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A B S T R A C T

The security of public key cryptography relies on the complexity of certain

mathematical hard problems. It is vital to comprehend the intricacy of these

problems to develop secure cryptographic schemes and security protocols. This

paper provides an overview of some widely recognized hard problems associated

with the discrete logarithm problem, including the reductions among them.

Furthermore, we introduce a novel hard problem that is equivalent to the

discrete logarithm problem, which also has a decisional version. Additionally,

a set of new problems is presented, which can be instrumental in the design

of secure encryption schemes. This paper is intended to provide crucial

insights into the realm of hard problems in cryptography, facilitating a better

understanding of security measures.

© 2023 ISC. All rights reserved.

1 Introduction

The Diffie-Hellmen (DH) problem, introduced in
1976 [1], was the first practical method for estab-

lishing a shared secret over an unprotected commu-
nications channel. This problem is the foundation of
many cryptographic schemes such as other variants
of DH key-exchange, Elgamal encryption and vari-
ants, and BLS signatures and variants. DH problem
is related to the Discrete Logarithm (DL) problem
on which the security of many cryptographic schemes
such as Schnorr and DSA signature relies.

Public key cryptography relies on the security of
certain mathematical problems that are believed to
be unsolvable by any Probabilistic Polynomial Time
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(PPT) adversary. These problems, including discrete
logarithm and Diffie-Hellman problems, are known
as the cryptographic hard problems.

Hard problems in cryptography are categorized
into two main groups: computational problems and
decisional problems. Computational problems require
the attacker to calculate a parameter, while deci-
sional problems require the attacker to choose be-
tween two options. It is evident that any attacker
can make the correct choice with a probability of 1

2 .
So, the attacker is regarded to be successful if it can
choose correctly with a probability of 1

2 + ϵ, where
ϵ is non-negligible. Computational problems are the
foundation of one-wayness property, while decisional
problems are the basis for achieving indistinguishabil-
ity in cryptographic schemes. An important instance
of such problems for demonstrating one-wayness is
DL. However, there is no hard problem for the deci-
sional version of the DL problem. Consequently, it
cannot be utilized for establishing indistinguishabil-
ity. This paper addresses this issue by introducing a
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novel problem that is equivalent to DL in hardness
and has a decisional version, enabling it to establish
indistinguishability.

Reduction is a tool used to establish relationships
among problems with respect to how difficult they are
to solve. When designing cryptographic schemes, pri-
oritizing security requires reducing the hardest possi-
ble problem to the scheme’s security. However, as the
problem becomes more difficult, security reduction
usually becomes increasingly complex and potentially
unattainable. Therefore, it would be highly advan-
tageous to offer a diverse range of hard problems,
though not as difficult as the DL or DH problems,
which can be utilized in various designs based on
their specific characteristics. This approach enhances
the flexibility of the designs, accommodating a wider
range of features, albeit with a lower level of security.

This paper explores the significant hard problems
that pertain to the Diffie-Hellman problems by provid-
ing reduction relations among them. Although some
previous studies, such as [2–5] have touched upon the
reduction between some of these problems, there re-
main some reductions that have not been covered or
have been proven in a more complex way.

Furthermore, this paper presents the first compre-
hensive study undertaken on pairing inversion prob-
lems and their relation with other computational bi-
linear Diffie-Hellman problems.

Also, through our analyses, we can classify a variety
of computational problems associated with the Diffie-
Hellman problems and a variety of bilinear problems
based on their hardness.

The contributions of this paper can be summarized
as follows:

• Providing an overview of well-known computa-
tional problems relevant to the Diffie-Hellman
problem and the reductions between them.

• Presenting the first hard problem that is equiv-
alent to the discrete logarithm, which also has
a decisional version.

• Introducing a set of new problems and explor-
ing their reductions that could be useful in con-
structing secure cryptographic schemes.

• Investigating pairing inversion problems and
their relation to other computational bilinear
Diffie-Hellman problems.

• Proposing a simpler proof for the equivalency
of computational Diffie-Hellman and divisible
computational Diffie-Hellman problems com-
pared to the previous proof.

This paper is organized as follows: Section 2 pro-
vides essential background information that will be

referred to throughout the paper. Section 3 investi-
gates established problems pertaining to the Diffie-
Hellman problem, and includes discussions on poten-
tial reductions between them. In Section 4, a novel
hard problem is presented as an equivalent to the
discrete logarithm, and its decisional version is pro-
posed, along with the introduction of new problems
and an analysis of their level of complexity. Finally,
Section 5 examines the variations of the bilinear pair-
ing problem, accompanied by an evaluation of their
level of complexity.

