP address or port number variables. If the
label of the connected edge to the condition vertex
is source or destination IP address, the value of the
element entering into the condition queue should be
respectively, source or destination IP address of AS
a;. Similarly, the values should be port numbers if the
edges’ labels are port numbers. If there are not any
other elements in the queue with the stated value, the
element will be added to the queue.

Step 3- To extract correlated alerts with alert
a;(i-e., the scenario which has led to a;), a breadth
first search should be done. This search is started from
the root of the BQT with the root as; and the ¢;th
element of the as; queue. In each phase, two continu-
ous edges will be traversed. In this search, a; will be

July 2012, Volume 4, Number 2 (pp. 125-136)

correlated with a, if edges (as;, ci) and (cg, as,) are
traversed continuously, such that there is gxth element
in condition cx queue, that matches with alert a; and
the matched element will be matched with element
a, in as, queue. A condition element is matched with
alert a; in one of the following situations:

o If the variable of condition element is IP address
(port number) and the label of edge connecting
Condition vertex to AS vertex is destination IP
address (destination port number), then the value
of condition element will be equal to a; destination
IP address (destination port number).

o If the variable of condition element is an IP ad-
dress (port number) and the label of the edge con-
necting Condition vertex to AS vertex is a source
IP address (destination port number), then the
value of the condition element will be equal to the
a; source IP address (destination port number).

As alerts arrive and correlations are extracted, re-
sults can be entered in a graph like the graph proposed
in [21]. The graph in [21] has two types of edges, but
we construct a graph which has only correlation edges.
We call it the attack scenario graph.

The pseudo code of correlation algorithm is shown
in Figure 2. Figure 3 shows attack scenario graph
construction pseudo code.

When a new alert a; is correlated to alert a; (which
was received before), if a; has already been added to
the result graph, it is sufficient to add vertex a; and an
edge between a; and a; to it. If a; has not been added
to the result graph, vertices a; and a; and the edge
between them should be added to the result graph.
The result graph at any moment can include more
than one connected graph, each one is an extracted
attack scenario detected via our real time system.

4.2 Missed Alert Detection and Attack
Scenario Prediction Using CRG

During alert correlation, false positive alerts will be
removed in the scenario extraction function automat-
ically. In this section we talk about detecting false
negative alerts, i.e., missed alerts.

With the arrival of each new alert the consequence
conditions queues of an AS vertex are updated. If the
attack related to that alert was launched with the
same prerequisites as defined in the Alert Signature,
all its prerequisites would be satisfied. So when an
alert is received, there will be a matched element with
it in all the prerequisite Condition queues of that alert.
Therefore, if there is no such an element in one of
the prerequisite conditions queues it can be assumed
that an alert has been missed. This is the base of the
missed alert detection solution. If we assume that all

Procedure CRG_Alert_Correlation
Input: Correlation Relations Graph CRG(AS\U C, E),
|AS|=n, |C|=m
Array CQ of m queue of condition variables
Array ASQ of n queue of alerts
Array BQT of n Backward Queue Tree
(BoTrilas ; ucy ,Ep) IS traced tree of backward BFS

search
from i'th Alert Signature vertex of CRG, vi n<i<1)

anew 5.t ASig(ane)=as;, 1<i<n
The initial Result Graph RG(V,E)
Output: The updated ResultGraph RG(V,E)
Begin_Method
1. if ASQ[i] Contains an old a4 S.t aney is a replaced of agq
replace aqjg With apew
anew-event_id €— agq.event_id
else
Enqueue aney into ASQ[i]
2. foreach ¢;€ C s.t(asic) €E
cv <— an condition variable s.t is matched with aney,
if cv does not exist in CQ[j]
Enqueue cv into CQI[j]
3. start from root of BQTIi]
foreachk & |
if ASQ[K] contains ax & CQII] contains cv; s.t
(aneW,CV|) cE & (CV|,ak) cE
& match(anew,cv)) & match(cvy,ay)
RG <— Insert_into_RG(RG,ax,anew)
return RG
End Method

Figure 2. Pseudo code of correlation algorithm

the definitions of Alert Signatures are accurate and
correct, this solution will be useful. If the attacker
achieves the prerequisite Condition in a different way
from the Alert Signature definition, our assumption
for missed alert will not be correct.

