
ISeCure
The ISC Int'l Journal of
Information Security

January 2024, Volume 16, Number 1 (pp. 79–92)

http://www.isecure-journal.org

Slowloris Attack Detection Using Adaptive Timeout-Based

Approach

Kangkan Talukdar 1 and Debojit Boro 2,∗
1Numaligarh Refinery Limited, Numaligarh, Assam, India
2Department of Computer Science and Engineering, Tezpur University, Assam, India

A R T I C L E I N F O.

Article history:

Received: April 9, 2023

Revised: July 21, 2023

Accepted: August 7, 2023

Published Online: November 20, 2023

Keywords:
Adaptive Timeout, DDoS Attack,

Flooding attack, HTTP Protocol,

Slowloris Attack

Type: Research Article

doi: 10.22042/isecure.2023.

392462.938

dor: 20.1001.1.20082045.2024.
16.1.5.9

A B S T R A C T

Distributed Denial of Service (DDoS) attacks have become a critical threat to

the Web with the increase in web-based transactions and application services

offered by the Internet. With the vast resources and techniques readily available

to the attackers, countering them has become more challenging. They are

usually carried out at the network layer. Unlike traditional network-layer

attacks, application-layer DDoS attacks can be more effective. It utilizes

legitimate HTTP requests to inundate victim resources that are undetectable.

Many methods exist in the literature to protect systems from IP and TCP

layer DDoS attacks that do not work when encountering application-layer

DDoS attacks. Most network-layer DDoS attacks are flooding attacks, but

application-layer DDoS attacks can be flooding or protocol-specific vulnerability

attacks. Various protocol-specific vulnerability attacks cannot be detected

by traditional detection methods as they are designed to detect flooding

attacks. One such attack is the slowloris attack. It targets web servers by

exploiting an HTTP protocol vulnerability. In this paper, we propose a slowloris

attack detection based on an adaptive timeout-based approach that contains

two modules: a suspect determination module and an attacker verification

module. The determination module determines suspects and sends them to the

verification module, which verifies a suspect as an attacker. We have designed a

detection algorithm that detects an attacker’s IP address before it consumes all

the resources. The experimental results substantiate its efficacy with low false

alarms and high detection accuracy.

© 2024 ISC. All rights reserved.

1 Introduction

A DDoS attack is a large-scale coordinated attack
on the available services of a victim system or

network resource that is launched indirectly through

∗ Corresponding author.

Email addresses: ktalukdar.dbcet@gmail.com,
deb0001@tezu.ernet.in

ISSN: 2008-2045 © 2024 ISC. All rights reserved.

many compromised computers on the Internet [1].
They have been known to the network research com-
munity since the early 1980s, with its first incident
reported in the summer of 1999 by the Computer
Incident Advisory Capability (CIAC) [2]. They aim
at any network device but most often at application
layer servers, like electronic mail servers, web servers,
DNS servers, etc., to render the most popular ser-
vices unavailable for users. This is mainly done by

ISeCure

80 Slowloris Attack Detection Using Adaptive Timeout-Based Approach — Talukdar and Boro

Figure 1. Components of Botnet-based DDoS attack

consuming the network bandwidth, the victim’s de-
vice RAM, or the CPU cycles [3]. DDoS attackers
first set up a botnet by infiltrating large numbers of
computers by exploiting their software vulnerabili-
ties. These compromised computers in the botnet are
then orchestrated to wage a large-scale coordinated
attack against one or more victim systems [4]. As
shown in Figure 1, the attacker compromises a first
tier of vulnerable computers known as handlers. The
attacker then orders a second tier of several more
computers through them to simultaneously attack a
specific target. Based on the OSI layer a DDoS at-
tack targets and the attack traffic flow rate during
the attack, a DDoS attack can be classified into two
types. If the attack targets the application layer, then
it is categorized as an App-DDoS attack, and if it
targets the network layer, then it is categorized as a
Net-DDoS attack.

Net-DDoS and Transport layer DDoS attacks are
mainly flooding attacks that send lots of unwanted
traffic to the target network and disrupt legitimate
users’ connectivity by exhausting the victim network’s
bandwidth. They are mainly launched using spoofed
or non-spoofed TCP, ICMP, and UDP packets. An
attacker exploits specific features or implementation
bugs of some of these protocols to consume excess
amounts of the victim’s resources (e.g., TCP SYN
flood, TCP SYN-ACK flood, ACK & PUSH ACK
flood, etc.[5–8]. Instead of sending direct requests
to the reflectors, attackers also send forged requests
(e.g., ICMP echo requests) with spoofed IP addresses.
The reflectors then send their replies to the victim
and exhaust their resources (e.g., Smurf and Fraggle
attacks) [6, 7]. Botnets are used for both the reflection

and amplification of these attacks.

An App-DDoS attack can be a flooding attack or
a protocol-specific vulnerability attack. In a flooding
attack, the attacker sends a lot of application traf-
fic, such as HTTP flood, to the victim network or
server masquerading as flash crowds. These attacks
focus on disrupting legitimate users’ services by ex-
hausting the server resources (e.g., Sockets, CPU,
memory, disk/database bandwidth, and I/O band-
width) [9]. There are different types of App-DDoS
flooding attacks, such as DNS reflection/amplification
attacks [2], Session Initiation Protocol (SIP) attacks
using fabricated VoIP requests from a wide range
of IP addresses in a short period [5, 6, 8], HTTP
GET/POST flooding attacks under session, and re-
quest flooding attack initiates single or multiple ses-
sions with a high number of requests. In a protocol-
specific vulnerability attack, App-DDoS attacks gen-
erally are low-rate, stealthier, and consume less band-
width, unlike volumetric attacks, since they share sim-
ilar features of benign traffic. However, they usually
have the same impact on the services since they target
specific characteristics of applications such as HTTP,
DNS, or Session Initiation Protocol (SIP). These at-
tacks include asymmetric and slow request/response
attacks where the attackers send sessions with high-
workload requests. For instance, in asymmetric at-
tacks, multiple HTTP requests are embedded within
a single packet and issued irregularly within a single
HTTP session.

