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A B S T R A C T

The future of the IoT requires new payment methods that can handle millions of

transactions per second. IOTA cryptocurrency aims at providing such a solution.

It uses a consensus algorithm based on directed acyclic graphs (DAG) called

Tangle. A tip selection algorithm (TSA) is a part of Tangle that determines

which unconfirmed blocks (tips) should be confirmed by new blocks. There is

always a chance that a small number of valid blocks never get confirmed and

become stale. If a significant part of the blocks becomes stale, the Tangle is

considered unstable. In this paper, we mathematically prove that a TSA is stable

at all transaction rates if and only if the probability of selecting all tips is at

least 1/2n in which n is the total number of tips. Accordingly, we demonstrate

that the current IOTA TSA would not be stable at high transaction rates.

© 2023 ISC. All rights reserved.

1 Introduction

Soon after the birth of Bitcoin [1], the potential of
blockchain and cryptocurrencies attracted the sci-

entific research community. In its early years, scala-
bility issues of Bitcoin’s Nakamoto consensus became
a research focus for many in academia and the indus-
try. Thus, multiple works addressed this problem with
different approaches [2–4]. One of the promising tech-
niques is called directed acyclic graphs (DAG) which
allows multiple blocks to get recorded and confirmed
simultaneously. Thus, it can provide higher transac-
tion throughput while maintaining the same level of
decentralization [5–7].

In chain-based consensus algorithms, including
Nakamoto consensus, blocks in the ledger form a tree
graph. In such a graph, a directed edge from node A
to node B indicates that block A contains the hash of
block B, and therefore confirms it. However, blocks
in a DAG-based ledger form a directed acyclic graph
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which means each block contains the hash of multiple
blocks generated before it [8]. The first case of using
a DAG for consensus algorithms is, to the best of
our knowledge, ”Inclusive.” [9] While being studied
well in the academic world, Inclusive never became
a widely used scheme. About a year later, IOTA’s
Tangle was introduced [6], which was implemented
later on. IOTA is probably the most widely-known
DAG-based cryptocurrency. Its main goal is to pro-
vide fast and scalable payments for the Internet of
Things (IoT), whereas other applications related to
IoT are within the scope of its future [10].

One of the most critical challenges in consensus al-
gorithms is handling conflicting transactions. When
two or more transactions are individually valid but
cannot be valid at once, we call them conflicting trans-
actions or double-spends. Some DAG-based consensus
algorithms handle these conflicting transactions by
giving transactions an order such as SPECTRE [11]
and PHANTOM [12]: Among all transactions that
conflict with each other, the one that precedes the
others is the only valid one. IOTA’s Tangle [6] tries to
solve this problem by staling all blocks that conflict
except one. Thus, one of the conflicting transactions
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receives a greater number of confirmations than the
others.

Figure 1 shows a schematic view of Tangle’s DAG.
Since a hash pointer points to the previous block, the
direction of edges is toward the root (genesis block),
not the leaves (tips). In IOTA’s Tangle, each block
contains only one transaction, and it has precisely two
parent blocks which are the two transactions it con-
firms. The algorithm selecting the parent transactions
is called a tip selection algorithm. This algorithm has
a fundamental role in Tangle’s consensus algorithm
since the participants use it to decide, among conflict-
ing transactions, which one should gain more confirma-
tions and replace the others accordingly [13]. IOTA’s
reference implementation currently employs an un-
weighted random walk tip selection algorithm, also
known as the Markov Chain Monte Carlo (MCMC)
algorithm (with α parameter equal to zero). This al-
gorithm gives a higher probability of getting new con-
firmations to transactions that have already received
some confirmations. Usually, when there is no mali-
cious activity in the network, in IOTA’s Tangle, the
number of blocks without confirmations (also known
as stale blocks) is expected to be insignificant. How-
ever, if the number of unconfirmed transactions gets
larger and larger as the Tangle grows under certain
conditions, we say that Tangle is unstable.

Our contributions in this paper can be summarized
as follows:

• In Section 3 and Section 4, we use a mathemati-
cal model to evaluate the stability of the Tangle
consensus algorithm and prove that any tip se-
lection algorithm must assign all tip blocks at
least a 1/2n probability of getting selected to
guarantee stability in any transaction rate (n is
the number of available tips).

• As a result of that theorem, in Section 5, we
prove the stability of the uniform tip selection
algorithm at any transaction rate. This confirms
previous works that used totally different math-
ematical models [14].

• In Section 6, we show that the MCMC algorithm
used in the current IOTA implementation cannot
be stable at high transaction rates independent
of its input parameters, due to the fact that it
assigns some tips a probability of getting selected
that is less than 1/2n.