To predict attacks which their alerts have not yet
been received, we can use Forward Queue Trees. A
search should be done in FQT starting from the AS
vertex of the new alert. In this way, the edges leading
to conditions that are not satisfied, will be traversed.
In this search we can traverse only the edges with the
highest probability values, i.e., the edges which are
connected to AS vertices in which related low level
attacks are correlated with a high probability. We can
assume such probabilities in CRG. Papers [22, 23]
have proposed probability methods for attack incident
prediction. We can use their proposed methods in our
model.

5 Analysis of the Proposed Model and
Algorithm

In addition to proper alert correlation, the most im-
portant goal that the CRG method follows is real-time
attack scenario detection simultaneously to IDS alert

1S¢0ured)

129

130

Real-Time Intrusion Detection Alert Correlation and Attack Scenario Extraction — Z. Zali et al.

Procedure Insert_into_RG
Input: alert, correlated_alert
Initial Attack Scenario Graph ASG(V,E),
Vis an array of alerts
Output: updated Result Graph ASG(V,E)
Begin_Method

1. alert_vertex <~ NULL

correlated_alert_vertex €<— NULL
foreachveV
if v.event_id=alert.event_id
alert_vertex €— v
else if v.event_id=correlated_alert.event_id
correlated_alert_vertex €<— v
2. if alert_vertex!=NULL & correlated_alert_vertex!=NULL

if (alert_vertex, correlated_alert_vertex) € E
insert (alert_vertex, correlated_alert_vertex) into E
else if (alert_vertex=NULL &
correlated_alert_vertex=NULL)
initialize alert_vertex for alert and insert it into V
initialize correlated_alert_vertex for correlated_alert
and insert it into V
insert (alert_vertex, correlated_alert_vertex) into E
else if alert_vertex=NULL
initialize alert_vertex for alert and insert it into V
insert (alert_vertex, correlated_alert_vertex) into E
else if correlated_alert_vertex=NULL
initialize correlated_alert_vertex for correlated_alert
and insert it into V
insert (alert_vertex, correlated_alert_vertex) into E
return ASG
End_Method

Figure 3. Pseudo code of attack scenario graph construction

generation. Therefore the algorithm should be effi-
cient in time and memory. Time is the key parameter
in real-time applications. If a system has a precise re-
sult but high response time, it is useless for real-time
applications. In the following section we explain how
the proposed method is efficient in time and memory.

With the arrival of each new alert, the time for
searching the correlated alerts is at most equal to the
time for searching all the edges of related BQT and
their vertices’ queues. This time is at most 2¢ X (m+n),
where m is the number of all the CRG Condition
vertices, n is all the AS vertices and ¢ is the maximum
length of each queue. On the other hand, the required
time for adding the correlation result to the attack
scenario graph equals to the time it takes to search
the existing alerts in the graph.

By creating an index on the alerts ID numbers in
result graph, it is not required to search in attack
scenario graph.

The proposed method uses BQTs for alert correla-
tion. The number of these trees equals the number of
AS, i.e., n. So, it is necessary to have n trees in the
memory so that each one has at most n + m pointers.
On the other hand there should also be n + m queues
in the memory with the maximum length of ¢. There-

18:0ured)

fore, the total required memory size for the system is
nx (n+m)+qx (n+m). So, the memory complexity
of the algorithm is O(n?). Please note that the result
graph occupies a fixed amount of the system memory.