2 Preliminaries

This section introduces the notations used in the
paper, followed by a concise overview of the cyclic
group, discrete logarithm problem, discrete logarithm
problem over elliptic curves, and bilinear pairing.

2.1 Notation

The notation B ⇐ A demonstrates that if an ora-
cle exists for solving problem A in polynomial time,
then there exists a PPT algorithm that solves prob-
lem B, as well. Put simply, B is reduced to A. The
notion of reduction serves to establish a fundamental
relationship between two problems and is essential in
developing potential solutions.

The notation B ⇔ A denotes that problems A and
B are equivalent through reductions. This means that
if an oracle is accessible to solve problem A, problem
B can also be solved, and vice versa.

An oracle, represented by the symbol O≈(a, b)→ c,
refers to a computational black box that takes the
inputs of problem π (i.e., a, b) and produces its output
(i.e., c) of it.

2.2 Cyclic Group

A group can be thought of as a collection of elements,
represented by the symbol G, along with an operation,
denoted by ∗, that combines any two elements from
this collection. A group should have four properties,
which are briefly known as closeness, associativity,
identity element, and inverse element.

A group G is cyclic if there is an element g ∈ G
such that for each α ∈ G there exists an integer i such
that α = gi. Such an element g is called a generator
or primitive element of G [6]. In a cyclic group, each
element acts as the generator of a cyclic subgroup.

2.3 Discrete Logarithm Problem

Let G be a finite cyclic group of order p, with gen-
erator g and β ∈ G. The discrete logarithm (DL)
problem is finding the integer a, where 2 ≤ a ≤ p− 1,
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such that the following relation is satisfied [7]:

β = g∗g∗ · · · ∗g︸ ︷︷ ︸
a times

= ga (1)

Therefore, the discrete logarithm problem oracle ODL

is demonstrated as follows:

ODL(g, g
a)→ a (2)

In order to prevent brute-force attacks on discrete
logarithm-based cryptosystems in real-world scenar-
ios, it should be ensured that the underlying group’s
order is sufficiently large. To achieve this, a large
prime number p = 2q + 1 is chosen, where q is prime.
The discrete logarithm problem in the subgroup G ⊂
Z∗
p is assumed to be hard, where G is a cyclic group

of prime order q, with a generator g.

2.4 Discrete Logarithm Problem Over
Elliptic Curves

In cryptographic applications, we need to consider
the elliptic curve over a finite field, which is defined
as follows.

Definition 1 (Elliptic Curve Over Finite Fields).
The elliptic curve E over Zp, where p > 3 is prime,
is the set of all pairs (x, y) ∈ Z2

p which fulfill

E : y2 ≡ x3 + ax+ b mod p (3)

together with an imaginary point of infinity P∞,
where a, b ∈ Zp, satisfying 4a3 + 27b2 ̸= 0 mod p.

For an elliptic curve to be defined, it should have
no intersections or singular points on its plot, which
is achieved if the discriminant of the curve, defined
as −16(4a3 + 27b2), is nonzero. For convenience, we
are dealing with an elliptic curve defined by a short
Weierstrass equation, given in (3), because any gen-
eral Weierstrass equation (4) can be transformed into
the short form [8].

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (4)

The elliptic curve E over Zp is an additive group.
The addition law in elliptic curves is as follows. For
points P = (x1, y1) and Q = (x2, y2) on E, the line
through P and Q (or the tangent line at P , if P = Q)
intersects E at a third point R. The line through the
point at infinity P∞ and R intersects E at a fourth
point, which is defined to be P +Q (or P + P = 2P ,
if P = Q). In other words, P +Q is geometrically the
reflection of point R across the x-axis.

The number of points on the elliptic curve, defined
over the field Zp, is denoted by #E, which is bounded
by Hasse’s theorem [9] as follows:

p+ 1− 2
√
p ≤ #E ≤ p+ 1 + 2

√
p (5)

The discrete logarithm problem over the elliptic curve
is defined as follows.

Definition 2 (Elliptic Curve Discrete Loga-
rithm Problem – ECDLP). Let E be an elliptic
curve group with generator element P . For a given el-
ement T ∈ E. The DL problem is finding the integer
d, where 1 ≤ d ≤ #E, such that:

T = P + P + · · ·+ P︸ ︷︷ ︸
d times

= dP (6)

2.5 Bilinear Pairing

Pairing-based cryptography is a large class of cryptog-
raphy providing solutions for digital signatures, key
establishment, functional encryption, attribute-based
encryption, etc. It relies on a map e : G1×G2 → GT ,
called bilinear pairing over finite groups, such that
G1, G2 are additive cyclic groups and GT is a mul-
tiplicative cyclic group, all of prime order q. This
bilinear map has the following properties [9]:

(1) Non-degeneracy, which means for all P ∈ G1 \
{1} and Q ∈ G2 \ {1}, it holds e(P,Q) ̸= 1.

