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A B S T R A C T

Public key encryption with keyword search (PEKS) is a cryptographic primitive

designed for performing secure search operations over encrypted data stored on

untrusted cloud servers. However, in some applications of cloud computing,

there is a hierarchical access-privilege setup among users so that upper-level

users should be able to monitor data used by lower-level ones in the hierarchy.

To support such situations, Wang et al. introduced the notion of hierarchical

ID-based searchable encryption. However, Wang et al.’s construction suffers

from a serious security problem. To provide a PEKS scheme that securely

supports hierarchical structures, Li et al. introduced the notion of hierarchical

public key encryption with keyword search (HPEKS). However, Li et al.’s

HPEKS scheme is established on traditional public key infrastructure (PKI)

which suffers from costly certificate management problem. To address these

issues, in this paper, we consider designated-server HPEKS in identity-based

setting. We introduce the notion of designated-server hierarchical identity-based

searchable encryption (dHIBSE) and provide a formal definition of its security

model. We then propose a dHIBSE scheme and prove its security under our

model. Finally, we provide performance analysis as well as comparisons with

related schemes to show the overall superiority of our dHIBSE scheme.

© 2023 ISC. All rights reserved.

1 Introduction

With the enormous benefits of cloud computing,
organizations and individual users prefer to out-
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source their data from local to cloud storage. However,
due to the untrusted nature of the cloud servers, it is
necessary to somehow ensure the confidentiality and
privacy of sensitive data. To achieve such a guarantee,
users can encrypt their data before sending them to
the cloud service provider. Nevertheless, traditional
encryption techniques make sharing and searching
over outsourced data a daunting task. To overcome
this issue, in 2000, Song et al. [1] introduced the no-
tion of Searchable Encryption (SE) which provides
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Figure 1. The general framework of SE

data confidentiality and at the same time preserves
search-ability on the server side. It equips users with
trapdoors that allow them to search over ciphered
data for keywords, without decryption. In the basic
setup, an SE scheme contains three types of entities,
as follows:

Data sender, a cloud service user who wants to
outsource a collection of its documents and their
associated keywords. Therefore, the data sender needs
to generate ”searchable” ciphertexts corresponding to
these keywords, encrypt the collection of documents,
and finally upload the results on the cloud server.

Data receiver, the entity that can search and re-
trieve documents outsourced on the cloud server con-
taining desired keywords. To do so, it has to generate
suitable trapdoors for its query keywords and send
them to the cloud server.

Cloud server which manages encrypted collec-
tions of documents uploaded by data senders. Upon
receiving a valid trapdoor, it can search on behalf
of the data receiver to find documents containing
the corresponding keywords. During the process of
searching, the cloud server remains unable to decrypt
the contents of documents or keywords.

The general framework of a searchable encryption
scheme is shown in Figure 1. Song et al.’s protocol is in
the symmetric setting which makes it mainly suitable
for the data sender itself (i.e. data owner) to search
over ciphertexts. The massive amount of data gen-
erated and outsourced by governments, enterprises,
and firms calls for SE in the public key setting. This
was accomplished by Boneh et al. [2] who introduced
a cryptographic notion called Public Key Encryp-
tion with Keyword Search, or PEKS for short. PEKS
schemes consist of 3 algorithms: IndexGen through
which, a data sender encrypts the keywords by using
the data receiver’s public key and uploads the results
on the cloud server; TrapdoorGen through which,

the receiver generates a trapdoor corresponding to a
keyword by using its private key and sends the result
to the cloud server; Test through which, the cloud
server checks if a searchable ciphertext and a trap-
door are corresponded to the same keyword by using
the data receiver’s public key.

The fact is that large multi-receiver setups (such as
enterprises and firms) that benefit most from search-
able encryption technology, usually support a hier-
archical structure among their users (employees). In
such settings, superiors who have higher access privi-
leges should be able to monitor their lowers. In other
words, in addition to the intended receiver, the en-
crypted messages should also be searchable by his/her
superiors.

To integrate support for hierarchical access control
requirements into PEKS, Wang et al. [3] introduced
the notion of hierarchical ID-based encryption with
keyword search (HIBEKS) and proposed a HIBEKS
scheme. In the HIBEKS framework, the identity of
a user is represented as a hierarchical tree structure,
and a high-level user is able to compute valid trap-
doors for searching over ciphertexts corresponding to
its descendant identities. Later, in 2020, Li et al. [4]
introduced a public key tree structure in SE and
defined the notion of designated-server Hierarchical
Public Key Encryption with Keyword Search (dH-
PEKS). In a dHPEKS scheme, each user in a group
of data receivers owns a node of a public key tree,
which in turn contains its public information. At the
top of the hierarchy, the supervisor of the group gen-
erates a master secret key. Then, it generates the
secret key for itself and its child users. The other
users are merely responsible for generating the secret
keys of their child users. A data sender can generate
the searchable ciphertext for any user in any data
receiver group. However, compared to the ordinary
dPEKS schemes, in addition to the intended data re-
ceiver, any user superior to that receiver, according
to the group hierarchical structure, is able to generate
a trapdoor and search over that receiver’s encrypted
data.

1.1 Motivation and Contribution

Being able to search over employees’ data is a desir-
able property that is achieved by introducing hierar-
chical structures to the notion of searchable encryp-
tion by Wang et al. [3]. However, 1) Wang et al.’s
scheme is not secure against an important type of
attack called offline keyword guessing attack (KGA)
and 2) it imposes some restrictions on the hierarchical
level of the system users which conflicts with cloud
scalability, an essential property of cloud computing.

Recently, Li et al. [4] and Liu et al. [5] proposed two

ISeCure



November 2023, Volume 15, Number 3 (pp. 1–17) 3

designated-tester PEKS schemes that support hierar-
chical structures. These schemes don’t suffer from the
drawbacks of Wang et al.’s scheme [3]; however, the
same as all existing cryptosystems in the traditional
public key infrastructure (PKI) setting, the schemes
of [4, 5] suffer from certificate management problem.

To simultaneously address the existing issues in
the schemes of [3–5], in this paper,

• We define the notion of designated-server hi-
erarchical identity-based searchable encryption
(dHIBSE).
• We formalize the security model for dHIBSE.
• We propose a concrete dHIBSE scheme and
prove its security in the proposed security
model.

• We compare the proposed scheme with the re-
lated ones and show its overall superiority.

1.2 Related Works

The notion of PEKS was introduced in 2004 by Boneh
et al. [2]. The authors also defined a security model
and proposed the first PEKS scheme based on bi-
linear pairing for the multi-user model. Neverthe-
less, Baek et al. [6] point out that Boneh et al.’s
scheme has the limitation that a secure communi-
cation channel between each data receiver and the
cloud server is required to transmit the trapdoors.
In order to overcome this limitation, the authors en-
hanced the definition of PEKS and proposed the con-
cept of the ”secure channel-free PEKS” (SCF-PEKS).
In 2006, Byun et al. [7] introduced an important at-
tack against PEKS schemes called Keyword Guessing
Attack (KGA), which derives from the fact that in
real-world applications, keywords are usually chosen
from a low-entropy space. In a KGA, after obtaining
a trapdoor, an adversary generates the searchable ci-
phertext corresponding to each possible keyword and
then checks it with the given trapdoor using a pub-
licly available Test algorithm. Therefore, by launch-
ing this attack, an adversary may correctly obtain
the corresponding keyword to the given trapdoor. In
order to ensure security against KGA, in 2010, Rhee
et al. [8] defined a new security model that improved
the security model of [6] and allowed the adversary to
obtain the relationship between the trapdoor and the
non-challenged ciphertexts. In order to provide the
new security property, in their seminal work, Rhee
et al. [8] introduced the notion of ”searchable public
key encryption with a designated tester” (dPEKS).
In dPEKS schemes, the server is also equipped with a
pair of public and private keys, and the public key of
the server gets involved in both keyword encryption
and trapdoor generation algorithms. Consequently,
in a dPEKS scheme, only the server can check if a

trapdoor and a ciphertext match or not. This way,
dPEKS schemes are secure against KGAs. After Rhee
et al.’s work, several other dPEKS schemes were also
proposed to provide security against KGA and im-
prove the security of dPEKS schemes [9–14].