The slow request/response attacks include vari-
ous attacks. For instance, the attacker sends partial
HTTP requests and an incomplete set of request
headers in a slowloris attack [10, 11]. These requests
rapidly grow, slowly update, and never close. The
attack continues until all available sockets are oc-
cupied by these requests thereby making the web
server inaccessible. In an HTTP fragmentation attack,
the attacker sends tiny fragments of HTTP packets
very slowly until the server timeout allows. The at-
tacker can silently bring down a web server with just
a handful of bots by opening multiple sessions on
each bot [8]. In a slowpost attack (a.k.a, slow request
bodies or R-U-Dead-Yet (RUDY) attack) [12], the
attacker first sends a complete HTTP header that
defines the “content-length” field of the post message
body as it sends this request for benign traffic. Then,
it sends HTTP post commands slowly to send the
data to fill the message body at a rate of one byte
every two minutes. Hence, the server waits for each
message body to complete while a slowpost attack
proliferates which can bring down the web server.
In a slow reading or slow response attack [13], the
attacker slowly reads the responses from the server
instead of slowly sending the requests. The attacker

ISeCure

January 2024, Volume 16, Number 1 (pp. 79–92) 81

sets a smaller receive window size greater than the
target server’s send buffer. Even if there is no data
communication, the TCP protocol maintains open
connections. The attacker exploits this to force the
server to keep many open connections and eventually
cause a DDoS attack on the server.

With the increase in application and business ser-
vices, many application servers and network facilities
suffer from DDoS attacks. Traditional DDoS attack
defense systems become ineffective for App-DDoS
attacks as they are mainly designed to detect Net-
DDoS or transport layer DDoS attacks. For example,
the “Mydoom” worm virus launched an HTTP re-
quest flooding attack on the SCO Group website in
2004 [14]. The web server crashed soon because its
defense mechanisms were based on statistics of IP
and TCP layers that could not differentiate between
normal users and Mydoom HTTP requests. This calls
for a thorough investigation of the working mecha-
nisms of these attacks, the evolving manner of these
mechanisms, and know-how on defending servers and
network systems against these attacks. As the occur-
rence of App-DDoS flooding attacks is quite appar-
ent, we focus on the low-rate and stealthy protocol-
specific vulnerability App-DDoS attacks. Therefore,
we endeavor to investigate the slowloris attack and
aim to propose a solution. In this paper, we propose
a slowloris attack detection based on an adaptive
timeout-based approach that contains two modules:
a suspect determination module and an attacker ver-
ification module. The determination module deter-
mines suspects and sends them to the verification
module, which verifies a suspect as an attacker. The
detection algorithm detects an attacker’s IP address
before it consumes all the resources with low false
alarms and high detection accuracy. The contribution
of the paper can be summarized as follows.

• An effective method for the detection of a
slowloris attack based on an anomaly-based sus-
pect determination algorithm and an adaptive
timeout-based suspect verification module.

• A novel dataset containing normal web traffic
and attack traffic generated from our University
Web server.

• Validation of the method with the generated
dataset with different scenarios and establish
the effectiveness of the method with low false
alarms and high detection accuracy.

The rest of the paper is organized as follows: Sec-
tion 2 discusses the slowloris attack and how it ex-
ploits the HTTP protocol’s vulnerability. Section 3
discusses current detection methods of slowloris at-
tacks. Section 4 highlights the motivation. Section 5
presents the problem definition and assumptions. Sec-

tion 6 presents our proposed approach for the detec-
tion of slowloris attacks. Section 7 reports the ex-
perimental results. Finally, Section 8 highlights the
conclusion and future work.

2 HTTP Vulnerability Exploitation
by the Slowloris Attack

HTTP has a mechanism to serve a request from a
user whose internet connection is slow. Consequently,
the web server may not receive the entire header at
a time, and the header comes in parts. Therefore,
the server must wait to get the entire header, and
whenever the server receives an incomplete header,
it will wait to receive the next part until timeout.
The default timeout value of 300s is modifiable in the
Apache web server. This is very useful if a website
serves large files for download through HTTP. The
timeout value maintains an active HTTP connection
of a slow client without breaking the download. Thus,
the timeout counter is reset to 1 every time the client
sends some more data.

Slowloris is a GET method-based attack that ex-
ploits the above HTTP’s vulnerability to bring down
a web server using a single or a few machines. It does
not flood the victim but uses time-delayed HTTP
GET headers with spoofed requests. The attacker
intentionally sends partial HTTP requests (mostly
non-spoofed source IP addresses) to the server and
sends bogus data very frequently to reset the timeout
counter of each request [15]. These requests are sent
over the full and legitimate TCP connections. The
attacker sends separated lines of the header one by
one and does not send an HTTP GET request header
simultaneously. This causes the server to wait until
the end of the request header, thus reserving the TCP
connection for a long period. The default threshold of
300s in the Apache web server indicates the maximum
timeout when the next line of header arrives, other-
wise, the connection is closed. On the attacker side,
this time is set as a break time for sending the next
line of the request header. With multiple connections
created in this manner, an attacker can then take up
all available sockets and exhaust web server resources,
thereby rendering it inaccessible. A complete HTTP
GET request header looks like the below:

GET / HTTP/1.0[CRLF]
User-Agent: Wget/1.10.2 (Red Hat modified)[CRLF]
Accept: */*[CRLF]
Host: 192.168.3.18[CRLF]
Connection: Keep-Alive[CRLF][CRLF]

In the above header, CRLF stands for CR (Carriage
Return) and LF (Line Feed) and are non-printable
characters that denote the end of the line (EOL). Two
consecutive CRLF characters represent the comple-

ISeCure

82 Slowloris Attack Detection Using Adaptive Timeout-Based Approach — Talukdar and Boro

tion of the header and denote a blank line as in the
header’s “Connection” field. Slowloris exploits this
in implementing its attack. It sends an incomplete
request using the slowloris script and does not send
a finishing blank line, as shown in the snippet below.