It should be mentioned that the vertex queue can
be considered as time window in some methods like [1].
As was previously stated, considering time window in
some real-time applications is one of their weaknesses.
However, considering a separate queue for each of the
vertices is as a separate window for each type of alert,
while in other methods usually one window is consid-
ered for all the alerts. Additionally, in CRG only one
alert is saved in the queue among all the replaceable
alerts. This results in alert aggregation and prevents
rapid filling of the queues. Therefore, the proposed
method reduces the limitations of a time window. It
should be noted that over time, most of the existing
alerts in queues are not useful anymore and they can
be removed. However, there is the possibility of keep-
ing the alerts in the queues for even more than one
day. Thus there is not any concern for slowed attacks.
Choosing a criterion for removing earlier alerts de-
pends on the average number of received alerts, the
accuracy of IDS alert generation and the network con-
ditions. The network condition is important in terms
of traffic, network sensitivity level and the amount of
threatening risks of the network. The removal crite-
rion can be decided based on the situation.

CRG is like the attack graph in [21], but the nature
of the vertices is totally different in CRG. The graph
data structure is also different in CRG. The knowledge
which is represented via the CRG model includes
causal relations of low level attacks which are also used
in the offline method [11]. Also, this knowledge is the
same as the one used in [10, 16]. The graph in [15, 21]
is also a model of network topological structure and its
vulnerabilities. The CRG model and algorithm which
proposes to use a casual relations knowledge base,
have some advantages compared to the casual relation
based methods described in [10, 11, 16].The method
in [11] can only be used for offline applications. Even
in the offline mode, [11] is not time efficient and needs
optimization [18]. The correlation problem in [16] has
been converted to a set coverage problem which is
NP-hard. Even though it is introduced as a real-time
method, the time complexity of the solution is not
suitable for real time applications.

The method proposed in [15] has an advantage
compared to CRG which is related to the nature of the
queue graph proposed in [15]. In a queue graph only the
alerts related to vulnerabilities of a given network are
analyzed. In other words, an implicit alert validation
takes place during the correlation process. So the
search is performed on only valid alerts and useless

July 2012, Volume 4, Number 2 (pp. 125-136)

alerts related to irrelevant or unsuccessful attacks
are excluded from the search procedure. However,
it should be noted that constructing such an attack
graph is another hard problem in network security.
Also, the size of this graph is larger than CRG, because
there is a vertex for each vulnerability on each host
in this graph.

Another advantage of CRG compared to the method
in [15] is related to the queue length. In [15] the queue
length of each alert vertex is one and so there is no
choice but to replace a new alert with the earlier one.
Therefore, two similar low level attacks which are
launched from different sources are assumed to be
two cooperating attacks, although each one may be
related to a different attack scenario. According to
(1), in the CRG method, two alerts of the same attack
type destined to the same destination are replaced if
their source addresses are also the same. Two attacks
destined to the same destination are considered in
cooperation when using criteria (2), if they happen at
a short interval from each other.

Keeping the alerts in the queues for a long time
may result in problems such as correlation of two
irrelevant scenarios. So, considering a criterion for
alerts expiration time is necessary. Reference [15] uses
some temporal constraints to periodically dequeue
some alerts. The method of [15] has a linear time
complexity, but CRG’s complexity is O(ng). This is
because the queue length can be more than one in
CRG. Despite the presence of the parameter ¢ in the
time order of the algorithm, implementation results
show that the processing time for a real time system
is quite acceptable.

As mentioned earlier, the result graph in our method
is constructed so that it does not have any redundancy
and so compression is not required. For all the attacks
which are replaced with each other, there is only one
vertex in the result graph. To be informed of the num-
ber of repeated attempts, we can consider a distinct
field for each result graph vertex. The value of this
field should be equal to the number of alerts replaced
with each other.

6 Experimental Results

We implemented the proposed method in C++ under
Linux and tested it with the DARPA 2000 intrusion
detection evaluation dataset [MIT Lincoln Lab 2000].
DARPA 2000 dataset is often used to evaluate correla-
tion systems. Sufficient knowledge and skill is required
for writing a knowledge base to construct the CRG.
For using any IDS as alert generator for our system,
we require a knowledge base that includes all the Alert
Signatures of that IDS. The definition of each Alert

[IPSweep]

.