Unfortunately, all the above-mentioned schemes are
constructed based on the PKI setting which suffers
from the well-known certificate management problem.
To address the certificate management problem in
PEKS schemes, Abdalla et al. [15] formalized the no-
tion of identity-based encryption with keyword search
(IBEKS) in 2005. In an IBEKS scheme, a user’s pub-
lic key can be directly calculated from his identity
(such as an email address or phone number), while
the user’s private keys are generated by a trusted au-
thority, called a private key generator (PKG), accord-
ing to the user’s request. This link between the user’s
public key and his identity information removes the
need of certificates used in traditional PKI setting.
After Abdalla et al.’s work [15], some other IBEKS
schemes were proposed in the literature [16–19]. How-
ever, in the absence of a secure channel, these schemes
do not provide trapdoor-indistinguishability and con-
sequently suffer from the vulnerability caused by the
KGA. In order to provide security against KGA in
identity-based setting, in 2014, Wu et al. [20] intro-
duced the notion of identity-based encryption with
keyword search with a designated tester (dIBEKS)
and proposed the first dIBEKS scheme. In 2016, Wang
et al. [21] proposed two identity-based encryption
with keyword search with a designated tester schemes
in a peer-to-peer group, where the group users can
share and search private data in the cloud. Later, Lu
et al. [9] proposed a designated server identity-based
encryption scheme with conjunctive keyword search
(dIBECKS) and claimed that their proposed scheme
provides the ciphertext-indistinguishability and the
trapdoor-indistinguishability against chosen keyword
attacks. Recently, in [22], Noroozi and Eslami ana-
lyzed ciphertext and trapdoor security of the dIBEKS
scheme of [21] and the dIBECKS scheme of [9]. Fur-
thermore, to ensure security against KGA in other
settings, several PEKS schemes are proposed in [23–
32], to which the interested readers are referred for a
comprehensive study.

Now consider a scenario where a data sender wants
to share his documents (to which corresponding
cipher-keywords must be attached) with multiple
data receivers. The issue is that most of the exist-
ing PEKS schemes merely support single-receiver
settings. Therefore, a data sender has to encrypt
the same keyword multiple times for different data
receivers, which increases the computation and stor-
age overhead. To solve this problem, in 2006, Baek
et al. [33] proposed the first multi-receiver PEKS
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scheme. Many PEKS schemes have been constructed
to support multi-receiver scenarios [21, 34–36]. How-
ever, in the large multi-receivers setups, users are
usually arranged hierarchically, according to their
corresponding roles and responsibilities. In this
hierarchical structure, a user with higher access per-
mission should have the advantage of monitoring his
lower-level users’ data. Therefore, users with higher
access permissions should be able to generate valid
trapdoors for any keywords, in order to preserve
search ability over the encrypted documents corre-
sponding to their lowers. Unfortunately, none of the
above-mentioned SE schemes support hierarchical
access permission for users. To solve this problem,
Wang et al. [3] introduced the notion of hierarchical
ID-based encryption with keyword search (HIBEKS)
and proposed the first HIBEKS scheme. Wang et
al. claimed that their proposed scheme provides
ciphertext-indistinguishability and security against
offline KGAs launched by outside adversaries (anyone
except the data receiver and the server). However,
their construction is completely insecure against
offline KGAs from outside adversaries. 1 Another
drawback of the HIBEKS framework proposed by
Wang et al. [3] is that it requires to determine the
exact maximum hierarchical level in the system
set-up phase. This can be problematic for many
business and individual users in real-world applica-
tions. In 2020, Li et al. [4] introduced the structure
of the public key tree, which is a multi-way tree,
into the SE. Then, the authors defined the notion
of the designated-server hierarchical public key en-
cryption with keyword search (dHPEKS) which uses
a public key tree in order to support hierarchical
access control. The authors also proposed a dHPEKS
scheme and proved that their construction provides
ciphertext-indistinguishability against chosen key-
word attacks along with trapdoor-indistinguishability
against outside adversaries under CDH, DLIN, and
DBDH assumptions. Later, in 2021, Liu et al. [5]
proposed a dHPEKS scheme by using a distributed
Two-Trapdoor Public-key Cryptosystem [37]. Their
proposed scheme, the same as the dHPEKS scheme
of [4], is constructed based on a public key tree of
the user’s hierarchical structure in the PKI setting.

1 Using the notations of Wang et al. [3], upon receiving a
trapdoor (Tj1 , · · · , Tjl−j+1

, Sj), an outside adversaryA guesses

a keyword w and computes X′ = ĝ, Y ′ = (ĝ′3ĥ
I1
1 · · · ĥIi

i ĥw),
Z′ = e(g2, g′1), where IDR = [I1, I2, · · · , Ii] is the identity

of the data receiver. Then, it checks the following equation:

Z′ ?
=

e(Tj1
T

Ij+1
j1

···T Ii
ji−j+1

,X′)

e(Sj ,Y ′) . If it holds, then the trapdoor

is associated with the keyword w; otherwise, A guesses another
possible keyword. Therefore, this scheme is not secure against

offline KGAs performed by outside adversaries.

The authors proved the security of their proposed
dHPEKS scheme under CDH assumption.

1.3 Paper Organization

The rest of this paper is arranged as follows. We de-
scribe some preliminary materials in Section 2. In Sec-
tion 3, the framework of designated-server hierarchical
identity-based searchable encryption (dHIBSE) and
the formal definition of security model for dHIBSE are
presented. We propose a dHIBSE scheme in Section 4
and analyze its security in Section 5. In Section 6, we
make performance analysis and comparisons. Finally,
Section 7 concludes the paper.

2 Preliminaries

In this section, a brief review of some preliminary
materials is presented. The interested readers are
referred to [38] for more details.

Definition 1. A symmetric bilinear group descrip-
tion Γ is a tuple (q,G1, G2, e, P ) consists of the two
cyclic groups G1 and G2 of prime order q, a bilinear
map e : G1 ×G1 → G2, and P which is a generator
of G1.

Definition 2. Let Γ = (q,G1, G2, e, P ) be a sym-
metric bilinear group description. The gap bilinear
Diffie-Hellman (GBDH) assumption is that for any
probabilistic polynomial time (PPT) adversary A,
the advantage AdvGBDH

Γ (A, qDBDH), defined by the
following probability, is negligible.

AdvGBDH
Γ (A, qDBDH) := Pr[T = e(P, P )abc|a, b, c

∈ Zq;T ← AODBDH (Γ, aP, bP, cP )].

ODBDH represents a decision bilinear Diffie-Hellman
oracle that takes (aP, bP, cP, T ) as input and outputs
1 if T = e(P, P )abc holds and 0 otherwise. qDBDH

represents the maximum number of queries that A
could query from the ODBDH [39, 40].

Definition 3. Let Γ = (q,G1, G2, e, P ) be a sym-
metric bilinear group description. The computational
Diffie-Hellman (CDH) assumption in G1 is that for
any PPT adversary A, the advantage AdvCDH

Γ (A),
defined by the following probability, is negligible.

AdvCDH
Γ (A) := Pr[Q = abP |a, b ∈ Zq;Q← A(Γ,

aP, bP )].

3 Definition and Security Model of
dHIBSE

In this section, we first describe the framework of a
dHIBSE scheme and then define its security require-
ments. In a dHIBSE scheme, each user has an identity
that is represented as a hierarchical tree structure,
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Figure 2. The general hierarchical tree structure of a dHIBSE
scheme

and high-level users are allowed to delegate their key
generation ability to low-level users. The root PKG,
which sits at the top of the hierarchical structure, is
in charge of creating the private keys intended for
the users who are positioned within the first layer
of the hierarchy. These private keys are then sent to
the corresponding users. A user with ID-tuple ID|t=
(ID1, ID2, · · · , IDt) at level t of the hierarchical tree
can compute the private keys of its descendant iden-
tities. Consequently, the user is able to generate valid
trapdoors for searching over ciphertexts correspond-
ing to him and all his children, not the opposite. Fig-
ure 2 depicts the general hierarchical tree structure
of a dHIBSE scheme. (For simplicity, in this figure
we assume that the root PKG and every user of the
system has exactly m child users.)