“GET /$rand HTTP/1.1\r\n”
. “Host: $sendhost\r\n”
. “User-Agent: Mozilla/4.0 (compatible; MSIE 7.0;
Windows NT 5.1; Trident/4.0; .NET CLR 1.1.4322;
.NET CLR 2.0.503l3; .NET CLR 3.0.4506.2152; .NET
CLR 3.5.30729; MSOffice 12)\r\n”
. “Content-Length: 42\r\n”;

“\r\n” denotes CR and LF in PERL. Two consecu-
tive “\r\n” denote a blank line, which is not present,
and so is an incomplete HTTP header. In the request
sent by slowloris, the final [CRLF] is missing. So when
the server receives this request, it starts its timer and
waits until it receives two consecutive [CRLF]s or the
timer expires. Thereafter, slowloris starts sending in-
complete header parts just before the timer expires,
and the server keeps waiting and renewing its timer
each time it receives an incomplete part. If the time-
out is 300s (Apache web servers default), slowloris
will send the next incomplete header in 299s.

Slowloris is designed to quickly tie up a typical web
server or proxy server based on a Linux Unix machine
by a single attacker (since Windows limits the num-
ber of open sockets at any given time). It can lock up
all its threads as the server patiently waits for more
data. Slowloris can customize the timeouts simultane-
ously when some servers may have a smaller timeout
tolerance than others. Additionally, a special function
aids the attacker in finding the right-sized timeouts as
well. Modern operating systems need not shut down
the sockets as a slowloris attack does not consume
many resources. In fact, in certain circumstances, it
makes slowloris better than a typical flooder. So we
can say that slowloris is the HTTP equivalent of an
SYN flood.

3 Related Work

Many different approaches to counter slowloris at-
tacks exist in the current literature. Some solutions
use approaches to limit the number of connec-
tions per user or set the timeouts for each connec-
tion [16]. Apache developed a security module named
mod antiloris to protect the web server from slowloris
attacks. The module limits the number of threads in
the READ state on a per-IP address basis. It allows
a default maximum number of 5 HTTP connections
per IP address, which is modifiable by re-configuring
the server. However, the server can know nothing
about the attacker’s IP address, and there is no basis
for choosing five as the maximum limit. Sometimes,

a legitimate user may need many parallel HTTP
connections to download a large file quickly. He may
divide the file into many parts and download them
simultaneously. The requirement of the total number
of connections for a user may vary and increase the
maximum limit in normal conditions. Hence, lim-
iting the maximum number of connections cannot
be an appropriate solution. The IP read limit value
can be changed by configuring the antiloris mod-
ule. However, once set, it is fixed for that run and
cannot be changed on run time. Similarly, solutions
using IPTABLES [17] and advanced policy firewall
(APF) [18] also limit the number of active connec-
tions. Solutions using other Apache modules, such as
mod evasive [19] and mod qos [20] that monitor the
incoming server requests and prioritize the incoming
HTTP requests, also counter slowloris attacks but
are not much impactful.

A combination of timeout and data rate limit per
request was also used to mitigate the attack [21–23].
Tools such as Suricata [24] and SNORT [25] were also
analyzed for the detection of the slowloris attack by
De Sousa Araújo et al. [26]. The analysis reported
that the number of alerts generated by Suricata to
detect the attack was inadequate whereas SNORT
has a trade-off between the memory and process con-
sumption during attack detection. SNORT also re-
ports many false positives when the number of con-
nections per user increases based on the number of
objects on a web page [27]. Schemes such as Gigabit
Ethernet Secure Network Interface Controller (GES-
NIC) web server protection protect the server from
high-performance DDoS attacks such as slowloris. It
performs simple packet analysis based on the feature
that a slowloris GET request sends. It drops any
GET request that does not contain two CRLFs at the
end of the header [28]. However, this mechanism may
sometimes detect a legitimate user as an attacker if
the user has a slow internet connection. In a slow in-
ternet connection, sometimes a web server may get
an incomplete HTTP header, but this does not mean
the sender is an attacker. Therefore, not having two
CRLFs at the end of a GET request is a necessary
but insufficient condition to confirm a client as an
attacker. Hence, the chance of getting a false alarm is
higher in GESNIC in case of a slow client connection.

Statistical and machine learning (ML) approaches
were also used for the signature and anomaly-based
detection of slowloris attacks [3, 29–31]. Swe et al.
proposed a framework for the detection of slowloris
attacks that uses gain-ratio and chi-squared ranking
methods to select optimal feature subsets from a large
dataset and then train ML algorithms [32]. Slowloris
attack detection using a Deep Learning (DL) neural
network in [33] is based on the statistical variations

ISeCure

January 2024, Volume 16, Number 1 (pp. 79–92) 83

of the traffic, that tend to generate false positives
when the traffic is also from legitimate users. This
happens because the slowloris attack traffic pattern
is very similar to genuine traffic and discriminating
between them is one of a challenge. However, Velan
et al. pointed out that during the traffic analysis for
attack detection, the process of flow data creation is
generally not considered which leads to the generation
of false positives [34]. Kemp et al. proposed a method
to identify and extract features related to slowloris
using Principal Component Analysis (PCA) from the
Netflow data [35]. The features are then used to train
several ML algorithms. However, the method was
not implemented and validated in real-time. Fu et al.
proposed a real cloud computing platform-oriented
attack detection using time-frequency characteristics
of traffic data [36]. They learn the potential time-
frequency domain connection in the normal sequence
using a deep neural network and generate the recon-
structed sequence. The difference between the two
sequences discriminates against the attack in a short
time with high accuracy. However, the method again
suffers from false alarms owing to the short duration
of the connection time assumed.

Most existing related works to detect slowloris at-
tacks are based on the feature selection and then
training the ML or DL algorithms. Though the pro-
posed works have high detection accuracy but may
generate false positives when the attack traffic mimics
legitimate traffic and the ML model fails to discrimi-
nate them. In this paper, we aim to detect a slowloris
attack without involving any ML approach. There-
fore, we propose an adaptive connection timeout ap-
proach to detect the attack and identify the attacker.
Thus, we summarize the following requirement for a
method to detect a slowloris attack.

(1) It must be able to both detect the attack and
identify the attacker.

(2) It must be independent of the size of attack
traffic and the number of attackers.

(3) The legitimate users should not be affected
by any detection and mitigation mechanism
adopted.

4 Motivation

The stealthy nature of the slowloris attacks and false
positives in the existing solutions motivate us to con-
tribute a solution in the current literature, which we
highlight below.