(2) Bilinearity, which means that e(aP, bQ) =
e(P,Q)ab for a, b ∈ Z,

(3) There is a polynomial-time algorithm to com-
pute e(P,Q).

In cases where G1 equals G2, the pairing is consid-
ered symmetric, whereas, when G1 differs from G2,
the pairing is referred to as asymmetric.

Although G1 and G2 are typically written in ad-
ditive notation due to their origin as subgroups of
elliptic curves over finite fields, in pairing groups, we
often use the multiplicative notation for them.

3 Existing Variations of
Diffie-Hellman Problem

This section reviews a collection of prominent compu-
tational and decisional problems that are pertinent
to the Diffie-Hellman problem. We will also explore
how reduction relations can be defined among them.

3.1 Variations of Computational
Diffie-Hellman Problem

In the following, we will review different forms of the
computational Diffie-Hellman problem, and explore
the relationships between them through reduction.

Definition 3 (Computational Diffie-Hellman
problem – CDH [1]). Given a triple (g, ga, gb) of
elements in G to compute gab.

input : g, ga, gb → output : gab (7)
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Definition 4 (Square Computational Diffie-Hell-
man – SCDH [10]). Given a pair (g, ga) of ele-

ments in G to compute ga
2

.

input : g, ga → output : ga
2

(8)

Definition 5 (Inverse Computational Diffie-Hell-
man – InvCDH [3]). Given g, ga ∈ G \ {1} to

compute ga
−1

(Clearly, the case a = 0 must be
excluded from the set of instances.)

input : g, ga → output : ga
−1

(9)

Theorem 1 (InvCDH ⇔ SCDH ⇔ CDH [2]).
InvCDH, SCDH, and CDH problems are equivalent.

Definition 6 (Divisible Computational Diffie-
Hellman – DivDH [2]). Given a triple (g, ga, gb)
of elements in G to compute gb/a.

input : g, ga, gb → output : gb/a (10)

Theorem 2 (DivDH ⇔ CDH). DivDH and CDH
problems are equivalent.

Proof. To prove the theorem, we go through the fol-
lowing steps:

• (DivDH ⇐ CDH): Assuming (g, ga, gb) as in-
puts for DivDH problem, with OCDH acting
as a perfect oracle for solving CDH problem.
Choose r1, r2, r3 ∈ Z∗

q , and let h = gr1.a, gr2 =

h
r2

r1.a , gr3.b = h
r3.b

r1.a . Consequently, gb/a can be
computed as follows:

OCDH(h, h
r2

r1.a , h
r3.b

r1.a )→ h
r2.r3.b

(r1.a)2 = g
r2.r3.b

r1.a

(11)
we can extract gb/a by knowing r1, r2, r3.
• (CDH ⇐ DivDH): Assuming (g, ga, gb) as in-
puts for CDH problem, with ODivDH acting
as a perfect oracle for solving DivDH problem.
Choose r1, r2, r3 ∈ Z∗

q , and let h = gr1.a, gr2 =

h
r2

r1.a , and gr3.b = h
r3.b

r1.a . Consequently, gab can
be computed as follows:

ODivDH(h, h
r2

r1.a , h
r3.b

r1.a )→ h

r3.b/r1.a
r2/r1.a = g

r1.r3.ab

r2

(12)
we can extract gab by knowing r1, r2, r3.

This theorem has been previously proven in [2],
demanding the invocation of the DivDH and In-
vCDH oracles twice and once, respectively, for the
forward direction (CDH ⇐ DivDH) and CDH and
InvCDH oracles, each once, for the backward direc-
tion (DivDH ⇐ CDH). However, the evidence pre-
sented in this paper only requires invoking the CDH

oracle once for each of the forward and backward di-
rections and excludes the use of the InvCDH oracle
in both directions. Hence, our proof is more efficient.

It is worth noting that r1 and r2 in the proof of
Theorem 2 are serving as the general case. However,
they can simply be set to 1. This point holds true
throughout the rest of the paper.