3.1 The Definition

A dHIBSE scheme consists of six PPT algo-
rithms (Setup, KeyGen, ServerKeyGen, dHIBSE,
Trapdoor, Test). The definition of each of these
algorithms is provided in the following:

• Setup: This algorithm is performed by the root
PKG. On input of the security parameter λ,
this algorithm outputs the master secret key
s, and the public parameters prms. The root
PKG keeps s secret and publishes prms.

• KeyGen: This algorithm is performed by
the root PKG or a lower-level PKG with
ID-tuple ID|t−1= (ID1, · · · , IDt−1). On in-
put of the public parameters prms, ID-tuple
ID|t= (ID1, · · · , IDt) and the private key of
the ancestor of ID|t, i.e., sID|t−1

, this algo-
rithm outputs sID|t which will be sent securely
to the user with ID-tuple ID|t. Note that if

t = 1 then, sID|t−1
would be s.

• ServerKeyGen: This algorithm is performed
by the server. On input of the public parameters
prms, this algorithm outputs the secret value
xS , and the public key PS . The server keeps xS

secret and publishes PS .
• dHIBSE: This algorithm is performed by the

data sender. On input of the public parameters
prms, the server’s public key PS , the receiver’s
ID-tuple ID|t= (ID1, · · · , IDt), and a keyword
w, this algorithm outputs a searchable cipher-
text C corresponding to w for the data receiver
with ID-tuple ID|t= (ID1, · · · , IDt), which will
be sent to the server.

• Trapdoor: This algorithm is performed by the
data receiver or one of his ancestors. On in-
put of the public parameters prms, the server’s
public key PS , the receiver’s ID-tuple ID|t=
(ID1, · · · , IDt), the secret key of the receiver or
his ancestor that runs this algorithm sID|i (i ≤
t), and a keyword w, this algorithm outputs a
trapdoor T corresponding to w, which will be
sent to the server.

• Test: This algorithm is performed by the server.
On input of the public parameters prms, the
server’s public key PS and his secret key xS ,
the receiver’s ID-tuple ID|t= (ID1, · · · , IDt),
the ciphertext C, and the trapdoor T , this algo-
rithm outputs 1 if C and T correspond to the
same keyword matches and 0 otherwise.

3.2 The Security Model

We now define our security model of a dHIBSE
scheme. In dHIBSE schemes, the security of the
searchable ciphertexts should be guaranteed. It
means that we need to ensure that the output of the
dHIBSE algorithm does not leak information about
its corresponding keyword. More precisely, under an
adaptive chosen keyword attack, it should be infea-
sible for every active PPT adversary to distinguish
a ciphertext of a keyword w0 from a ciphertext of a
keyword w1. Additionally, dHIBSE schemes should
ensure the security against KGAs. It means that the
adversary should not learn any information on w from
a given trapdoor Tw. In [8], Rhee et al. proved that
trapdoor-indistinguishability is a sufficient condition
to ensure security against offline KGAs launched by
outside adversaries. Therefore, under an adaptive
chosen keyword attack, distinguishing a trapdoor of a
keyword w0 from a trapdoor of a keyword w1 should
be infeasible for every active PPT outside adversaries.

The security model of a dHIBSE scheme requires
that:

(1) An inside adversary (the server) S who can ob-
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tain trapdoors for any non-challenged keywords,
should not be able to distinguish between the
ciphertexts of two challenge keywords of its
choice.

(2) An outside adversary (everyone except the
server but including the receiver and his an-
cestors) A who can obtain trapdoors for any
keywords, should not be able to distinguish be-
tween the ciphertexts of two challenge keywords
of its choice.

(3) An outside adversary (everyone except the
server, the receiver and his ancestors) A′ who
can obtain trapdoors for any keywords, should
not be able to distinguish between the trap-
doors of two chosen challenge keywords.

3.3 Ciphertext Security

Let A and S be the PPT adversaries described above.
Suppose that Π = (Setup, KeyGen, ServerKeyGen,
dHIBSE, Trapdoor, Test) is a dHIBSE scheme.
The following two games formally define ciphertext-
indistinguishability for an outside adversary A and
an inside adversary S, respectively.

Game I: Ciphertext-indistinguishability
against A: This game is performed between an
adversary A and a challenger B.

• Initialization. B generates a master secret key
s, the public parameters prms, and the server’s
key pairs (xS , PS) by running Setup(λ) and
ServerKeyGen, respectively. Finally, it sends
prms and PS to A and keeps s and xS secret.

• Phase 1. The adversary A can adaptively make
(a polynomially bounded number of) the follow-
ing queries.
◦ Queries to ExtSK(ID|t): When A sup-

plies an ID-tuple (ID|t= (ID1, ID2, · · · , IDt))
and requests his secret key, B returns the
corresponding secret key sID|t .

◦ Queries to Trapdoor(ID|t, w): When A
supplies a receiver with ID-tuple (ID|t=
(ID1, ID2, · · ·, IDt)), and a keyword w, B
computes a valid trapdoor and returns it
to A.

◦ Queries to Test(ID|t, T, C): When A
supplies a receiver with ID-tuple (ID|t=
(ID1, ID2, · · ·, IDt)), a trapdoor T , and
a searchable ciphertext C, B returns 1 if
the keyword corresponding to T and C
matches and 0 otherwise.

• Challenge. Eventually, A outputs a receiver’s
ID-tuple ID∗|t and two different keywords w0

and w1 as the challenge keywords. Then, B
randomly selects a bit b ∈ {0, 1} and generates
the searchable ciphertext C∗ corresponding to

wb. Finally, it sends the challenge ciphertext
C∗ to A.

• Phase 2. A can continue to make queries as in
Phase 1.

• Guess. At last,A outputs b′ ∈ {0, 1} as its guess.
A wins the game if b = b′ and the following
restriction holds:
◦ A has never queried to Test(ID∗|t, Twi

, C∗)
for i = 0, 1.

The advantage of A is expressed as

AdvindCA,Π (λ) = |2Pr[b′ = b]− 1|.

Game II: Ciphertext-indistinguishability
against S: This game is performed between an
adversary S and a challenger B.

• Initialization. B generates a master secret key
s, the public parameters prms, and the server’s
key pairs (xS , PS) by running Setup(λ) and
ServerKeyGen, respectively. Finally, it sends
prms and xS to S and keeps s secret.

• Phase 1. The adversary S can adaptively exe-
cute queries for a polynomially-bounded num-
ber of iterations as defined in Game I, except
for the Queries to Test, and B responds to them
in the same way.

• Challenge. Eventually, S outputs a receiver’s
ID-tuple ID∗|t and two different keywords w0

and w1 as the challenge keywords. Then, B
randomly selects a bit b ∈ {0, 1} and generates
the searchable ciphertext C∗ corresponding to
wb. Finally, it sends the challenge ciphertext
C∗ to S.

• Phase 2. S can continue to make queries as in
Phase 1.

• Guess. At last, S outputs b′ ∈ {0, 1} as its guess.
S wins the game if b = b′ and the following
restrictions hold:
◦ S has never queried to ExtSK on input

of (ID∗|t) or one of his ancestors.
◦ S has never queried to Trapdoor(ID∗|t, wi)

for i = 0, 1.

The advantage of S is expressed as

AdvindCS,Π (λ) = |2Pr[b′ = b]− 1|.

Definition 4. A dHIBSE scheme Π satisfies
ciphertext-indistinguishability under an adaptive cho-
sen keyword attack if for any polynomially bounded
adversary X (X ∈ {S,A}), AdvindCX ,Π (λ) is negligible.

3.4 Trapdoor Security

Let A′ be the PPT adversary described as above.
Suppose that Π = (Setup, KeyGen, ServerKeyGen,
dHIBSE, Trapdoor, Test) is a dHIBSE scheme.
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The following game formally defines trapdoor-
indistinguishability for an outside adversary (every-
one except the server and the receiver) A′.

Game III: Trapdoor-indistinguishability
against A′: This game is performed between an
adversary A′ and a challenger B.

• Initialization. B generates a master secret key
s, the public parameters prms, and the server’s
key pairs (xS , PS) by running Setup(λ) and
ServerKeyGen, respectively. Finally, it sends
prms and PS to S and keeps s and xS secret.

• Phase 1. The adversary A′ can adaptively exe-
cute queries for a polynomially-bounded num-
ber of iterations as defined in Game I and B
responds to them in the same way.