[Probe using Sadmind "ping" option

~—

-

Breaking into Mill, Lock, and Pascal using
sadmind exploit

-

Installing DDoS Software via telnet, rcp and
rsh

-

Starting a DDoS via a telnet session and the
DDosS itself

Mill IPAddress: 172.16.115.20
Lock IPAddress: 172.16.112.10
Pascal IP Address: 172.16.112.50

Figure 4. DARPA 2000’s first attack scenario

Perform Hinfo query against Mill

(which is a DNS server)
- J

-

Break in Mill via exploiting sadmid vulnerability

-

Upload mstream DDoS and attack script to Mill
usina FTP

-

Run Mstream master on Mill and Try to break in
two more machines via Mill

-

Lunch mstream DDoS against fial victim via
telnet to DDoS master machine

Figure 5. DARPA 2000’s second attack scenario

Signature should include the prerequisites and con-
sequences conditions corresponding to Definition 2.
We used the knowledge base that Ning et al. used for
TIAA [24]. Two knowledge bases have been provided
for TTAA. The first one is for RealSecure IDS. This
knowledge base has only 28 Alert Signatures [12]. The
second one is for Snort which is a relatively complete
knowledge base with about 3000 Alert Signatures.

DARPA 2000 includes two DDOS attack scenarios.
Figure 4 represents the first scenario’s steps and Figure
5 represents the second scenario. There are five steps

1S¢0ured)

131

Real-Time Intrusion Detection Alert Correlation and Attack Scenario Extraction — Z. Zali et al.

Figure 6. The result graph of snort alerts correlation for
LLDOS 1.0 Inside traffic (In each connected subgraph, every
ellipse represents an alert. The upper number in the ellipse is
the ID number of snort related AS, the lower number is the
incidence number of alert)

in each scenario. MIT Lincoln Lab has sniffed the
traffic results from launching each of the scenarios
using two sensors, one sensor on inside network and
another one on the DMZ network. Our results for both
of the networks were successful and satisfactory. As
in previous literature, we also state the inside sensor
results here.

6.1 Attack Scenario Extraction Results

Figure 6 shows the result graph of snort alerts cor-
relation for the first scenario. We expect the result
graph to include all the low level attacks related to var-
ious steps of the scenario. Every connected sub-graph
represents an extracted scenario. In graphs (a) to (e)
there are only two steps of LLDOS 1.0. These imper-
fect scenarios are those unsuccessful attacks which
have terminated in intermediate steps. As you can see
in Figure 4, at the third step three vulnerable hosts
are detected and exploited. Every sub-graph (h) to (j)
in Figure 6 represents an attack scenario destined to
one of these victim hosts. You can see scenario (h) in
details in Figure 7. Only the last step has not been
extracted. The reason is that the related alert was
missed by snort.

Figure 8 represents the result graph of RealSecure
alerts correlation for the first scenario. As you can
see, almost all the key steps of the scenario have been

18:0ured)

ICMP PING
S:202.77.162.213
D:172.16.115.20

ICMP Echo Reply
S:172.16.115.20
D: 202.77.162.213

RPC portmap sadmind
request UDP

S:202.77.162.213

D: 172.16.115.20

RPC sadmind UDP PING
S:202.77.162.213
D: 172.16.115.20

RPC sadmind UDP
overflow attempt
S:202.77.162.213
D: 172.16.115.20

RPC sadmind query with
root credentials attempt
S:202.77.162.213
D: 172.16.115.20

Step 3

RSERVICES rsh root Step4

S:172.16.115.20
D:202.77.162.213

Figure 7. Scenario attack (h) of Figure 7 in details. Source
and destination addresses can be seen in this figure

extracted. The extracted scenario is more complete
than the scenario extracted from snort alerts because
of the more accurate RealSecure knowledge base. On
the other hand, only three successful scenarios have
been extracted for RealSecure and the failed scenarios