(1) Existing methods for DDoS attack detection
are mainly targeted on the network layer and
incapable of the detection of slow, low-rate, and
stealthy slowloris attacks.

(2) Most existing methods for slowloris attack de-

tection are based on statistical features and ML
that fail to discriminate between benign and
legitimate traffic.

(3) Solutions that limit connections per user and
timeout mechanisms impact legitimate user con-
nections.

(4) Dependence on header format, such as a blank
line at the end of a header, results in many false
positives when a user has a slow connection.

5 Problem Definition and
Assumptions

The slow, low-rate, and stealthy nature of the
slowloris attack can easily disrupt internet services
if not detected early. Also, the discrimination of the
attack traffic from the legitimate traffic is a challenge
since slowloris share the same characteristic of legiti-
mate slow connection. Therefore, the main objective
of this work is to develop a method that can not only
detect the attack but also discriminate between the
attack and normal traffic without hampering legiti-
mate users in the process. Once the attack is detected,
the method should identify the attacker’s IP address
for onward preventive actions. The assumptions that
we consider for our detection method are as follows:

(1) Only one server in the network is the victim of
the slowloris attack.

(2) All processing of the network traffic and analysis
of the detection method is done on the victim-
end.

(3) The attackers are distributed across multiple
botnets.

(4) The attackers send incomplete/partial HTTP
requests with no request body [37].

6 Our Proposed Approach

The web server timeout for completing an HTTP GET
request plays a significant role in designing a near
real-time detection mechanism. Adaptive timeout is
an ability of a web server by which the web server
can dynamically change the timeout value for an
IP address in runtime. Here, we do not need to re-
configure a web server to change the timeout of any
client. In our approach, we implement a mechanism
in which the timeout can be changed per IP address
basis in runtime. Thus, we can assign different timeout
values for clients based on their behavior. Initially, all
the clients will have the same timeout value, which
is the default timeout for the web server.

6.1 Detection Architecture

We consider a victim-end architecture for slowloris
attack detection, as shown in Figure 2. It has sev-
eral advantages in attack detection. First, the par-

ISeCure

84 Slowloris Attack Detection Using Adaptive Timeout-Based Approach — Talukdar and Boro

Figure 2. Detection architecture of slowloris attack

tial HTTP requests sent from the attackers appear
negligible to any detection module deployed in the
network edges and are very low in average volume.
Thus, it is convenient to observe the traffic behavior
on the victim’s end. Second, it is easy to deploy. A
single router connects our architecture to the Inter-
net. All the incoming traffic reaches the server by
passing through an edge router, firewall, and an L3
switch. The incoming traffic from the router/firewall
is directly forwarded to the server through the switch
during normal conditions. A copy of the traffic seen
at one of the switch’s ports is also forwarded to the
Slowloris Attack Detector module through port mir-
roring when it forwards the traffic to the victim server.
The detection module is a traffic monitoring system
with high processing capacity and large memory. It
passively monitors the forwarded incoming traffic to
detect the slowloris attack. It reports the attacker’s
IP addresses back to the firewall to take preventive
measures once an attack is detected.

6.2 Adaptive Timeout Method

In our approach, we divide the detection mechanism
into two modules. The first module is the suspect
determination module, which monitors the normal
web traffic and tries to find out some potential sus-
pects. If a suspect is found, it informs its IP address
to the second module, which is the Attacker Verifica-
tion module. This module verifies whether a poten-
tial suspect is an attacker or not. It uses an adaptive
timeout mechanism for the suspects and records their
behavior in response to the change in timeout. By
monitoring the response of the suspects, it can con-
firm whether it is an attacker or not. Table 1 shows
the symbols used in the algorithms of the modules,

Table 1. Symbols used

Symbols Meanings

R HTTP request from a client

addr IP address of a client

AR Number of anomaly requests per IP address during

the suspect determination

next Pointer to the next node

L List to represent the table containing anomaly

requests per IP address

H The header of an IP address

σ The threshold for the number of anomaly requests

per IP address

addrs Suspect IP address

Ti Current timeout value

C Maximum number of half-open requests the server

can store

δr The reduction rate of timeout

Ai Total number of anomaly requests per IP address per

timeout iteration

AT Total number of anomaly requests per IP address during

suspect verification

and Figure 3 depicts the flowchart for the proposed
detection method.

6.2.1 Suspect Determination Module

This module maintains an IP Specific Anomaly Re-
quest (IPSAR) table, which contains two columns:
IP address and integer number. The IP address rep-
resents the address of a web client, and the integer
number represents the corresponding total number of
malicious requests sent by that client. The total num-
ber of malicious requests is calculated based on the
most recent hundred requests made by that client. All
the HTTP headers that do not contain two CRLFs
are taken as malicious requests and the correspond-
ing number AR for that IP address is incremented in
the table. We call this table the First Anomaly table.
The anomaly calculation function continuously up-
dates the IPSAR table for all the requests coming to
the web server. The monitoring function in the mod-
ule constantly monitors all the entries of the IPSAR
table. A threshold value σ is set based on the various
laboratory experiments. If the number of anomaly
requests for any IP address is greater than the thresh-
old σ, then the monitoring function signals the verifi-
cation module with the IP address to verify whether
it is an attack or not. The pseudocode of the suspect
determination module is presented in Algorithm 1.

ISeCure

January 2024, Volume 16, Number 1 (pp. 79–92) 85

YES

ATTACKER VERIFICATION

 MODULE

NO

SUSPECT DETERMINATION

MODULE

WEB TRAFFIC

IF IP BEING

MONITORED?

ACCEPT

REQUEST

YES

ACCEPT

REQUEST

IF

SUSPECT

NO

DROP

REQUEST

IS

ATTACKER?