• Challenge. Eventually, A′ outputs a receiver’s
ID-tuple ID∗|t and two challenge keywords w0

and w1 (̸= w0). Then, B randomly selects a
bit b ∈ {0, 1} and generates the trapdoor T ∗

corresponding to wb. Finally, it sends T
∗ as the

challenge trapdoor to A′.
• Phase 2. A′ can continue to make queries as in
Phase 1.

• Guess. At last, A′ outputs b′ ∈ {0, 1} as its
guess. A′ wins the game if b = b′ and the fol-
lowing restrictions hold:
◦ A′ has never queried to on input of (ID∗|t)
or one of his ancestors.

◦ A′ has never queried to Test(ID∗|t, T ∗, ∗)
where ∗ can be any arbitrary value in the
corresponding domain.

The advantage of A′ is expressed as

AdvindTA′,Π (λ) = |2Pr[b′ = b]− 1|.

Definition 5. A dHIBSE scheme Π satisfies
trapdoor-indistinguishability under an adaptive cho-
sen keyword attack if for any polynomially bounded
adversary A′, AdvindTA′,Π (λ) is negligible.

4 The Proposed dHIBSE Scheme

In this section, we describe the details of our proposed
dHIBSE scheme.

• Setup: performed by the root PKG.
◦ Input: The security parameter λ.
◦ Process:

(1) Picks up two cyclic groups G1 and
G2 of prime order q > 2λ.

(2) Choose a generator P ∈ G1.
(3) Choose a bilinear map e : G1×G1 →

G2.
(4) Choose s ∈ Z∗

q at random as the mas-
ter secret key, and compute Ppub =
sP ∈ G1.

(5) Choose cryptographic hash func-
tions: h : G1 × {0, 1}∗ → Z∗

q ,
H1 : {0, 1}∗ → G1, h2 : G1 ×
G1 × {0, 1}∗ × G1 × G2 → Z∗

q , h3 :
{0, 1}∗ → Z∗

q , H4 : G1 × {0, 1}∗ →
G1, h5 : G1×G1×{0, 1}∗×G1 → Z∗

q

and h6 : Z∗
q × {0, 1}∗ → Z∗

q .
◦ Output: The public parameters prms =
(G1, G2, e, q, P, Ppub, h, H1,
h2, h3, H4, h5, h6) and the master secret
key s.

• KeyGen: performed by the root PKG or a
lower-level PKG.
◦ Input: Public parameters prms, ID-tuple

ID|t+1= (ID1, · · · , IDt+1) and the secret
key of the ancestor of ID|t+1, i.e., sID|t
(note that if t = 1, then sID|t = s).
◦ Process:

(1) Compute rID|t+1
= h6(sID|t , ID|t+1).

(2) Compute RID|t+1
= rID|t+1

P .
(3) Compute sID|t+1

= rID|t+1
+

sID|th(RID|t+1
, ID|t+1).

◦ Output: (sID|t+1
, RID|t+1

).
• ServerKeyGen: performed by the server.

◦ Input: Public parameters prms.
◦ Process: Choose a random number xS ∈
Z∗
q and compute PS = xSP .

◦ Output: xS and PS .
• dHIBSE: performed by the data sender.

◦ Input: Public parameters prms, the
server’s public key PS , the receiver’s
ID-tuple ID|t= (ID1, · · · , IDt), RID|1 ,
RID|2 , · · ·, RID|t and a keyword w.

◦ Process: Choose a random number r ∈ Z∗
q

and compute

C1 = rP

C2 = rH4

(
RID|t , ID|t

)
K =

t∑
i=1

t∏
j=i+1

h
(
RID|j , ID|j

)
RID|i

+

t∏
i=1

h
(
RID|i , ID|i

)
Ppub

=
[
h
(
RID|2 , ID|2

)
· · ·h

(
RID|t , ID|t

)]
RID|1

+
[
h
(
RID|3 , ID|3

)
· · ·h

(
RID|t , ID|t

)]
RID|2

+ · · ·+RID|t + h
(
RID|1 , ID|1

)
· h(RID|2

, ID|2) · h
(
RID|2 , ID|2

)
· h

(
RID|3 , ID|3

)
. . .

· h
(
RID|t , ID|t

)
Ppub

C3 = h2 [C1, PS , ID|t, r · PS , e (rH1(w),K)]

◦ Output : The searchable ciphertext C =
(C1, C2, C3).

• Trapdoor: performed by the data receiver or
one of his ancestors.
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◦ Input: Public parameters prms, the
server’s public key PS , a keyword w, the
receiver’s ID-tuple ID|t= (ID1, · · · , IDt)
and the secret key of the receiver or his
ancestor that runs this algorithm sID|i .

◦ Process:
(1) If the receiver is not the one that

performs this algorithm, then use
sID|i step by step down and compute
sID|t as specified in the KeyGen al-
gorithm.

(2) Choose random numbers r1, r2 ∈ Z∗
q

and compute

T1 = r1P

T2 = r2h3(w)h5 (T1, PS , ID|t, r1PS)P

T3 = sID|tH1(w) + r2h3(w)H4

(
RID|t , ID|t

)
◦ Output: The trapdoor T = (T1, T2, T3).

• Test: performed by the server.
◦ Input: Public parameters prms, the
server’s public key PS and his se-
cret key xS , the receiver’s ID-tuple
ID|t= (ID1, · · · , IDt), the trapdoor
T = (T1, T2, T3), and the ciphertext C =
(C1, C2, C3).
◦ Process:

− Compute h′ = h5(T1, PS , ID|t, xST1)
and check if the following equation
holds:

C3 = h2

(
C1, PS , ID|t, xSC1,

e(T3, C1)

e(T2, C2)h
′−1

)
◦ Output: 1 if the above equation holds and
0 otherwise.

In the following, we first show that the proposed
scheme works correctly.
Theorem 1. Let C = (C1, C2, C3) and T =
(T1, T2, T3) be the ciphertext and the trapdoor corre-
sponding to the keywords w and w′. Then, if w = w′,
the output of the Test algorithm on C and T would
be 1.

Proof. Suppose that w = w′. Now, we will prove
the correctness of the proposed dHIBSE scheme as
follows:

C3 = h2 (C1, PS , ID|t, rPS , e(rH1(w),K))

= h2(C1, PS , ID|t, rPS , e(sID|tH1(w)

+ r2h3(w)H4(RID|t , ID|t), rP )e(r2h3(wi)h5(T
1
w,

PS , ID|t, r1PS)P, rH4(RID|t , ID|t))
−(h′−1))

(1)

= h2

(
C1, PS , ID|t, rPS ,

e(T 3
w, C1)

e(T 2
w, C2)h

′−1

)
= h2(C1, PS , ID|t, rxSP,

e(T 3
w, C1)

e(T 2
w, C2)h

′−1 )

= h2(C1, PS , ID|t, xSC1,
e(T 3

w, C1)

e(T 2
w, C2)h

′−1 )

5 Security Analysis

In this section, we prove that our proposed dHIBSE
scheme meets the security requirements. Let Π=(
Setup, KeyGen, ServerKeyGen, dHIBSE, Trapdoor,
Test) be the dHIBSE scheme of Section 4. In the
following, we provide Theorem 3 and Theorem 4 to
show that Π satisfies indistinguishability of cipher-
texts and trapdoors in the sense of Definition 4 and
Definition 5, respectively.
Theorem 2. Under the hardness assumption
of CDH and GBDH problems, the proposed
dHIBSE scheme of Section 4 satisfies ciphertext-
indistinguishability under an adaptive chosen keyword
attack.

Proof. We defer the proof of this theorem to the
full version of the paper.
Theorem 3. Under the hardness assumption
of CDH and GBDH problems, the proposed
dHIBEKS scheme of Section 4 satisfies ciphertext-
indistinguishability under an adaptive chosen keyword
attack.

Proof. In order to prove this theorem, we should
show that for any polynomially bounded adversaries
A and S, AdvindCA,Π (λ) and AdvindCS,Π (λ) are negligible.
This theorem will be proved through Lemma 1 and
Lemma 2.
Lemma 1. For every inside adversary A, AdvindCA,Π (λ)
is negligible.

Proof. Suppose that there exists a polynomially
bounded outside adversary (including the receiver
and his ancestors) A against the proposed scheme
that wins Game I with a non-negligible advantage ϵ
(i.e., AdvindCA,Π (λ) = ϵ). Then, we can use A to build
a polynomially bounded algorithm B to solve CDH
problem with the same advantage. Therefore, based
on the hardness assumption of the CDH problem, we
conclude that ϵ should be negligible.