Rsh: Rsh :172.16.112.50
FS: FTP_Sys :202.77.162.213
SP: Sadmind_Ping M3: 172.16.115.20
SDoS: Stream_DoS M4:172.16.112.10
MZ: Mstream_Zombie M5: 78.111.82.41
EAO: Email_Almail_Overflow M6: 131.84.1.31

SAO: Sadmind_Amslverify_overview

Figure 8. The result graph of RealSecure alerts correlation
for LLDOS 1.0 Inside traffic in CRG method

July 2012, Volume 4, Number 2 (pp. 125-136)

S 413

EEVD'_S?

'

puapes

T GMOPIAD LRSI PUMIpES

PLOMOEIRAD AJURAIY PUtIpes

L GMOFISAD AFURA[SUry pUmmpEg

9T

e

{4

T

0C

LT

—
9T

LGMOFIRAQ FUSA[SUry pummpEg

T GMOBIRAD AFLRa
OEFLGMOFRAD JURAJII, pUmEpes

SEFLGMOFBAQ UBA[SITY puImpEg

6T LOMOTEISAQ) BTy [Tetg
PLOMOFIRAD AJURASIY pUitipes

|
|
4
Q
&
g
g

T

8
T

\

L geIqUa07 e

Lo

£9CLORIqUOT TNeINSTAL

LE!

Figure 9. The result graph of RealSecure alerts for LLDOS1.0
Inside traffic in Ning method [11]

have not been extracted. The reason is the differences
among the two IDSs. RealSecure itself is more accurate

than Snort. It removes some unsuccessful attacks.

The first step is not represented in Figure 8, because
RealSecure does not produce ICMP alerts.

Figure 9 represents the scenario extraction result
of the Ning [11] method. You can compare our result
graph in Figure 8 with Figure 9. As you can see our

Web-Misc
backup access

RPC sadmind
UDP PING
S: M2
P: M3

Attack responses
directory listing

RPC sadmind query with
root credentials attempt
S: M2
D: M3

RPC sadmind UDP
overflow attempt
S: M2

RPC sadmind UDP PING
S: M3
D: M1

RPC sadmind query
with root credentials
attempt
S: M3
D: M1

RPC sadmind UDP
overflow attempt
S: M3
D: M1

@

Email_Ehlo
S: M9
D: M10

Email_Turn
S: M11
D: M10

(b)
M1:172.16.112.50
M2:202.77.162.213
M3:172.16.115.20
M4:9.145.123.135
M5: 78.111.82.148
M6: 131.84.131

M7:131.84.1.100
M8: 172.16.114.50
M9: 95.115.218.108
M10: 172.16.113.105
M11:135.13.216.191

Figure 10. Results of alert correlation for the second DARPA
2000 scenario

result graph is more compact and explicit. It is because
our method can aggregate identical alerts to the same
destination.Then again this attack graph has been
obtained in the offline mode.

The result of alert correlation for the second DARPA
2000 scenario is shown in Figure 10. It is not very
accurate or complete. The reason is that the attacker
tries to hide the steps in the second scenario and
launches the attack scenario with more skill than the

1S¢0ured)

133

134

Real-Time Intrusion Detection Alert Correlation and Attack Scenario Extraction — Z. Zali et al.

70
% AYA\

: 4

Processing time (Jis)

N>>""\a] NI 4

» N/ N N

D 0 HO P A0 P L0 KO D O P O A AP L2 L0 O GO O L P 0 0 O P 2O (O P P S D
AN N Vo A AR A R AR AR U A SN VAR R SRR S R A AR AR R AR S

200 O 0 L0 5P QO P L0 PO 000N
KON IR A A R A A A A

Number of Processed Alerts

Figure 11. Average processing time per 25 consecutive alerts

125
175
225
275
325
375
425
475
525
575
625
675
725
775
825
875
925
975
1025
1075
1125
1175
1225
1275

2775
2825

Figure 12. Maximum processing time per 25 consecutive alerts

first scenario.