3.2 Variations of Decisional Diffie-Hellman
Problem

In this section, we will provide an overview of two
significant variations of the decisional Diffie-Hellman
problem. This problem is used in designing crypto-
graphic schemes and protocols [11, 12]

Definition 7 (Decisional Diffie-Hellman prob-
lem – DDH [13]). Given a quadruple (g, ga, gb, gc)
of elements in G to determine whether or not gc =
gab.

input : g, ga, gb, gc → output :

 1 if gc = gab ,

0 otherwise.

(13)

Definition 8 (Inverse Decisional Diffie-Hell-
man – InvDDH [2]). Given a triple (g, gx, gz) to

determine whether or not gz = g
1
x .

Theorem 3 (InvDDH ⇐ DDH [2]). Having an
oracle capable of solving the DDH problem enables
one to solve the InvDDH problem. In short, InvDDH
is at most as hard as DDH problem.

4 Introducing New Problems

In this section, we aim to present a novel hard prob-
lem, called the Discrete Logarithm Diffie-Hellman
(DLDH) problem, that is of equivalent hardness to the
discrete logarithm problem. The main significance of
DLDH problem, making it suitable for distinguishing
proofs, is that despite the DL problem, it possesses
a decisional variant. To the best of our knowledge,
this is the first DL-equivalent hard problem, support-
ing the decisional variant. Moreover, we establish the
hardness of its decisional version by demonstrating
its equivalence to the InvDDH problem. In addition,
we propose five new problems that can serve as useful
tools in designing secure cryptographic schemes. We
also conduct an extensive analysis of the hardness of
these introduced problems.

4.1 A DL-Equivalent Problem and Its
Decisional variant

The DLDH problem, which is defined below, closely
resembles the Diffie-Hellman problem; however, it
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returns ab as its output instead of gab.

Definition 9 (Discrete Logarithm Diffi-Hell-
man Problem – DLDH). Given a triple (g, ga, gb)
of elements in G to compute ab.

input : g, ga, gb → output : ab (14)

Theorem 4 (DLDH ⇔ DL). DLDH and DL prob-
lems are equivalent.

Proof. To prove the theorem, we go through the fol-
lowing steps:

• (DLDH ⇐ DL): Suppose g, ga, gb are the
inputs of the DLDH problem, and ODL is
a perfect oracle that solves the DL problem.
Choose r1, r2 ∈ Z∗

q . Then call the oracle ODL

on (g, gar1) and (g, gbr2) to get ar1 and br2:

ODL(g, g
ar1)→ ar1 (15)

ODL(g, g
br2)→ br2 (16)

It follows that ab can be computed by knowing
r1 and r2.

• (DL⇐ DLDH): Suppose g, ga are the inputs of
the DL problem and ODLDH is a perfect oracle
that solves the DLDH problem. Choose r1, b ∈
Z∗
q , then call the oracle ODLDH on (g, gar1 , gb):

ODLDH(g, gar1 , gb)→ ar1b (17)

Knowing r1b enables the computation of a.
So, if one has an oracle for solving the DL prob-
lem, one can solve the DLDH problem and vice
versa. Hence, these two problems are equivalent.

Definition 10 (Decisional DLDH – DDLDH).
Given a triple (g, ga, gb) of elements in G and c ∈ Z∗

q

to determine whether or not c = ab.

input : g, ga, gb, c→ output :

 1 if c = ab ,

0 otherwise.
(18)

Theorem 5 (DDLDH ⇔ InvDDH). The Deci-
sional DLDH problem is equivalent to the InvDDH
problem.

Proof. To prove the theorem, we go through the fol-
lowing steps:

• (InvDDH ⇐ DDLDH): Suppose (g, ga, gz)
are the inputs of the InvDDH problem and
ODDLDH is a perfect oracle for solving the
DDLDH problem. Choose r1, r2, and c ran-
domly and let h = gr1 . Next, call ODDLDH on
the quadruple (h, hr2a, h

z.c
r2 , c). If z = a−1, then

this oracle outputs 1. Because in this situation
we have (r2a)(

z.c
r2

) = c.

• (DDLDH ⇐ InvDDH): Suppose (g, ga, gb, c)
are the inputs of the DDLDH problem and
OInvDDH is an oracle to solve InvDDH. Choose
r1, r2, and c randomly and let h = gr1 . Next,

invoke OInvDDH on the triple (h, hr2a, h
b

c.r2 ).
If c = ab, then this oracle outputs 1. Because
in this situation we have b

c.r2
= (r2a)

−1.

The innovation of DDLDH problem is twofold.
Firstly, it is the first decisional version of a DL-
equivalent problem. Secondly, it translates the prob-
lem of comparing two elements in group G into the
comparison of numbers in Z∗

q .