Given a random instance of the CDH problem
(P, xP, yP ), we show how B can simulate the chal-
lenger of Game I and find the answer to the problem.

• Initialization. B runs the Setup algorithm as
specified in the proposed scheme except that it
sets PS = xP . It returns prms and PS to A.

• Phase 1. B replies to A’s queries. The list of
queries that A can perform and the way B
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answers them is described in the following. In
order to respond consistently to A’s queries,
B should maintain the following lists that are
initially empty: L, L1, L2, L3, L4, L5, L6, and
Lkey (this assumption holds throughout the rest
of the paper).
◦ Queries to h: On input (RID|i , ID|i) to

this oracle, B searches L to find the entry
(ID|i, RID|i , h) and returns h if such an
entry is found. Otherwise, B chooses h ∈
Z∗
q randomly and inserts (ID|1, RID|1 , h)

to L and returns h to A.
◦ Queries to H1: On input w to this oracle,
B searches L1 for the entry (w,H1) and re-
turns H1 if such an entry is found. Other-
wise, it chooses H1 ∈ G1 randomly, inserts
(w,H1) to L1 and returns H1 to A.
◦ Queries to h2: On input (C1, PS , ID|t, P ′, g)
to this oracle, if e(xP, yP ) = e(P ′, P ),
then B returns P ′ as the answer to the
instance of CDH problem and stops.
Otherwise, it searches L2 for the entry
(C1, PS , ID|t, P ′, g, h2) and returns h2 in
case such an entry is found. Otherwise,
it chooses h2 ∈ Z∗

q randomly, inserts
(C1, PS , ID|t, P ′, g, h2) to L2 and returns
h2.

◦ Queries to h3: On input w to this oracle,
B searches L3 for the entry (w, h3) and
returns h3 if such an entry is found. Oth-
erwise, B chooses h3 ∈ Z∗

q randomly and
inserts (w, h3) to L3 and returns h3 to A.

◦ Queries to H4: On input (RID|t , ID|t)
to this oracle, B searches L4 for the en-
try (RID|t , ID|t, h4, H4) and returns H4

if such an entry is found. Otherwise, B
chooses h4 ∈ Z∗

q randomly, computes
H4 = h4P and inserts (RID|t , ID|t,
h4, H4) to L4. Then, it returns H4 to A.

◦ Queries to h5: On input (T1, PS , ID|t, xST1)
to this oracle, B searches L5 for the en-
try (T1, PS , ID|t, xST1, h5) and returns
h5 if such an entry is found. Otherwise,
B chooses h5 ∈ Z∗

q randomly and inserts
(T1, PS , ID|t, xST1, h5) to L5 and returns
h5 to A.

◦ Queries to h6: On input (sID|t−1
, ID|t), B

searches L6 for the entry (sID|t−1
, ID|t, h6)

and returns h6 if such an entry is found.
Otherwise, B chooses h6 ∈ Z∗

q randomly
and inserts (sID|t−1

, ID|t, h6) to L6 and
returns h6 to A.

◦ Queries to ExtSK: On input (ID|t=
(ID1, ID2, · · ·, IDt)) to this oracle, B
searches Lkey to find the tuple (ID′|i=
(ID′

1, · · · , ID′
i), RID′|i , sID′|i) with maxi-

mum value of i such that for j = 1 · · · , i:
IDj = ID′

j .
− If i = t, B returns (RID|t , sID|t).
− If no such an i is found, B

(1) Obtains (s, ID|1, h6) by call-
ing h6 on (s, ID|1) and com-
putes RID|1 = h6P .

(2) Obtains (RID|1 , ID|1, h) by
calling h on (RID|1 , ID|1) and
computes sID|1 = h6 + sh.

(3) Adds (ID|1, RID|1 , sID|1) to
Lkey and sets i = 1.

− If i < t, then for j = i+ 1, · · · , t:
(1) Obtains (sID|j−1

, ID|j , h6) by
calling h6 on (sID|j−1

, ID|j)
and computes RID|j = h6P .

(2) Obtains (RID|j , ID|j , h) by
calling h on (RID|j , ID|j)
and computes sID|j = h6 +
sID|j−1

h.
(3) Adds tuple (ID|j , RID|j , sID|j )

to Lkey and returns the tuple
(RID|j , sID|j ) if j = t.

◦ Queries to Trapdoor: On input (ID|t, w)
to this oracle, B
(1) Obtains

(ID|t, RID|t , sID|t), (RID|t , ID|t, h4,
H4), (w,H1) and (w, h3) by calling
ExtSK, H4, H1 and h3 on ID|t,
(RID|t , ID|t), w and w, respectively.

(2) Chooses r1, r2 ∈ Z∗
q randomly and

computes

T1 =r1P

T2 =r2h3(w)h5 (T1, PS , ID|t, r1PS)P

T3 =sID|tH1(w) + r2h3(w)H4

(
RID|t , ID|t

)
.

(3) Returns T = (T1, T2, T3).
◦ Queries to Test: On input (ID|t, C = (C1,
C2, C3), T =(T1,T2,T3)) to this oracle, B
(1) Searches L5 for some tuple

(T1, PS , ID|t, ∗, h5). If no such a tu-
ple is found, it chooses h5 ∈ Z∗

q at
random and inserts (T1, PS , ID|t,⊥, h5)
to L5.

(2) Searches L2 for some tuple (C1, PS , ID|t,

∗, e(T3, C3)

e(T2, C2)h
−1
5

, h2). If no such a

tuple is found, B chooses h′
2 ∈ Z∗

q

randomly and inserts

(C1, PS , ID|t,⊥,
e(T3, C3)

e(T2, C2)h
−1
5

, h′
2)

to L2.
(3) Outputs 1 if C3 = h′

2 and 0 other-
wise.
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• Challenge. Eventually, A outputs a re-
ceiver’s ID-tuple IDC |t and two different
keywords w0 and w1 as the challenge key-
words. Then, B randomly selects a bit b ∈
{0, 1} and obtains (IDC |t, RIDC |t , sIDC |t),

(RIDC |t , ID
C |t, h4, H4) and (wb, H

b
1) by

calling ExtSK, H4 and H1 on (IDC |t),
(RIDC |t , ID

C |t) and wb, respectively. After-
wards, it sets C1 = yP , C2 = h4yP and C3 =
h2 for a random value h2 ∈ Z∗

q , and adds the

tuple (C1, PS , ID
C |t,⊥, e(Hb

1 , sIDC |tyP ), h2)
to L2. Finally, it sends (C1, C2, C3) as the
challenge ciphertext to A.

• Phase 2. A can continue to make queries as in
Phase 1.

• Guess. At last, A outputs b′ ∈ {0, 1} as its
guess.

Now, we proceed to compute the advantage of
B in solving CDH. In this order, considering that
h2 is modeled as a random oracle, it can be de-
duced that A’s advantage would be negligible unless
(C1, PS , ID|t, xyP, e(yH1(w),K)) appears on L2. If
it appears on L2, then B certainly is able to solve the
CDH problem. Consequently, we can conclude that
the advantage of B is equal to ϵ. 2

Lemma 2. For every inside adversary S, AdvindCS,Π (λ)
is negligible.

Proof. Suppose that there exists an inside adversary
S against the proposed scheme that wins Game II
with a non-negligible advantage ϵ (i.e., AdvindCS,Π (λ) =
ϵ). Then, we can use S to build a polynomially
bounded algorithm B to solve GBDH problem with

an advantage at least equal to
ϵl

eqh(qH1 + 1)
(for

polynomially bounded integers qh, qH1 , l). Therefore,
based on the hardness assumption of the GBDH
problem, we conclude that ϵ should be negligible.

Given a random instance of the GBDH problem
(P, xP, yP, zP ), we show how B can simulate the chal-
lenger of Game II and find the answer to the prob-
lem.

• Initialization. B runs the Setup algorithm as
it is specified in the proposed scheme except
that it sets Ppub = xP . It also chooses xS ∈ Z∗

q

randomly and sets PS = xSP . Then, it chooses
some values li ≤ q randomly for 1 ≤ i ≤ l
as the indices corresponding to the challenge
ID-tuple of data receiver, where l denotes the
maximum hierarchical level and q represents
the maximum number of ID-tuples with the
same parent. Let qh = ql denotes the maximum
number of queries that S could query from
the H oracle on different ID-tuples. Finally, it
returns (prms, xS , PS) to S.