YES

NO

SUSPECT MONITOR SUSPECT VERIFIER

Figure 3. Flowchart for the proposed detection method

6.2.2 Attacker Verification Module

This module uses an adaptive timeout approach to
confirm whether a suspect IP address is an attacker.
A normal small-scale web server has the capacity of
serving 1000 read requests simultaneously. Therefore,
our approach must confirm the attacker’s IP address
as an attacker before it consumes all the server re-
sources. We give our verification module enough time
to collect adequate evidence to confirm an attacker
with a significantly low false positive rate (FPR). The
module repeatedly reduces the timeout value for a
suspect IP address and is simultaneously updated in
the server. Since the incoming traffic is mirror-ported
to both the server and the detection module through
the switch, the behavior or response of the suspect
IP address for each reduced timeout is recorded. The
response is recorded in terms of the total number
of anomaly requests corresponding to each timeout
value. The module is based on the idea that an at-
tacker may open multiple connections and send in-
complete/partial HTTP requests to respond to the

reduced timeout values for each connection. There-
fore, the module is divided into two parts: (i) Suspect
Monitor and (ii) Suspect Verifier or Confirmation
module, which we describe in the next subsections.

6.2.2.1 Suspect Monitor

In this part, the timeout value for the suspect is re-
duced by using an adaptive timeout mechanism. Fig-
ure 4 depicts the flowchart for the suspect monitor
of a potential attacker. It consists of a recursive func-
tion that iteratively reduces the timeout value by δr
percent for the suspected IP address addrs. For each
reduced timeout, it waits for 2∗δr number requests to
come from the addrs, which is a response of the addrs.
If 2 ∗ δr number of requests arrives from the addrs, it
indicates an attacker else, a slow user. This module
stores the timeout value Ti and the corresponding
number of anomaly requests Ai for all the iterations
in a table. The iterations are stopped when the total
anomaly request AT crosses half of the capacity C
of the web server i.e., AT > C/2. Thereafter, it in-

ISeCure

86 Slowloris Attack Detection Using Adaptive Timeout-Based Approach — Talukdar and Boro

NO

YES

SUSPECTED IP ADDRESS

AT > C/2

REDUCE TIMEOUT FOR

MONITORED IP ADDRESS

RECORD RESPONSE

AT= AT + Ai

SUSPECT

VERIFIER

Figure 4. Flowchart of suspect monitor

Algorithm 1 Suspect Determination

Input: R
Output: Suspected IP address
1: Define a linked list IPSAR with the following

attributes: struct IPSAR {Address addr, int AR,
struct IPSAR *next}

2: Create a list L to represent the table containing
Anomaly Request per IP address: struct IPSAR
*L

3: Extract Header H from Request R
4: Extract IP address addr of the Sender from H
5: if addr already exists in the list then
6: Goto Step 6
7: else
8: Create an entry for addr in the list
9: end if

10: Check H for two CRLFs
11: if H contains to two CRLF then
12: Request R is Accepted
13: else
14: AR = AR + 1
15: end if
16: if AR > σ then
17: Send the IP address to the verification module
18: end if
19: Repeat Steps 3 to 16 for all the HTTP Requests

coming to the server

vokes the suspect verifier module. The pseudocode of
the suspect monitoring and verification algorithm is
presented in Algorithm 2.

6.2.2.2 Suspect Verifier

In this part, the module checks the response of the
addrs based on the different reduced timeout values
Ti and the anomaly requests values Ai. Figure 5 shows
the reduced timeout for different δr along with the
expected number of packets and the received pack-

Algorithm 2 Adaptive Timeout-based Suspect Mon-
itoring and Verification

Input: addrs, Ti, C, L
Output: Anomaly array and Timeout array
1: Declare AT

2: AT = L → AR

3: if AT > C/2 then
4: Goto Suspect Verifier/Confirmation module
5: end if
6: Ti = Ti − (Ti ∗ δr)
7: Wait for 2 ∗ δr number of requests to come from

addrs
8: Calculate the total number of anomaly requests

Ai during this period and store it in the anomaly
array

9: Store the timeout value Ti in the timeout array
10: AT = AT +Ai

11: Goto Step 3

ets Ai from addrs. If the module observes constant
attempts Ai from the addrs to send a packet for ev-
ery reduced timeout Ti, it then confirms that addrs
as an attacker. Otherwise, it considers a legitimate
user whose Internet connection is very slow. This
is because an attacker will always attempt to send
incomplete/partial HTTP requests for each connec-
tion opened by it in response to the reduced timeout.
Whereas, a legitimate user with a slow Internet con-
nection will not change its behavior in response to
such a reduction. Due to the reduced timeout, such
slow users may open new connections, but their be-
havior will remain unchanged and continue to time-
out. Unlike this, an attacker will attempt to evade
timeout by sending partial requests just before the
timeout for its connections and keep them open for
as long time as possible. Though initially, the slow
users may be marked as suspicious by the detection
module. But eventually, due to their unchanged be-
havior, they are marked as legitimate and are not

ISeCure

January 2024, Volume 16, Number 1 (pp. 79–92) 87

δr=20%

Timeout
Expected

packet
Ai

60 0.4 1

48 0.4 1

38 0.4 1

31 0.4 1

25 0.4 1

20 0.4 1

16 0.4 1

13 0.4 1

10 0.4 1

8 0.4 1

6 0.4 1

5 0.4 1

4 0.4 1

3 0.4 1

3 0.4 1

2 0.4 1

1 0.4 1

δr=40%

Timeout
Expected

packet
Ai

60 0.8 1

36 0.8 1

22 0.8 1

13 0.8 1

8 0.8 1

5 0.8 1

3 0.8 1

2 0.8 1

1 0.8 1

δr=80%

Timeout
Expected

packet
Ai

60 1.6 2

12 1.6 2

2 1.6 2

Figure 5. Expected and anomaly packets Ai with respect to the reduced timeouts δr

reported to the firewall to block their IP addresses.

7 Experimental Results

For testing our proposed algorithm, we use our Tezpur
University Web Server dataset with the legitimate
web traffic of various users. Each tuple of the dataset
contains seven attributes, viz. the IP address of the
user, date, time, the time difference with GMT, main
message, body, HTTP protocol version, and server
response code. One example tuple from the dataset
is shown below.