4.2 Some New Variations of DH Problem

In this section, we present five novel hard problems
derived from the DH problem and explore their re-
spective levels of difficulty.

Definition 11 (Weighted InvDH (WInvDH)).
Given a pair (g, ga) of elements in G and c ∈ Z∗

q to

compute g
c
a .

input : g, ga, c→ output : g
c
a (19)

As it will be proved in Theorem 6, Definitions
5 and 11 are equivalent. However, we defined the
WInvDH problem as an independent problem with
two distinct purposes in mind. Firstly, it serves as a
warm-up exercise to acquaint oneself with the proofs
that will be presented in this section. Secondly, it is
important to highlight that the output of WInvDH
can be considered as the last input for DLDH (14),
and vice versa, i.e. WinvDH receives c and outputs
gc/a, while DLDH receives gc/a and outputs c.

Theorem 6 (WInvDH ⇔ InvCDH). The WIn-
vDH problem is equivalent to the InvCDH problem.

Proof. To prove the theorem, we go through the fol-
lowing steps:

• (WInvDH ⇐ InvCDH): Suppose (g, ga, ab)
are the inputs of the WInvDH and OInvCDH

is a perfect oracle for solving InvCDH. Choose
r ∈ Z∗

q and compute g
ra
ab = g

r
b . Then query

OInvCDH on (g, grb
−1

) to get gbr
−1

.

OInvCDH(g, grb
−1

)→ gr
−1b (20)

So, gb can be computed by knowing r−1.
• (InvCDH ⇐ WInvDH): Suppose (g, ga) are
the inputs of the InvCDH and OWInvDH is a
perfect oracle for solving WInvDH. We choose
c ∈ Zq, r ∈ Z∗

q at random and call OWInvDH

on (g, gar, c). Thus

OWInvDH(g, gar, c)→ gcr
−1a−1

(21)
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Now, we can compute ga
−1

from knowing cr−1.

Definition 12 (Additive Hidden DH (AHDH)).
To compute ga(b+r) and gr, given a triple (g, ga, gb)
of G elements, where r ∈ Z∗

q .

input : g, ga, gb → output : ga(b+r), gr. (22)

Theorem 7 (AHDH ⇐ CDH). Having an oracle
for solving the CDH problem enables one to solve the
AHDH problem.

Proof. Assuming that the inputs (g, ga, gb) are
given for the AHDH, and OCDH is a perfect ora-
cle for solving CDH problem. We randomly choose
r1, r2, r3, r4 ∈ Z∗

q , and set h = gr1 . Then, call the

OCDH on (gr1 , gar2 , gbr3+r4):

OCDH(h, ha
r2
r1 , hb

r3
r1

+
r4
r1 )→ ha

r2
r1

(b
r3
r1

+
r4
r1

) = ga
r2r3
r1

(b+
r4
r3

)

Knowing r1, r2, and r3, we can easily compute

ga(b+
r4
r3

) as follows:

(ga
r2r3
r1

(b+
r4
r3

))(
r2r3
r1

)−1

= ga(b+
r4
r3

) (23)

Also by knowing r3 and r4, we can compute g
r4
r3 .

Therefore, setting r = r4
r3
, this theorem is proved.

Definition 13 (Additive Hidden DivDH – AH-

DivDH). To compute g
(b+r)

a and gr, given a triple
(g, ga, gb) of G elements, where r ∈ Z∗

q .

input : g, ga, gb → output : g
(b+r)

a , gr. (24)

Theorem 8 (AHDH ⇔ AHDivDH). The AHDH
and AHDivDH problems are equivalent.

Proof. To prove the theorem, we go through the fol-
lowing steps:

• (AHDivDH ⇐ AHDH): Assuming that the
inputs (g, ga, gb) are given for the AHDivDH,
and OAHDH is a perfect oracle for solving
AHDH. We randomly choose r1, r2, r3 ∈ Z∗

q ,
and set h = gar1 . Then invoke the OAHDH on
(gar1 , gr2 , gbr3):

OAHDH(h, h
r2
ar1 , hb

r3
ar1 )→ h

r2
ar1

(b
r3
ar1

+r′), hr′

(25)

h
r2
ar1

(b
r3
ar1

+r′) = g
r2r3
r1

(
b+ar′r1r

−1
3

a ) (26)

By knowing r1, r2, and r3, we can easily com-

pute g
b+ar′ r1

r3
a as follows:

(g
r2r3
r1

(
b+ar′r1r

−1
3

a ))(
r2r3
r1

)−1

= g
b+ar′ r1

r3
a (27)