• Phase 1. B replies to queries of S. The queries
that can be made by S and B’s answer to them
are the same as those in Lemma 1 except for
the following queries.
◦ Queries to H1: On input w to this oracle,
B searches L1 for the entry (w, coin, µ,H1)
and returns H1 if such an entry is found.
Otherwise, it generates coin ∈ {0, 1}
such that Pr[coin = 0] = 1

qH1
+1 . Then,

it chooses µ ∈ Z∗
q at random, com-

putes H1 = (1 − coin)yP + µP , adds
(w, coin, µ,H1) to L1 and returns H1 to S.
◦ Queries to h2: On input (C1, PS , ID|t, P ′, g)
to this oracle, B
(1) For each keyword w queried so far

to H1:
− Calls H1 on w and obtains

(w, coin, µ,H1).
− Checks if the output of

DBDH oracle On input

(xP, yP, zP,
g

e(xP, zP )µ
) is

equal to 1 or not. If it is 1,

returns
g

e(xP, zP )µ
as the an-

swer to the instance of GBDH
problem and stops.

(2) Searches L2 for the tuple
(C1, PS , ID|t, P ′, g, h2). If no such
entry is found and e(C1, PS) =
e(P, P ′), it chooses h2 ∈ Z∗

q ran-
domly and adds (C1, PS , ID|t, P ′, g, h2)

to L2. In both cases, it returns h2.
◦ Queries to ExtSK: On input (ID|t=(ID1,

ID2, · · ·, IDt)) to this oracle, B searches
Lkey to find the tuple (n1, n2, · · · , ni, 0, · · · ,
0, ID′|i= (ID′

1, · · · , ID′
i), RID′|i , sID′|i)

with maximum value of i such that for
j = 1 · · · , i: IDj = ID′

j . If i = t, B returns
sID|t . Otherwise, it proceeds as follows:
(1) If no such i is found,

(a) Searches Lkey to find the en-
try (n1, 0, · · ·, 0, ID′|1, RID′|1 ,
sID′|1) by maximum value of
n1.
− If n1 = l1 − 1, it chooses

h ∈ Z∗
q randomly, com-

putes RID|1 = xP−hxP
and adds the tuples (n1+
1, 0, · · · , 0, ID|1, RID|1 , sID|1),
(ID|1, RID|1 , h) and
(⊥, ID|1,⊥) to Lkey, L
and L6, respectively.

− Otherwise, it chooses
h, sID|1 ∈ Z∗

q randomly,
computes RID|1 =
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sID|1P − hxP and adds
tuples (n1 + 1, 0, · · ·,0,
ID|1, RID|1 , sID|1),
(ID|1, RID|1 , h) and
(⊥, ID|1,⊥) to Lkey, L
and L6, respectively.

(b) Sets i = 1.
(2) Sets i = i+ 1.
(3) Searches Lkey to find the entry (n1,

n2, · · ·, ni, 0, · · ·, 0, ID′|i=(ID1, · · ·,
IDi−1, ID

′
i), RID′|i , sID′|i) by maxi-

mum value of ni. If no such a tuple is
found, searches Lkey to find the entry
(n1, n2, · · · , ni−1, 0, · · · , 0, ID′|i−1=
(ID1, · · · , IDi−1), RID|i−1

, sID|i−1
).

In both cases, it proceeds as follows:
− If n1 = l1, n2 = l2, · · · , ni =

li − 1, it chooses h ∈ Z∗
q ran-

domly, computes RID|i =
xP − hxP and adds tuples
(n1, · · · , ni+1, · · · , 0, ID|i, RID|i ,⊥),
(ID|i, RID|i , h) and (⊥, ID|i,⊥)
to Lkey, L and L6, respec-
tively.

− If n1 = l1, n2 = l2, · · · , ni ̸=
li − 1, it chooses h, sID|i ∈
Z∗
q randomly, computes

RID|i = sID|iP − hxP and
adds tuples (n1, · · · , ni +
1, · · · , 0, ID|i, RID|i , sID|i),
(ID|i, RID|i , h) and (⊥, ID|i,⊥)
to Lkey, L and L6, respec-
tively.

− If one of the inequalities n1 ̸=
l1, n2 ̸= l2, · · · , ni−1 ̸= li−1

holds, it obtains (sID|i−1
,

ID|i, h6) by calling h6 on
(sID|i−1

, ID|i) and computes
RID|i = h6P . Then, it obtains
(ID|i, RID|i , h) by calling h on
(ID|i, RID|i) and sets sID|i =
h6+ sID|i−1

h. Finally, it adds
tuple (ID|i, RID|i , sID|i) to
Lkey, respectively.

(4) Goes to the step 2 if i ̸= t, .
(5) Return sID|t if sID|t ̸= ⊥, and

aborts otherwise.

◦ Queries to Trapdoor: On input (ID|t, w) to
this oracle, B obtains (ID|t, RID|t , sID|t),
(RID|t , ID|t, h4, H4), (w, coin, µ,H1) and
(w, h3) by calling ExtSK, H4, H1 and h3

on ID|t, (RID|t , ID|t), w and w, respec-
tively. Then, it selects r1, r2 ∈ Z∗

q ran-
domly and proceeds as follows:
− If sID|t ̸= ⊥, B computes

T1 =r1P

T2 =r2h3(w)h5(T1, PS , ID|t, r1PS)P

T3 =sID|tH1(w) + r2h3(w)H4(RID|t , ID|t).

− If sID|t = ⊥ and coin = 0, B aborts.
− If sID|t = ⊥ and coin = 1, it com-

putes

T1 =r1P

T2 =r2h3(w)h5(T1, PS , ID|t, r1PS)P

T3 =µxP + r2h3(w)H4(RID|t , ID|t).

− Returns T = (T1, T2, T3).
◦ Queries to Test: On input (ID|t, C =
(C1, C2, C3), T =(T1, T2, T3)) to this
oracle, B obtains h5 by calling h5 On
input (T1, PS , ID|t, xST1, h5). Then,
it obtains h2 by calling h2 On input

(C1, PS , ID|t, xSC1,
e(T3, C3)

e(T2, C2)h
−1
5

). Fi-

nally, B outputs 1 if C3 = h′
2 and 0

otherwise.
• Challenge. Eventually, S outputs a receiver’s
ID-tuple IDC |t= (IDC

1 , ID
C
2 , · · · , IDC

t ) and
two different keywords w0 and w1 as the chal-
lenge keywords. B obtains (w0, coin0, µ0, H

0
1 )

and (w1, coin1, µ1, H
1
1 ) by calling H1 on w0

and w1, respectively. It aborts if coin0 =
coin1 = 1. Otherwise, it randomly selects a bit
b ∈ {0, 1} and obtains (IDC |t, RIDC |t , sIDC |t),

(RIDC |t , ID
C |t, h4, H4) and (wb, h

b
3) by calling

ExtSK, H4 and h3 on IDC |t, (RIDC |t , ID
C |t)

and wb, respectively. B aborts if sIDC |t ̸= ⊥.
Otherwise, it sets C1 = zP , C2 = h4zP and
C3 = h2 for a random value h2 ∈ Z∗

q and

inserts the tuple (C1, PS , ID
C |t, xSzP,⊥, h2)

to L2. Finally, it sends (C1, C2, C3) as the
challenge ciphertext to S.

• Phase 2. S can continue to make queries as in
Phase 1.

• Guess. At last, S outputs b′ ∈ {0, 1} as its guess.

We now define three events as follows:

• E1: B does not abort as a result of any of S’s
trapdoor queries.

• E2: B does not abort during the challenge phase.