6.2 Performance Evaluation

Since the main goal of the proposed method is its
capability for real time operation, the time evaluation
of the system is very important. We have tested the
system on a Pentium IIT dual core 2.2GHz server with
1GB RAM running Suse 11. The CRG used in our
evaluations has 903 condition vertices and 2895 AS
vertices for snort and 31 condition vertices and 28 AS
vertices for RealSecure.

The diagrams of Figures 11 and 12 show alert pro-
cessing time. Figure 11 shows the average processing
time of each 25 consecutive snort alerts. The horizon-
tal axis represents the number of received alerts until
the arrival time of a new alert. As you can see the
processing time does not depend on the number of
received alerts and over time after the start of the sys-
tem, system performance has not decreased. Figure
12 shows the maximum processing time of every 25
consecutive alerts. As you see the maximum process-
ing time of all the processed alerts is about 0.35ms.
In Figure 11 and Figure 12, Alerts which take much
more processing time are related to the AS vertices
that have many connected edges to other vertices.

Whereas the maximum processing time of our
method is about 0.35ms, this time is about 0.1s in
[15] (Figure 13 of [15]), and about 3s in [17, 19].

ISeﬂur@

Figure 13 shows the processing time of snort and
RealSecure alerts in one diagram. This diagram has
been drawn according to the number of existing alerts
in queues at the arrival time of a new alert.

120

100

80

60
~=-Snort

10 /\ ‘/\/ RealSecure

20 ——n—

————

Processing Time (jis)

—s —

0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Number of Alerts in Vertices' Queues

Figure 13. Processing time per number of alerts in vertices
queues (for snort and RealSecure)

7 Conclusion and Future Work

In this paper we first proposed a suitable model for
representing a knowledge base of causal relations be-
tween low level attacks, and then proposed an efficient
algorithm for real-time attack scenario detection.

The proposed method is based on the causal ap-
proach due to the strength of causal methods in prac-
tice; moreover it benefits from the advantages of TVA
model [15]. Therefore, in addition to proper alert cor-
relation, our proposed algorithm has polynomial time
and memory complexity (of degree 2) in terms of the

July 2012, Volume 4, Number 2 (pp. 125-136)

number of CRG vertices and so it is independent of
the number of received alerts. Experimental results
approved the correctness of our algorithm for alert
correlation and its efficiency in real-time. It should
be noted that the completeness and accuracy of the
knowledge base is required in our method as in any
other causal method.

As a future work, we will investigate the efficiency of
our proposed model for attack prediction and missed
alert detection. We will also consider using artificial
intelligence and data mining approaches to create and
update the low level attacks knowledge base.

References

[1] F. Valeur, G. Vigna, C. Kruegel, and R. Kem-
merer. A Comprehensive Approach to Intrusion
Detection Alert Correlation. IEEFE Trans. on De-
pendable and Secure Computing, 1(3):146-169,
July 2004.

[2] F. Cuppens. Managing Alerts in a Multi-
Intrusion Detection Environment. In Proceedings
of 17th Computer Security Applications Confer-
ence, pages 22-31, 2001.

[3] S. Staniford, J.A. Hoagland, and J.M. McAler-
ney. Practical Automated Detection of Stealthy
Portscans. Journal of Computer Security, 10(1-
2):105-136, 2002.

[4] A. Valdes and K. Skinner. Probabilistic Alert
Correlation. In Proceedings of the 4th Int. Sympo-
stum on Recent Advances in Intrusion Detection
(RAID 2001), pages 54—68, 2001.

[5] B.Zhu and A. Ghorbani. Alert Correlation for
Extracting Attack Strategies. Int. Journal of
Network Security, 3(3):244-258, 2006.

[6] S.O.Al-Mamory, H. Zhang, and A.R. Abbas. IDS
Alarms Reduction Using Data Mining. In IEEE
World Congress on Computational Intelligence,
pages 3564-3570, June 2008.