Also by knowing r3, we can compute (hr′)
1
r3 =

g
ar1r′

r3 . Therefore, by considering r = ar1r
′

r3
, this

theorem is proved.
• (AHDH ⇐ AHDivDH): Assuming that the
inputs (g, ga, gb) are given for the AHDH and
OAHDivDH is a perfect oracle for solving AH-
DivDH. We randomly choose r1, r2, r3 ∈ Z∗

q ,
and let h = gar1 . Then call the OAHDivDH on
(gar1 , gr2 , gbr3):

OAHDivDH(h, h
r2
ar1 , hb

r3
ar1 )→ h

b
r3
ar1

+r′

r2
ar1 , hr′

(28)

The first output can be written as g
ar1r3

r2
(b+

ar1r′
r3

),
by knowing r1, r2, and r3, we can easily com-

pute ga(b+
ar1r′

r3
) as follows:

(g
ar1r3

r2
(b+

ar1r′
r3

))(
r1r3
r2

)−1

= ga(b+
ar1r′

r3
) (29)

Also by knowing r3, we can compute (hr′)
1
r3 =

g
ar1r′

r3 . Therefore, by considering r = ar1r
′

r3
, this

theorem is proved.

Definition 14 (Additive Hidden SDH –
AHSDH). To compute ga(a+r) and gr, given a pair
(g, ga) of G elements, where r ∈ Z∗

q .

input : g, ga → output : ga(a+r), gr. (30)

Theorem 9 (AHSDH ⇐ AHDH). Having an ora-
cle for solving the AHDH (22) enables one to solve
the AHSDH.

Proof. Suppose g, ga are the inputs of the AHSDH
problem and OAHDH is a perfect oracle for solving
the AHDH problem. We randomly choose r1, r2, r3 ∈
Z∗
q , and let h = gr1 . Then call the OAHDH on

(gr1 , gar2 , gar2+r3):

OAHDH(h, ha
r2
r1 , h

ar2+r3
r1 )→ ha

r2
r1

(
ar2+r3

r1
+r′), hr′

(31)

ha
r2
r1

(
ar2+r3

r1
+r′) = g

ar22
r1

(a+
r3+r1r′

r2
) (32)

By knowing r1 and r2, we can easily compute

ga(a+
r3+r1r′

r2
), as follows:

(g
ar22
r1

(a+
r3+r1r′

r2
))(

r22
r1

)−1

= ga(a+
r3+r1r′

r2
) (33)

Also by knowing r2, we can compute (hr′)
1
r2 = g

r1r′
r2 .

Therefore, by considering r = r3+r1r
′

r2
, this theorem

is proved.
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Definition 15 (Hidden Weighted InvDH –
HWInvDH). To compute g

r
a and gr, given a pair

(g, ga) of G elements, where r ∈ Z∗
q .

input : g, ga → output : g
r
a , gr. (34)

Theorem 10 (HWInvDH ⇐ AHDivDH). Hav-
ing an oracle for solving AHDivDH (24) enables one
to solve HWInvDH.

Proof. Assuming that the inputs (g, ga, gb) are given
for the HWInvDH and OAHDivDH is a perfect oracle
for solving AHDH. We randomly choose r1, r2, r3 ∈
Z∗
q and set h = gr1 . Next, we call the OAHDivDH on

(gr1 , gar2 , gr1r3):

OAHDivDH(h, h
ar2
r1 , hr3)→ h

r3+r′
ar2/r1 = g

1
a · r

2
1r3+r21r′

r2 , hr′

(35)

By knowing r1, r2, and r3, we can compute

(hr′)
r1
r2 g

r21r3
r2 = g

r21r′+r21r3
r2 . Therefore, by considering

r =
r21r

′+r21r3
r2

, this theorem is proved.

5 Variations of Bilinear Pairing
Problem

Pairing is a momentous aspect of public key cryptog-
raphy, particularly in Identity-based and Attribute-
based Encryption. Therefore, it is essential to have a
systematic study and comprehensive understanding
of pairing-related problems. This section will exam-
ine pairing inversion problems and provide a detailed
analysis of them. Afterward, we will address compu-
tational bilinear Diffie-Hellman problems and present
the reductions that occur between them. This pa-
per does not delve into the hard problems associated
with multilinear maps, a generalization of the bilinear
pairing. Due to space constraints, we are unable to
address these problems here, although some of them
have been introduced in [14].

5.1 Pairing Inversion Problems

In the following, we will explore the various forms of
the pairing inversion problem.