Pr[E1] ≥
(
1− 1

qH1
+ 1

)qH1

≥ 1

e

Note that li ≤ q (for1 ≤ i ≤ l) are independent of
the adversary’s view and L contains at most qh ele-
ments. consequently, B correctly guesses a challenge
ID-tuple IDC |t= (IDC

1 , . . . , ID
C
t ), with probability

l
qh
. Moreover, in the challenge phase, B aborts if

both coin0 = 1 and coin1 = 1. Therefore, Pr[E2] =(
l
qh

)(
1−

(
1− 1

qH1+1

)2
)
≥

(
l

qh

)(
1

qH1
+ 1

)
.
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Since the two events E1 and E2 are independent,

Pr[E1 ∧ E2] ≥
(

l

qh

)(
1

e(qH1
+ 1)

)
. In this order,

considering that h2 is modeled as a random oracle,
it can be deduced that the adversary’s advantage
would be negligible unless ((C1, PS , ID|t, P ′, g), h2)
appears on L2. Following this observation and the fact
that B has made at most qh queries from ODBDH ,

we can conclude that ϵ′ ≥ ϵ

(
l

qh

)(
1

e(qH1 + 1)

)
=

ϵl

eqh(qH1
+ 1)

(the same as ϵ) is non-negligible. 2

Theorem 4. Under the hardness assumption of
CDH problem, the proposed dHIBEKS scheme of
Section 4 satisfies trapdoor-indistinguishability under
an adaptive chosen keyword attack.

Proof. According to the Definition 5, To prove this
theorem, we should show that for any polynomially
bounded adversary A′, AdvindTA′,Π (λ) is negligible.

Suppose that there exists a polynomially bounded
outside adversary A′ against the proposed scheme
that wins Game III with a non-negligible advantage
ϵ (i.e., AdvindTA′,Π (λ) = ϵ). Then, we can use A′ to build
a polynomially bounded algorithm B to solve CDH
problem with the same advantage. Therefore, based
on the hardness assumption of solving CDH problem,
it can be concluded that ϵ should be negligible.

Given a random instance of the CDH problem
(P, xP, yP ), we show how B can simulate the chal-
lenger of Game III and find the answer to the prob-
lem.

• Initialization. B runs the Setup algorithm as
specified in the proposed scheme and sets PS =
xP . Then, it returns prms and PS to A′.

• Phase 1. B replies to A′’s queries. The queries
that can be maid by A′ and B’s answer to them
are the same as those in Lemma 1 except for
the following queries.
◦ Queries to h2: On input (C1, PS , ID|t, P ′, g)

to this oracle, B searches L2 for the entry
(C1, PS , ID|t, P ′, g, h2) and returns h2 in
case such an entry is found. Otherwise,
it selects h2 ∈ Z∗

q at random, inserts
(C1, PS , ID|t, P ′, g, h2) to L2 and returns
h2.

◦ Queries to h5: On input (T1, PS , ID|t, P ′)
to this oracle, B checks if e(xP, yP ) =
e(P ′, P ). It returns P ′ as the answer to the
CDH problem if the equation holds and
terminates. Otherwise, it searches L5 for
the entry (T1, PS , ID|t, P ′, h5). If no such
entry is found and e(T1, PS) = e(P ′, P ),
it selects h5 ∈ Z∗

q at random and inserts
(T1, PS , ID|t, P ′, h5) to L5. In both cases,

it returns h5.
• Challenge. Eventually, A′ outputs a receiver’s
ID-tuple IDC |t= (IDC

1 , ID
C
2 , · · · , IDC

t ) and
two different keywords w0 and w1 as the
challenge keywords. Then, B randomly se-
lects a bit b ∈ {0, 1} and obtains (wb, H

b
1),

(IDC |t, RIDC |t , sIDC |t), (RIDC |t , ID
C |t, h4, H4)

and (wb, h
b
3) by calling H1, ExtSK, H4 and h3

On input wb, ID
C |t, (RIDC |t , ID

C |t) and wb,
respectively. Then, it chooses r2 ∈ Z∗

q randomly

and sets T1 = yP , T2 = r2h
b
3h5H4 and T3 =

sIDC |tH
b
1+r2h

b
3 for a random value h5 ∈ Z∗

q . Fi-

nally, it inserts the tuple (T1, PS , ID
C |t,⊥, h5)

to L5 and sends (T1, T2, T3) as the challenge
trapdoor to A′.

• Phase 2. A′ can continue to make queries as in
Phase 1.

• Guess. At last, A′ outputs b′ ∈ {0, 1} as its
guess.

Now, we proceed to compute the advantage of
B in solving CDH. In this order, considering that
h5 is modeled as a random oracle, it can be de-
duced that A′’s advantage would be negligible unless
(T1, PS , ID

C |t, abP, h5) appears on L5. If it appears
on L5, then B certainly is able to solve the CDH
problem. Consequently, we can conclude that the ad-
vantage of B is equal to ϵ. 2

6 Performance Analysis

In this section, we compare our proposed scheme with
Wang et al.’s scheme [3], Li et al.’s scheme [4], Liu
et al.’s scheme [5], and some other related dIBEKS
schemes [9, 21] in terms of both their computational
and communication complexities, and their provided
security requirements. The comparison in terms of
provided security requirements and functionality are
presented in Table 2. From Table 2, we observe that
our proposed scheme and the schemes of [3–5] are
the only schemes that support hierarchical keyword
search capability. However, Wang et al.’s scheme [3]
suffers from the vulnerability caused by the offline
KGAs launched by outside adversaries, and the dH-
PEKS schemes of [4, 5] suffer from complicated cer-
tificate management problem.

The comparison in terms of computational cost is
shown in Table 1. For simplicity, we only calculate the
number of time-consuming operations. The notations
used in the performance comparison are defined as
below:

(1) Tbp: Time cost for computing a bilinear pairing
operation.

(2) TH : Time cost for computing a Hash-to-point
mapping operation.

(3) Tsm: Time cost for computing a scalar multipli-
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cation operation.

We use running times reported for the above-
mentioned operations in [41] performed on a laptop
running Ubuntu 14.04 LTS with Intel(R) CoreTM i3-
2310M CPU@2.10 GHz and 4 GB RAM memory by
using PBC (pairing-based cryptography) library [42]:
TH = 0.334 ms, Tsm = 0.311 ms, Tbp = 2.486 ms
where ms means millisecond. According to Table 1
and Figure 3, the running times of the Key gener-
ation algorithm of our proposed scheme has fallen
by 80.57% and 76.31%, respectively, compared to [4]
and [5]. Moreover, the running times of the Cipher-
text generation algorithm of our proposed scheme
is significantly reduced by 44.84% and 48.38%, re-
spectively, compared to [4] and [5] (For the sake
of simplicity, assuming the hierarchical level of the
data receiver t = 3, and the maximum hierarchical
level l = 10). Although the Trapdoor and Test al-
gorithms of our proposed scheme are slightly worse
than [4], the running time of these algorithms are
much faster than those of Key generation and Cipher-
text generation algorithms in [4, 5]. Therefore, our
proposed scheme is more efficient than the dHPEKS
schemes of [4, 5]. The running times of the Key
generation, Ciphertext generation, Trapdoor, and
Test algorithms of our proposed scheme are reduced
by 51.78%, 7.06%, 45.61%, and 32.32%, respectively,
compared to [9]. Table 1 and Figure 3 show that
the running times of the Key generation, Trapdoor,
and Test algorithms of our proposed scheme have
fallen by 51.78%, 49.19%, and 44.23%, respectively,
compared to [21]. The running times of the Cipher-
text generation of our proposed scheme is almost the
same as [21] and [3]. The computation costs of our
proposed scheme in the Key generation, Trapdoor,
and Test phases are significantly reduced by 98.25%,
87.00%, and 44.23%, respectively, in comparison
with Wang et al.’s scheme [3], which shows that our
proposed scheme is much more efficient than [3].

In order to compare the communication cost of our
proposed scheme with the schemes of [3–5, 9, 21], in
Table 3 and Figure 4, we count the bit length size of
the ciphertexts and the trapdoors of these schemes.
Let h and |Gi|(i = 1, 2) denote the bit length size of
the output of an ordinary hash function and the bit
length size of each element of Gi(i = 1, 2). We use the
bit length sizes reported in [41], i.e., h = 160 − bit,
|G1|= 512− bit and |G2|= 1024− bit. 2 As presented
in Table 3 and Figure 4, the bit length size of the
ciphertexts in our proposed scheme is smaller than
those in all other schemes [3–5, 9, 21]. The results

2 We also count the bit length size of the output of the hash
function H4, and the integer N in [5], i.e., γ1 = 128 − bit

(reported in [5]), |N |= 1024−bit (reported in [37]), respectively.
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Figure 3. Computational cost comparison

show that our proposed scheme has a much lower size
of trapdoor than [3, 5], and the same size as [9] and [4].
Table 3 and Figure 4 show that the bit length size of
the Trapdoor in [21] has fallen by 22.92%, compared
to our proposed scheme. However, the bit length size
of the ciphertexts in our proposed scheme is reduced
by 46.38%, compared to [21].