66.54.88.131 –[26/Oct/2022:04:10:56 + 0530] “GET
/hostels/swh/prevAP.html HTTP/1.1” 200 7042

In the above example, 66.54.88.131 is the IP ad-
dress of the client sending the request, 26/Oct/2022
is the date, 04:10:56 is the time of arrival of the re-
quest, +0530 is the time difference in GMT for India,
GET /hostels/swh/prevAP.html is the main request,
HTTP/1.1 is the protocol version, and 200 is the
server response code. For our algorithm, we need only
a few attributes, such as the IP address of the user,
time of arrival of the request, main message body,
and HTTP protocol version. Therefore, we extract
the required attributes from the dataset by cleaning
the raw data by writing C programs. One example
tuple from the dataset is shown below.

66.54.88.131 04:10:56 GET /hostels/swh/prevAP.html

HTTP/1.1

To process this data properly in our program, we
add another tuple to represent CR and LF. An ex-
ample tuple from the final set is:

66.54.88.131 04:10:56 GET /hostels/swh/prevAP.html
HTTP/1.1 CRLF CRLF

We then generate the attack traffic in our labo-
ratory programmatically. To generate the attack re-
quests, we use the standard slowloris tool [38]. We
simulate the different attack behaviors by writing var-
ious attacker programs. One example tuple from the
dataset is given below.

127.0.0.2 04:10:50 GET /server/img01.jpg CRLF

In our experiment, we consider three attackers and
five normal users and generate the traffic for different
scenarios. After generating the attack traffic, we com-
bine the attack traffic with the normal web traffic
captured from our University web server. The nor-
mal web traffic obtained from the server is processed
and restricted to only five normal users. We gener-
ate different datasets for different scenarios, and the
number of attacks and normal request traffic in the
datasets varies between 20000 and 300000. This num-
ber depends on the number of normal users’ slow
requests and partial HTTP requests sent by the at-
tackers for various scenarios. We sample the dataset
into 10s consecutive time intervals where some sam-

ISeCure

88 Slowloris Attack Detection Using Adaptive Timeout-Based Approach — Talukdar and Boro

Table 2. FPR for different threshold values (σ)

Threshold Value FPR Specificity

σ (in %) (TNR in %)

100 3.33 96.67

150 3.35 96.65

200 3.23 96.77

250 3.19 96.81

300 3.13 96.87

350 3.01 96.99

400 2.97 97.03

450 2.94 97.06

500 2.83 97.17

550 2.71 97.29

600 2.79 97.21

650 2.61 97.39

700 2.57 97.43

750 2.41 97.59

800 2.63 97.37

850 2.74 97.26

900 2.81 97.19

950 3.06 96.94

1000 3.27 96.73

ples may not contain the malicious requests based on
the scenarios. Each 10s sample consists of 500-1000
average request packets, and the total test duration
ranges between 30-50 mins for different scenarios. In
a slowloris attack, the traffic rate is very low, and an
attacker sends a partial HTTP request just before
the timeout. We consider a default timeout of 60s for
the Apache 2.4 web server. Therefore, in the datasets,
the attackers send partial HTTP requests depend-
ing on the reduced timeout to keep the connections
open for a long time. The time interval for sending
such follow-up partial requests is not fix. Thus, the
presence of such malicious requests is random across
the samples. We process our algorithm in the above
datasets by writing various C and Java programs.
The algorithm keeps track of the number of anomaly
requests AR per IP address to find the suspicious IP
address, and thereafter, the subsequent modules con-
firm the IP address as an attacker or legitimate. We
test our algorithm for the different scenarios and ob-
serve that it can detect the attackers properly with
a much lower FPR. We record the change in FPR
and TNR for different threshold values σ as shown
in Table 2 and Figure 6.

From the above graph, we see that if we increase the
threshold value, then the FPR decreases. However, if

Figure 6. FPR for different threshold values σ

Figure 7. Change in FPR for different numbers of slow re-

quests

we increase further, FPR tends to increase. Therefore,
we can conclude that the threshold value can neither
be very small nor it can be very large. From the above
graph, we can compute the threshold value of our
web server. We design various test cases to observe
the change in FPR for five slow users who are not
attackers, as shown in Table 3 and Figure 7.

Table 4 and Table 5 show the change in FPR for
the number of slow users. In these scenarios, we fix
the total number of malicious requests for these slow
users. The same is depicted in Figure 8 and Figure 9.

From the above results, we observe that the FPR
increases with the increase in the number of slow re-
quests. That means, if some of the valid users are
very slow, then our method may also detect them as
an attacker. Table 6, Table 7, and Table 8 show the
detection accuracies of our method for various test
cases or scenarios that we have run in our laboratory.
We increased the number of malicious requests from

ISeCure

January 2024, Volume 16, Number 1 (pp. 79–92) 89

Table 3. FPR for different numbers of slow requests

Normal Number of Numbers of FPR Specificity Sensitivity

user attacker requests slow requests (in %) (TNR in % (TPR in %)

User 1 1000 200 2.53 97.50 97.40

User 2 1000 250 2.62 97.20 97.30

User 3 1000 300 2.69 97.33 97.30

User 4 1000 350 2.72 97.14 97.20

User 5 1000 400 2.77 97.25 97.30

Table 4. FPR for different numbers of slow requests

Normal Number of Numbers of FPR Specificity Sensitivity

user attacker requests slow requests (in %) (TNR in % (TPR in %)

User 1 5000 500 2.38 97.60 97.62

User 2 5000 600 2.50 97.50 97.50

User 3 5000 700 2.68 97.32 97.32

User 4 5000 800 2.57 97.43 97.43

User 5 5000 900 2.79 97.21 97.21

Table 5. FPR for different numbers of slow requests

Normal Number of Numbers of FPR Specificity Sensitivity

user attacker requests slow requests (in %) (TNR in % (TPR in %)

User 1 10000 600 2.41 97.50 97.59

User 2 10000 800 2.55 97.50 97.45

User 3 10000 1000 2.47 97.50 97.53

User 4 10000 1200 2.73 97.25 97.27

User 5 10000 1400 2.81 97.21 97.19

Table 6. Detection accuracies for Test case I

Total number Number of Numbers of Number of Number of FPR Detection

of requests malicious requests slow requests Suspect IP address detection (in %) accuracy