Definition 16 (Generalized Pairing Inversion
– GPI). Let G1, G2, and GT be groups of prime
order q and e : G1 ×G2 → GT be a non-degenerate
bilinear pairing. The Pairing Inversion problem is:
Given α ∈ GT , to compute P ∈ G1 and Q ∈ G2 such
that α = e(P,Q) [15].

input : α→ output : P,Q s.t. α = e(P,Q) (36)

Theorem 11. The GPI problem (36) doesn’t have
a unique solution. The number of solutions is equal
to q − 1.

Proof. Suppose that a.P, b.Q is the solution to the
GPI problem. We can choose any c ∈ Z∗

q , then com-

pute a.c.P , and b
c .Q. So, this is also a distinct solu-

tion to GPI problem. That is clear that the number
of solutions is q − 1.

Definition 17 (Fixed Argument Pairing Inver-
sion1 – FAPI1). Let G1, G2, and GT be groups
of prime order q, and let e : G1 × G2 → GT non-
degenerate bilinear pairing. The Fixed Argument Pair-
ing Inversion1 problem is: Given α ∈ GT and P ∈ G1,
to compute Q ∈ G2 such that α = e(P,Q) [15].

input : α = e(P,Q), P → output : Q (37)

Theorem 12 (GPI ⇐ FAPI1). Having an oracle
for solving the FAPI1 problem (37) enables one to
solve the GPI problem (36).

Proof. Suppose α is the given input of the GPI prob-
lem, and OFAPI1 is a perfect oracle for solving FAPI1.
Choose P ′ ∈ G1 randomly and call the oracle OFAPI1

on (α, P ′) to get Q′ such that e(P ′, Q′) = α.

OFAPI1(α, P
′)→ Q′ s.t. e(P ′, Q′) = α (38)

So, if one has an oracle for FAPI1 problem, one can
solve the GPI problem.

Definition 18 (Fixed Argument Pairing Inver-
sion2 – FAPI2). Let G1, G2, and GT be groups
of prime order q and let e : G1 × G2 → GT non-
degenerate bilinear pairing. The Fixed Argument Pair-
ing Inversion2 problem is: Given α ∈ GT and Q ∈ G2,
to compute P ∈ G1 such that α = e(P,Q) [15].

input : α = e(P,Q), Q→ output : P (39)

Theorem 13 (GPI ⇐ FAPI2). Having an oracle
for solving the FAPI2 problem (39) enables one to
solve the GPI problem (36).

Proof. The proof is similar to that of Theorem 12.

This paper specifically examines symmetric bilinear
pairing problems, represented by e : G × G → GT .
Consequently, the FAPI1 and FAPI2 problems are
deemed to be equivalent.

5.2 Computational Bilinear Diffie-Hellman
Problem

In the following, we will explore the various forms of
the pairing inversion problem.

Definition 19 (Gap Computational Diffie-Hell-
man Problem – GCDH). A Gap Diffie-Hellman
group is a group where the CDH problem is hard, but
the DDH problem is easy [16]. Let G be a group of
prime order q generated by P . The GCDH problem
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is: Given a triple (P, aP, bP ) ∈ G, and a distinguisher
D for the DDH problem to determine abP .

input : P, aP, bP,D → output : abP (40)

Remark. Let G be a group over which a symmet-
ric bilinear pairing transformation, e : G×G→ GT

is defined, then G is necessarily a GCDH group. Let
(P, aP, bP, cP ) be an instance of the DDH problem.
One can simulate distinguisher D for DDH by comput-
ing e(aP, bP ) = e(P, P )ab and e(cP, P ) = e(P, P )c.

Theorem 14 (GCDH ⇐ CDH). With an oracle
that can solve the CDH problem, one can solve the
GCDH problem.

Proof. Suppose P, aP, bP , and D are the given inputs
of the GCDH problem, and OCDH is a perfect oracle
for solving the CDH problem. Thus, call the oracle
OCDH on (P, aP, bP ) to get abP .

OCDH(P, aP, bP )→ abP (41)

So, if one has an oracle for CDH, one can solve the
GCDH problem.

Definition 20 (Computational Bilinear Diffie-Hell-
man Problem – CBDH [17]). Given a quadru-
ple (P, aP, bP, cP ) of elements in G to compute
e(P, P )abc.

input : P, aP, bP, cP → output : e(P, P )abc (42)

There are some variations of this problem, which
are given in [18–20].

Theorem 15 (CBDH ⇐ GCDH). With an oracle
that can solve the GCDH problem (40), one can solve
the CBDH problem (42).