Now consider a scenario where a data sender wants
to encrypt a keyword for multiple data receivers in a
hierarchical structure. In a PEKS scheme that does
not support hierarchical access permission for users,
the data sender has to encrypt the same keyword
multiple times for each data receiver. However, in our
proposed scheme and the schemes in [3–5], which sup-
port hierarchical access permission, the data sender
only encrypts the keyword for the lowest level users
of each data receiver’s branch in the user’s hierarchi-
cal structure. In Figure 5 and Figure 6, we compare
the ciphertext generation time and the bit length size
of the ciphertext of our proposed scheme with the
schemes of [3–5, 9, 21] in this scenario. Figure 5 and
Figure 6 show that the ciphertext generation time
and the ciphertext size in [3–5] and our proposed
scheme merely increase by increasing the number of
different data receivers’ branches in the hierarchical
structure, regardless of the number of data receivers.
Furthermore, in this scenario, as shown in Figure 5
and Figure 6, our proposed scheme is better than
existing dHPEKS schemes [4, 5] in terms of the ci-
phertext generation time and the ciphertext size. In
comparison with [3], the ciphertext generation time
of our proposed scheme is almost the same as [3],
and the ciphertext size of our proposed scheme is less
than that of [3], in this scenario.

7 Conclusion

Wang et al. introduced the notion of hierarchical
ID-based encryption with keyword search (HIBEKS)
and proposed the first HIBEKS scheme in 2015 [3].
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Schemes Key generation Ciphertext generation Trapdoor generation Test

[21] TH + Tsm = 0.645 TH + 6Tsm + Tbp = 4.686 TH + 5Tsm + Tbp = 4.375 TH + Tsm + 4Tbp = 10.589

[9] TH + Tsm = 0.645 4TH + 5Tsm + Tbp = 5.377 2TH + 3Tsm + Tbp = 4.087 TH + 3Tsm + 3Tbp = 8.725

[3] 57Tsm = 17.727 7Tsm + 2Tbp = 4.663 55Tsm = 17.105 Tsm + 3Tbp = 7.769

[5] 3TH + Tsm = 1.313 2TH + 5Tsm + 3Tbp = 9.681 2TH + 3Tsm = 1.267 Tsm + 2Tbp = 5.283

[4] 2TH + 3Tsm = 1.601 2TH + 3Tsm + 3Tbp = 9.059 TH + 4Tsm = 1.578 Tsm + 2Tbp = 5.283

Ours Tsm = 0.311 TH + 7Tsm + Tbp = 4.997 2TH + 5Tsm = 2.223 3Tsm + 2Tbp = 5.905

Table 1. Computational cost (ms)
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increasing

[21] [9] [3] [5] [4] Ours

Ciphertext-indistinguishability No No Yes Yes Yes Yes

Security against outside KGA Yes Yes No Yes Yes Yes

Certificate management problem No No No Yes Yes No

Support hierarchical keyword search No No Yes Yes Yes Yes

Table 2. Security and property comparison

Ciphertext size Trapdoor size

[21] 4|G1|+h = 2208 2|G1|+h = 1184

[9] 4|G1|+|G2|= 3072 3|G1|= 1536

[3] 2|G1|+|G2|= 2048 9|G1|= 4608

[5] 2|G1|+4|N |+γ1 + h = 5408 |G1|+4|N |+h = 4768

[4] 2|G1|+|G2|= 2048 3|G1|= 1536

Ours 2|G1|+h = 1184 3|G1|= 1536

Table 3. Communication cost comparison

However, Wang et al.’s scheme is not secure against
offline KGA. In 2020, Li et al. [4] introduced hierar-
chical structures into designated-server public key en-
cryption with keyword search schemes and proposed
the first hierarchical designated-server public key
encryption with keyword search (dHPEKS) scheme.
Another dHPEKS scheme was proposed in 2021 by
Liu et al. [5]. However, the schemes of [4] and [5] suf-
fer from the certificate management problem which
is inherent to the cryptographic schemes in the PKI
setting. The main purpose of this paper is to de-
vise techniques to avoid the certificate management
problem that exists in the public key setting while
providing necessary security requirements in PEKS
and supporting hierarchical structures. To this end,
we first introduce the notion of dHIBSE and formu-
late its security model. We further propose a dHIBSE
scheme and prove its security under the defined
security model. Moreover, we illustrate the overall
superiority of our proposed scheme by comparing it
with other related schemes in terms of security re-
quirements, communication and computational costs.
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and fully secure document similarity search over
encrypted data with lightweight client. Jour-
nal of Information Security and Applications,
59:102830, 2021.

[25] Mimi Ma, Debiao He, Shuqin Fan, and Deng-
guo Feng. Certificateless searchable public key
encryption scheme secure against keyword guess-
ing attacks for smart healthcare. Journal of In-
formation Security and Applications, 50:102429,
2020.

[26] Nasrollah Pakniat, Danial Shiraly, and Ziba Es-
lami. Certificateless authenticated encryption
with keyword search: Enhanced security model
and a concrete construction for industrial iot.
Journal of Information Security and Applica-
tions, 53:102525, 2020.

[27] Sanjeet Kumar Nayak and Somanath Tripathy.
Seps: Efficient public-key based secure search
over outsourced data. Journal of Information
Security and Applications, 61:102932, 2021.

[28] Yu Zhang, Yin Li, and Yifan Wang. Secure
and efficient searchable public key encryption
for resource constrained environment based on
pairings under prime order group. Security and
Communication Networks, 2019, 2019.

[29] Ahmad Akmal Aminuddin Mohd Kamal and
Keiichi Iwamura. Searchable encryption using
secret sharing scheme that realizes direct search
of encrypted documents and disjunctive search
of multiple keywords. Journal of Information
Security and Applications, 59:102824, 2021.

[30] Ming-Fong Tsai and Yi-Hong Wu. User intent
prediction search engine system based on query
analysis and image recognition technologies. The
Journal of Supercomputing, pages 1–33, 2022.

[31] Danial Shiraly, Nasrollah Pakniat, Mahnaz
Noroozi, and Ziba Eslami. Pairing-free certifi-

cateless authenticated encryption with keyword
search. Journal of Systems Architecture, page
102390, 2022.

[32] Yang Lu and Jiguo Li. Efficient searchable public
key encryption against keyword guessing attacks
for cloud-based emr systems. Cluster Computing,
22(1):285–299, 2019.

[33] Joonsang Baek, Reihaneh Safavi-Naini, and
Willy Susilo. On the integration of public key
data encryption and public key encryption with
keyword search. In International Conference on
Information Security, pages 217–232. Springer,
2006.

[34] Yong Ho Hwang and Pil Joong Lee. Public key
encryption with conjunctive keyword search and
its extension to a multi-user system. In Interna-
tional conference on pairing-based cryptography,
pages 2–22. Springer, 2007.

[35] Mimi Ma, Shuqin Fan, and Dengguo Feng.
Multi-user certificateless public key encryption
with conjunctive keyword search for cloud-based
telemedicine. Journal of Information Security
and Applications, 55:102652, 2020.

[36] Xueqiao Liu, Kai He, Guomin Yang, Willy Susilo,
Joseph Tonien, and Qiong Huang. Broadcast au-
thenticated encryption with keyword search. In
Australasian Conference on Information Secu-
rity and Privacy, pages 193–213. Springer, 2021.

[37] Ximeng Liu, Robert H Deng, Kim-Kwang Ray-
mond Choo, and Jian Weng. An efficient privacy-
preserving outsourced calculation toolkit with
multiple keys. IEEE Transactions on Informa-
tion Forensics and Security, 11(11):2401–2414,
2016.

[38] Ziba Eslami and Nasrollah Pakniat. Certificate-
less aggregate signcryption: Security model and
a concrete construction secure in the random or-
acle model. Journal of King Saud University -
Computer and Information Sciences, 26(3):276 –
286, 2014.
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