[7] F. Cuppens and R. Ortalo. LAMBDA: A Lan-
guage to Model a Database for Detection of At-
tacks. In Proceedings of the 3th Int. Workshop
on the Recent Advances in Intrusion Detection
(RAID 2000), pages 197-216, June 2008.

[8] S. Eckmann, G. Vigna, and R. Kemmerer.
STATL: An Attack Language for State-based In-
trusion Detection. Journal of Computer Security,
10(1-2):71-104, 2002.

[9] O. Dain and R. Cunningham. Building Scenar-
ios from a Heterogeneous Alert Stream. In Pro-
ceedings of the 2001 IEEE Workshop on Infor-
mation Assurance and Security, pages 231-235,
June 2001.

[10] S.J. Templeton and K. Levitt. A Re-
quires/Provides Model for Computer Attacks. In

Proceedings of the 2000 Workshop on New Secu-
rity Paradigms, pages 31-38, Sep. 2000.

[11] P. Ning, Y. Cui, and D.S. Reeves. Construct-
ing Attack Scenarios through Correlation of In-
trusion Alerts. In Proceedings of the 9th ACM
Conference on Computer and Communications
Security, pages 245-254, Nov. 2002.

[12] D. Xu and P. Ning. Alert Correlation through
Triggering Events and Common Resources. In
Proceedings of the 20th Annual Computer Secu-
rity Applications Conference, pages 360-369, Dec.
2004.

[13] F. Cuppens and A. Miege. Alert Correlation in
a Cooperative Intrusion Detection Framework.
In Proceedings of IEEE Security and Privacy
Symposium, pages 202-215, 2002.

[14] H. Farhady, M. Amirhaeri, and M. Khansari.
Alert Correlation and Prediction Using Data
Mining and HMM. I[SeCure - The ISC Inter-
national Journal of Information Security, 3(2):
77-102, 2011.

[15] L. Wang, A. Liu, and S. Jajodia. Using Attack
Graphs for Correlating, Hypothesizing, and Pre-
dicting Intrusion Alerts. Journal of Computer
Communications, pages 2917-2933, Vol. 29, No.
15, 2006.

[16] J. Zhou, M. Heckman, B. Reynolds, A. Carlson,
and M. Bishop. Modeling Network Intrusion
Detection Alerts for Correlation. ACM Trans.
on Information and System Security, 10(1):1-31,
Feb. 2007.

[17] Hanli Ren, Natalia Stakhanova, and Ali A. Ghor-
bani. An online adaptive approach to alert corre-
lation. In Proceedings of the 7th Int. Conference
on Detection of Intrusions and Malware, and Vul-
nerability Assessment, DIMVA’10, 2010.

[18] D. Xu. Correlation Analysis of Intrusion Alerts.
PhD thesis, Department of Computer Science,
University of North Carolina State, 2006.

[19] L. Zhaowen, L. Shan, and M. Yan. Real-Time
Intrusion Alert Correlation System Based on Pre-
requisites and Consequence. In Proceedings of the
6th Int. Conference on Wireless Communications
Networking and Mobile Computing (WiCOM),
pages 1-5, 2010.

[20] N.K. Pandey, S.K. Gupta, S. Leekha, and J. Zhou.
ACML: Capability Based Attack Modeling Lan-
guage. In Proceedings of 4th Int. Conference on
Assurance and Security, pages 147-154, Sep. 2008.

[21] S. Jajodia and S. Noel. Topological Vulnerability
Analysis: A Powerful New Approach for Network
Attack Prevention, Detection, and Response. in
Algorithms, Architectures, and Information Sys-
tems Security, B. Bhattacharya, S. Sur-Kolay, S.
Nandy, and A. Bagchi (eds.), 2007.

[22] X. Qin and W. Lee. Discovering Novel Attack

1S¢0ured)

136

Real-Time Intrusion Detection Alert Correlation and Attack Scenario Extraction — Z. Zali et al.