• We will discuss some solutions to fix this issue
in Section 7.

2 Related works

Besides IOTA, few cryptocurrencies have similar DAG
structures, such as Byteball [15], Nano [16], Dag-
Coin [17], and Hedera Hashgraph [18].

Aside from the applied space, in academic research,
multiple proposals have utilized a DAG-based struc-
ture to achieve higher transaction throughput and
faster confirmation times. One of the most well-known
examples is GHOST [19], which got implemented
into Ethereum [20] with slight modifications later on.
While GHOST employs DAGs, it is only an alterna-
tive method of choosing the main chain. Therefore, it
ignores transactions outside the main chain.

To the best of our knowledge, block-DAGs were first
introduced in Inclusive [9] to increase throughput by
integrating transactions in off-the-main-chain blocks
into the ledger. SPECTRE [11] employs transaction
confirmation via a recursive election. The core of
SPECTRE is a voting procedure that provides order
between any pair of blocks. Votes are based on the
location of the corresponding blocks. The authors show
that the voting result quickly becomes irreversible
and yields a consistent set of transactions. Another
block-DAG consensus algorithm, PHANTOM [12],
finds a cluster of well-connected blocks in the DAG
and favors blocks inside that cluster while penalizing
blocks outside of it. PHANTOM generalizes natural
partial order in DAGs to total topological order.

GraphChain [21] aims at providing a more egalitar-
ian approach to mining by proposing a method that al-
lows low-powered miners to contribute to the networks’
security and have steady incomes without joining min-
ing pools. The authors also claim that GraphChain
provides fast confirmations and scales with variations
in transaction rates. Conflux [7] proposes an approach
somewhat similar to Inclusive and GHOST. It also
adds multiple improvements in the network layer and
implements the results on the Bitcoin core.

Closer to our research topic, there have been a few
research works on the analysis of the security and
performance of Tangle. A work by Popov et al. [22]
considers the circumstances in which each player at-
tempts to optimize his attachment strategy. It also
proves that under such conditions, Nash equilibrium
exists. The authors show that selfish players prefer
to join the proposed attachment strategy since their
transactions will be less likely to be approved if they
act otherwise. Another work by Barams [14] presents a
formal analysis of the average number of unconfirmed
transactions and the average confirmation time of a
transaction in a discrete model. Subsequently, the pa-
per provides proof that maintaining an honest major-
ity in the network is necessary for protecting Tangle
against attacks. A research paper by Kusmierz [23]
deals with the simulation of the discrete-time model.
Their work uses simulations to demonstrate the sta-
bility of the uniform tip selection algorithm and the
risks of MCMC instability. This is done with high α
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Figure 1. A schematic view of Tangle’s DAG

values as the input parameter. In contrast, our work
uses theoretical analysis that leads to an important
theorem that determines the conditions a tip selection
algorithm must have to be stable for any transaction
rate.

The work of Kusmierz et al. [23] studies simula-
tions of the continuous model. It verifies the Tangle
whitepaper predictions. Furthermore, they explore the
novel concept of a non-constant number of directly
approved transactions k. As a final result, they have
provided an analytical formula for the average number
of tips in the discrete model, considering a uniform
tip selection algorithm.

The research work of Cullen et al. [24] investigated
the security of the IOTA Tangle under a particular
type of attack scenario called double-spending. They
have used a Markov Chain model to evaluate the
resilience of the MCMC tip selection algorithm against
malicious parties. They validated the results using
simulations of random walks on randomly generated
instances of Tangle.

Another related research work done by Ferraro et
al. [25] uses a fluid model to describe tip selection dy-
namics. Utilizing a newly developed definition called
”tip age,” the authors show that the MCMC tip selec-
tion algorithm is unstable for a sufficiently large value
of α. Also, using a uniform tip selection algorithm, all
tips will eventually be approved under certain condi-
tions. Their results are consistent with our research.
However, our analysis extracts the necessary and suf-
ficient conditions to make a tip selection algorithm
stable for all block generation rates using a more gen-
eral mathematical model. Additionally, we prove that
there exists a block generation rate that makes the
MCMC tip selection algorithm unstable even at the
lowest possible value of α.

3 Preliminaries and Definitions

In IOTA’s Tangle, each newly created block confirms
exactly two previous blocks. These two blocks must
be local tips which means that, in the view of the
participant generating the transaction, they do not
have any children. A participant in the network, due
to delays in communications, sees a sub-DAG of all
generated blocks. We call this sub-DAG the local
DAG. While a block in one participant’s local DAG

could be a tip, that same block might not be a tip in
another participant’s local DAG. This could result in
multiple confirmations for a single block from different
participants.