25933 1000 200 1200 1026 2.53 97.47

259383 1000 250 1250 1027 2.63 97.37

259433 1000 300 1300 1033 2.69 97.31

259483 1000 350 1350 1039 2.72 97.28

259533 1000 400 1400 1035 2.70 97.30

Table 7. Detection accuracies for Test case II

Total number Number of Numbers of Number of Number of FPR Detection

of requests malicious requests slow requests Suspect IP address detection (in %) accuracy

263633 5000 500 5500 5122 2.38 97.62

263733 5000 600 5600 5129 2.50 97.50

263833 5000 700 5700 5138 2.68 97.32

263933 5000 800 5800 5132 2.57 97.43

264033 5000 900 5900 5144 2.79 97.21

ISeCure

90 Slowloris Attack Detection Using Adaptive Timeout-Based Approach — Talukdar and Boro

Table 8. Detection accuracies for Test case III

Total number Number of Numbers of Number of Number of FPR Detection

of requests malicious requests slow requests Suspect IP address detection (in %) accuracy

268733 10000 600 10600 10247 2.41 97.59

268933 10000 800 10800 10262 2.55 97.45

269133 10000 1000 11000 10254 2.47 97.53

269333 10000 1200 11200 10281 2.73 97.27

269533 10000 1400 11400 10293 2.81 97.19

Figure 8. Change in FPR for different numbers of slow re-
quests

Figure 9. Change in FPR for different numbers of slow re-
quests

the three attackers as well as the number of legiti-
mate slow requests from five users. We observe that
our algorithm gives very small false positive results.
The detection accuracies remain almost consistent
throughout the different test cases when we increase
the number of slow requests and the attackers are de-
tected in a few seconds. However, in some scenarios,
the FPR increases when we increase the number of
slow user requests, which is negligible.

8 Conclusion and future work

Protocol-specific vulnerability attack is a new trend
of attack in the application layer. The works done in
the research literature address mainly flooding-based
attacks such as Net-DDoS and App-DDoS attacks.
These methods are incapable of detecting sophisti-
cated low and slow protocol-specific vulnerability at-
tacks. Solutions related to protocol exploitation at-
tacks such as slowloris are not many. So, there is
a need for a detection system capable of near real-
time detection of these attacks with a very low FPR.
Some of the existing detection mechanisms empha-
size attack detection by using unsupervised anomaly
detection techniques, but they do not consider some
other important issues like real-time detection or false
alarms. In this work, we have tried to detect slowloris
attacks in near real-time with a very low false alarm
rate and high detection accuracy by using an anomaly-
based suspect determination and an adaptive timeout-
based detection mechanism. The proposed method
cannot not only detect the attack but also identify
the attacker’s IP address and is independent of the
size of the attack and the attacker numbers. Also,
the proposed method can discriminate between the
legitimate and the attacker’s traffic with very low
FPR, thereby not impacting the legitimate users. Sig-
nificant recent trends include vulnerability attacks
of various famous application layer attacks. Existing
works have given various approaches to tackle those
attacks individually or as a group. However, we need
one single system that can protect a server from most
of the application layer attacks. Our future research
aims to build a single defense system that can detect
and mitigate different types of App-DDoS attacks.

Acknowledgment

All the studies and experiments were carried out in the
Laboratory of the Department of Computer Science
and Engineering, Tezpur University, Napaam, Tezpur,
Assam, India. This study did not receive funding from
any agencies. The authors declare that there is no
conflict of interest regarding the publication of this
paper.

ISeCure

January 2024, Volume 16, Number 1 (pp. 79–92) 91

References

[1] S Prabha and R Anitha. Mitigation of appli-
cation traffic ddos attacks with trust and am
based hmm models. International Journal of
Computer Applications, 6:26–34, 2010.

[2] P J Criscuolo. Distributed denial of service, tribe
flood network 2000, and stacheldraht. CIAC-
2319, Department of Energy Computer Incident
Advisory Capability (CIAC), UCRL-ID-136939,
Rev. 1., Lawrence Livermore National Labora-
tory, 1, 2000.

[3] V Durcekova, L Schwartz, and N Shahmehri.
Sophisticated denial of service attacks aimed at
application layer. In ELEKTRO, pages 55–60.
IEEE, 2012.

[4] X Xu, X Guo, and S Zhu. A queuing analysis for
low-rate dos attacks against application servers.
In IEEE International Conference on Wireless
Communications, Networking and Information
Security, pages 500–504. IEEE, 2010.

[5] J Mirkovic and P Reiher. A taxonomy of ddos
attack and ddos defense mechanisms. ACM
SIGCOMM Computer Communications Review,
34:39–53, 2004.

[6] C Douligeris and A Mitrokotsa. Ddos attacks and
defense mechanisms: classification and state-of-
the-art. Computer Networks, 44:643–666, 2004.

[7] T Peng, C Leckie, and K Ramamohanarao. Sur-
vey of network-based defense mechanisms coun-
tering the dos and ddos problems. ACM Com-
puting Survey, 39:3–es, 2007.

[8] RioRey. Taxonomy of ddos attacks. 2022.
[9] S Ranjan, R Swaminathan, M Uysal, and

E Knightly. Ddos-resilient scheduling to counter
application layer attacks under imperfect detec-
tion. In Proceedings IEEE INFOCOM 2006.
25TH IEEE International Conference on Com-
puter Communications, pages 1–13. IEEE, 2006.

[10] Wallarm. What is slowloris attack. 2022.
[11] R Barnett. (updated) modsecurity advanced

topic of the week: Mitigating slow http dos at-
tacks. TrustWave, 2011.

[12] K J Higgins. Researchers to demonstrate new
attack that exploits http. DarkReading, 2010.

[13] S Shekyan. Are you ready for slow reading?
Qualys, 2012.

[14] J Pelline. Mydoom downs sco site. CNET, 2004.
[15] S Pillai. Slowloris http dos attack and prevention.

/ROOT.IN, 2013.
[16] R Papadie and I Apostol. Analyzing websites pro-

tection mechanisms against ddos attacks. In 9th
International Conference on Electronics, Com-
puters and Artificial Intelligence (ECAI), pages
1–6. IEEE, 2007.

[17] R K Sharma, B Issac, and H K Kalita. Intru-

sion detection and response system inspired by
the defense mechanism of plants. IEEE Access,
7:52427–52439, 2019.