Strategies from INFOSEC Alerts. In Proceedings
of the 9th European Symposium on Research in
Computer Security (ESORICS 2004), pages 439—
456, Sep. 2004.

[23] S. Zhang, J. Li, X. Chen, and L. Fan. Building
Network Attack Graph for Alert Causal Corre-
lation. Journal of Computers and Security, 27
(5-6):188-196, Oct. 2008.

[24] P. Ning, Y. Cui, and D.S. Reeves. Techniques
and Tools for Analyzing Intrusion Alerts. ACM
Trans. on Information and Systems Security, 7
(2):274-318, May 2004.

Zeinab Zali was born in 1983. She received
her BS and MS degrees in Computer Engi-
neering in 2006 and 2009, respectively, both
from Isfahan University of Technology (IUT),
Isfahan, Iran. She is currently a Ph.D. student
of computer engineering at IUT, and is work-
ing on Information Centric Networking. Her
research interests include information centric
networking, intrusion detection systems and alert correlation,
software defined networks, and applied game theory in com-

puter science.

Massoud Reza Hashemi received his BS
and MS degrees from Isfahan University of
Technology in 1986 and 1988, respectively,
and his Ph.D. from the University of Toronto
in 1998, all in Electrical and Computer
Engineering. From 1988 to 1993 he was
with Isfahan University of Technology as a
faculty member. From 1998 to 1999 he was a
postdoctoral fellow at the University of Toronto. From 1999 to

1SeCure

2002 he was a founding member and lead systems architect
of AcceLight Networks, where he developed some of the key
system elements of a multi-terabit multiservice core switch.
Since 2003 he has been with Isfahan University of Technology.
His current research interests include software defined networks,
data centric networks, DSM in smart grid, and alert correlation
in network intrusion detection.

Hossein Saidi was born in 1961, received
BS and MS degrees in Electrical Engineer-
ing in 1986 and 1989, respectively, both from
Isfahan University of Technology (IUT), Isfa-
han, Iran. He also received DSc in Electrical
Engineering from Washington University in
St. Louis, USA, in 1994. Since 1995 he has
been with the Department of Electrical and
Computer Engineering at IUT, where he is currently an Asso-
ciate Professor of Electrical and Computer Engineering. His
research interest includes high speed switches and routers,
communication networks, QoS in networks, security, queueing
system and information theory.

He was the co-founder and R&D director at MinMax Technol-
ogy Inc. (1996-1998) and Erlang Technology Inc. (1999-2006)
both in USA, and SarvNet Telecommunication Inc. (2003).
During these years, he was the main architect of three genera-
tion of Switch ASIC chips: WUMCS, SeC and XeC with re-
spectively 2.5, 10, and 80 Gb/s capacity per chip and up to 560
Gb/s total system capacity. He was also the principal architect
of SeT, the network processor chip of Erlang Technology.

He holds four US and one international patents, and has pub-
lished more than 100 scientific papers. He is the recipient of
several awards including: 2006 ASPA award (The 1st Asian
Science Park Association leaders award) and the Certificate
award at the 1st National Festival of Information and Commu-
nication Technology (ICT 2011), both as the CEO of SarvNet
Telecommunication Inc. He also received the 2011 Isfahan
University of Technology Distinguished Researcher Award.

	1 Introduction
	2 Related Work
	3 Causal Relation Graph Model
	3.1 Definition 1: Condition
	3.2 Definition 2: Alert Signature (AS)
	3.3 Definition 3: Causal Relation Graph (CRG)
	3.4 Definition 4: Causal Relation Queue Tree (CRQT)

	4 The Proposed Algorithm Using CRG
	4.1 Attack Scenario Extraction Algorithm
	4.2 Missed Alert Detection and Attack Scenario Prediction Using CRG

	5 Analysis of the Proposed Model and Algorithm
	6 Experimental Results
	6.1 Attack Scenario Extraction Results
	6.2 Performance Evaluation

	7 Conclusion and Future Work