Proof. Suppose P, aP, bP , and cP are the given in-
puts of the CBDH problem, and OGCDH is a perfect
oracle that solves the GCDH problem. r1, r2 ∈ Z∗

q are
randomly chosen. Thus, call the oracle OGCDH on
(P, ar1P, br2P, e) to get ar1br2P . From knowing r1r2,
the abP can be computed. Then

e(abP, cP ) = e(P, P )abc (43)

So, if one has an oracle for GCDH, one can solve
the CBDH problem.

Definition 21 (Computational Diffie-Hell-
man Problem on GT – CDHGT

). Given a triple
(e(P, P ), e(P, P )a, e(P, P )b) of elements in GT to
compute e(P, P )ab, where a, b ∈ Zq.

input :e(P, P ), e(P, P )a, e(P, P )b→ output :e(P, P )ab

(44)

Theorem 16 (CBDH ⇐ CDHGT
). With an oracle

that can solve the CDHGT
problem (42), one can

solve the CBDH problem (44).

Proof. Suppose P, aP, bP , and cP are the given in-
puts of the CBDH problem, andOCDHGT

is a perfect
oracle that solves the CDHGT

problem. r1, r2, r3 ∈
Z∗
q are randomly chosen. Let α = e(P, P )r1 , β =

e(P, cP )r2 and γ = e(aP, bP )r3 . Then, call the oracle
OCDHGT

on (α, β, γ):

OCDHGT
(e(P, P )r1 , e(P, cP )r2 , e(aP, bP )r3) =

OCDHGT
(α, α

cr2
r1 , α

abr3
r1 )→ α

r2r3abc

r21 = e(P, P )
r2r3abc

r1

Knowing r1, r2, and r3, we can easily compute
e(P, P )abc as follows:

(e(P, P )
r2r3abc

r1 )
r1

r2r3 = e(P, P )abc (45)

Theorem 17 (CDHGT
⇐ FAPI). With an oracle

that can solve the FAPI problem, one can solve the
CDHGT

problem (44).

Proof. Suppose that the CDHGT
problem has three

given inputs, namely e(P, P ), e(P, P )a, and e(P, P )b.
Additionally, there exists a perfect oracle, OFAPI ,
that can solve the FAPI problem. We randomly choose
three values, r1, r2, r3 ∈ Z∗

q . Note that P is a known
value. Then, we can call the OFAPI oracle twice as
follows:

OFAPI(r1P, e(P, P )ar2)→ ar2
r1

P (46)

OFAPI(r1P, e(P, P )br3)→ br3
r1

P (47)

We can then proceed to calculate e(ar2r1
P, br3

r1
P ) =

e(P, P )
abr2r3

r21 . With r1, r2, and r3 in hand, computing
e(P, P )ab becomes a simple task.

Theorem 18 (GCDH ⇐ FAPI). With an oracle
that can solve the FAPI problem, one can solve the
GCDH problem (40).

Proof. Suppose that the GCDH problem has three
given inputs, namely P, aP , and bP . Additionally,
there exists a perfect oracle, OFAPI , that can solve
the FAPI problem. We randomly choose three values,
r1, r2 ∈ Z∗

q . Note that P is a known value. Then, we

invoke the OFAPI on (r1P, e(P, P )abr2):

OFAPI(r1P, e(P, P )abr2)→ ar2b

r1
P (48)
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CDHGT
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FAPI
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WInvDH

SCDH,InvCDH

DLDH
DL

Figure 1. An overwiew of the hardness level for the hard
problems explored in this paper

With r1 and r2 in hand, computing abP becomes a
simple task.

6 Conclusion

In this paper, we introduced a novel hard problem
that is equivalent to the discrete logarithm problem
and possesses a decisional variant, a first-of-its-kind
achievement. We also proposed five new problems that
can aid in the development of secure cryptographic
schemes and provided a comprehensive analysis of
their hardness. Furthermore, we analyzed various
forms of bilinear pairing problems. In Figure 1, we
have classified a variety of analyzed computational,
decisional, and bilinear problems according to their
level of hardness. The notation B ← A implies that
the problem B is at most as hard as problem A.
The computational, decisional, and bilinear problems
have been distinguished by solid, dashed, and dotted
boxes, respectively. Also, the new problems defined in
this paper are distinguished in bold. As suggested by
the figure, the hardest problems are DLDH and DL,
with all other problems branching out from which.
Additionally, those problems located in the same box
are equivalent in hardness level. We believe that this
work will serve as a beneficial resource for researchers
and practitioners in the field, and we look forward
to further developments and applications of these
findings.
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