[18] V Jyothi, X Wang, S K Addepalli, and R Karri.
Brain: Behavior based adaptive intrusion detec-
tion in networks: Using hardware performance
counters to detect ddos attacks. In 29th Interna-
tional Conference on VLSI Design and 2016 15th
International Conference on Embedded Systems
(VLSID), pages 587–588. IEEE, 2016.

[19] S Sivabalan and P J Radcliffe. Feasibility of elim-
inating idps devices from a web server farm. In-
ternational Journal of Network Security, 20:433–
438, 2018.

[20] R Giunta, F Messina, G Pappalardo, and E Tra-
montana. Augmenting a web server with qos
by means of an aspect-oriented architecture. In
2012 IEEE 21st International Workshop on En-
abling Technologies: Infrastructure for Collabo-
rative Enterprises, pages 179–184. IEEE, 2012.

[21] T Shorey, D Subbaiah, A Goyal, A Sakxena, and
A K Mishra. Performance comparison and anal-
ysis of slowloris, goldeneye and xerxes ddos at-
tack tools. In 2018 International Conference on
Advances in Computing, Communications and
Informatics (ICACCI), pages 318–322. IEEE,
2018.

[22] E Damon, J Dale, E Laron, J Mache, N Land,
and R Weiss. Hands-on denial of service lab ex-
ercises using slowloris and rudy. In Proceedings
of the 2012 Information Security Curriculum De-
velopment Conference, pages 21–29. ACM, 2012.

[23] N Sultana, S Bose, and B T Loo. An extensi-
ble evaluation system for dos research. In 2019
11th International Conference on Communica-
tion Systems & Networks (COMSNETS), pages
344–351. IEEE, 2019.

[24] W Park and S Ahn. Performance comparison
and detection analysis in snort and suricata en-
vironment. Wireless Personal Communication,
94:241—-252, 2017.

[25] D J Day and B M Burns. A performance analysis
of snort and suricata network intrusion detection
and prevention engines. In Proceedings of the
Fifth International Conference on Digital Society,
pages 187—-192. IARIA, 2011.

[26] T E de Sousa Araújo, F M Matos, and J A Mor-
eira. Intrusion detection systems’ performance
for distributed denial-of-service attack. In 2017
CHILEAN Conference on Electrical, Electronics
Engineering, Information and Communication
Technologies (CHILECON), pages 1–6. IEEE,
2017.

[27] V da Silva Faria, J A Gonçalves, C A M da Silva,
G de Brito Vieira, and D M Mascarenhas. Sdtow:
A slowloris detecting tool for wmns. Information,

ISeCure

92 Slowloris Attack Detection Using Adaptive Timeout-Based Approach — Talukdar and Boro

11:544, 2020.
[28] H Kim, B Kim, D Kim, I K Kim, and T M

Chung. Implementation of gesnic for web server
protection against http get flooding attacks. In
International Workshop on Information Security
Applications. WISA 2012. Lecture Notes in Com-
puter Science, pages 285–295. Springer, 2012.

[29] M Sikora, T Gerlich, and L Malina. On detec-
tion and mitigation of slow rate denial of service
attacks. In Proceedings of the 2019 11th Inter-
national Congress on Ultra Modern Telecommu-
nications and Control Systems and Workshops
(ICUMT), pages 1–5. IEEE, 2019.

[30] J Kim and H S Kim. Intrusion detection based on
spatiotemporal characterization of cyberattacks.
Electronics, 9:460, 2020.

[31] K J Singh and T De. Mlp-ga based algorithm to
detect application layer ddos attack. Journal of
Information Security Applications, 36:145–153,
2017.

[32] Y M Swe, P P Aung, and A S Hlaing. A slow
ddos attack detection mechanism using feature
weighing and ranking. In Proceedings of the 11th
Annual International Conference on Industrial
Engineering and Operations Management, pages
4500–4509. IEOM Society International, 2021.

[33] A Al-Harbi and R Jabeur. An efficient method
for detection of ddos attacks on the web using
deep learning algorithms. International Journal
of Advanced Trends in Computer Science and
Engineering, 10:2821–2829, 2021.

[34] P Velan and T Jirsik. On the impact of flow
monitoring configuration. In Proceedings of the
NOMS 2020—2020 IEEE/IFIP Network Oper-
ations and Management Symposium, pages 1–7.
IEEE, 2020.

[35] C Kemp, C Calvert, T M Khoshgoftaar, and
J L Leevy. An approach to application-layer dos
detection. Journal of Big Data, 10:1–30, 2023.

[36] Y Fu, X Duan, K Wang, and B Li. Low-rate de-
nial of service attack detection method based on
time-frequency characteristics. Journal of Cloud
Computing: Advances, Systems and Applications,
11:1–19, 2022.

[37] V Sundar. What is slowloris ddos attack and
how does it work? Indusface, 2023.

[38] G Yaltirakli. Slowloris 0.2.6. low bandwidth dos
tool. Github, 2023.

Dr. Kangkan Talukdar is work-
ing as an Officer cum Network Ad-
ministrator in Numaligarh Refinery
Limited. He received his M.S. degree
from Tezpur University, Assam, In-
dia, in 2014 and his Ph.D. degree
from the Indian Institute of Technol-

ogy, Guwahati, in 2021. His research interests include
Network Security, ML, Deep Learning, and Internet
of Things (IoT).

Dr. Debojit Boro is working as an
Associate Professor in the Depart-
ment of Computer Science and Engi-
neering at Tezpur University, Assam,
India. He received his Ph.D. degree
from Tezpur University Assam, In-
dia, in 2017. His research interest in-

cludes Network Security, Ensemble Classifiers, Evolu-
tionary Computation, ML, Internet of Things (IoT),
Tactile Internet, and Blockchain. He is a reviewer of
the EURASIP Journal of Information Security and
has reviewed several of its papers.

ISeCure

	1 Introduction
	2 HTTP Vulnerability Exploitation by the Slowloris Attack
	3 Related Work
	4 Motivation
	5 Problem Definition and Assumptions
	6 Our Proposed Approach
	6.1 Detection Architecture
	6.2 Adaptive Timeout Method

	7 Experimental Results
	8 Conclusion and future work