When generating a new transaction, the choice of
the two local tips for confirmation is based on an al-
gorithm called the tip selection algorithm. While this
algorithm is not forced by the protocol and partici-
pants are free to use their algorithm, it is shown that
rational participants prefer using the same algorithm
as most others [22]. One example of tip selection is
the uniform tip selection algorithm. By this algorithm,
two blocks are chosen with equal probability from the
set of all local tips.

In the original whitepaper of IOTA [6], a tip selec-
tion algorithm called the MCMC algorithm is intro-
duced. In this algorithm, a fixed weight is assigned
to each block. The cumulative weight of a block is
the sum of its descendants’ weights in the local DAG
plus its own. For example, as depicted in Figure 3, the
accumulated weight of the point B is the sum of the
weight of B itself and the accumulated weights of C,
D, and E. The accumulated weight of childless blocks
like E and D is equal to their weight.

In the MCMC algorithm, to select a local tip, the al-
gorithm assumes a virtual particle that travels through
the edges of the local DAG. This particle travels from
the genesis block, or a block far in the past, toward the
tips. At each step, the particle moves from one block
to one of its chosen children. The child is randomly se-
lected with a probability derived from its cumulative
weight. This travel continues until the particle lands
on a block with no children. This block is what has
been chosen.

When the virtual particle travels in the local DAG,
the probability of selecting each child of a block is pi
for each child i and is calculated by Equation 1. Wx is
the cumulative weight of block x. Currently, the weight
of each block in IOTA’s reference implementation is
fixed and equal to 1.

pi =
e−α(WB−Wi)∑

i∈children(B) e
−α(WB−Wi)

(1)

The value of α is a parameter that can be adjusted
for increasing or decreasing the inclination toward
selecting children with more confirmations. The low-
est α value is zero. IOTA’s whitepaper proposed 1
as an example value for α. In the initial version of
IOTA’s full-node Reference Implementation (IRI), α
was defaulted to ln(3) ≈ 1.1 and later it changed to
0.001 [26]. In the 1.8.2 version released in October
2019, the default value of α is set to zero [27].

Any tip selection algorithm could be modeled as a
random function Π(.) that receives a local DAGD and
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(a) Decreasing (δk < 0) (b) Stable (δk = 0) (c) Increasing (δk > 0)

Figure 2. Difference in number of tips between consecutive rounds for various values of δ

assigns a probability vector to the set of all available
local tips P = Π(D). Each element of this probabil-
ity vector determines the probability of selecting the
corresponding tip P = [P1, P2, . . . , Pi, . . . , Pnk

] which
assigns the probability Pi to the tip ti. For example,
in a uniform tip selection algorithm, Pi is equal to

1
nk

for all tips.

3.1 Mathematical Model

In the rest of this paper, we will use the notations
provided in Table 1. In the analysis of IOTA’s Tan-
gle stability, we assume a synchronous network model
(SNM) [28]. Similar approaches have been used in the
literature for analyzing Bitcoin’s Nakamoto consen-
sus [29] and Ethereum’s GHOST protocol [30].

In this model, all the network participants are con-
sidered honest, and they share the same algorithm for
tip selection, albeit with different randomness. The
network starts with an initial state; then, participants
proceed in lockstep, doing rounds. At the start of
each round, all participants have the same view of the
network (the DAG). In the kth round, network par-
ticipants generate λk blocks independently, and each
node uses a tip selection algorithm for choosing the
parent blocks. We call λk the block generation rate of
round k. Since in IOTA, each block contains exactly
one transaction; there is no difference between the
transaction generation rate and block generation rate.
In the next round, the k + 1 round, all blocks are de-
livered to all participants; thus, their view of the DAG
is synchronized. As an assumption, for all k, the value
of λk is less than an arbitrarily large value λmax.

∀k ∈ N, λk < λmax (2)

3.2 Definitions

Definition 1. Difference in the number of tips. The
value δk is the number of tips in the round k + 1
subtracted by the number of tips in the round k:

δk = nk+1 − nk (3)

Figure 3. Calculation of accumulative weights in the MCMC

algorithm

As shown in Figure 2, δk can be a negative or positive
value under various conditions. The number of tips in
each round could be deconstructed into two parts; the
number of newly generated blocks which is λk, and
the number of tips that remained from the last round
(Rk):

δk = λk +Rk − nk (4)

All tip selection algorithms are probabilistic. Accord-
ingly, we normally use the expected value of δk. At the
start of each round, all participants share the same
view of the network and run the same tip selection
algorithm. Therefore, the probability of choosing a tip
i for all participants is equal to Pi. Subsequently, the
probability that a tip does not get any confirmation
from all λk new transactions that independently cre-
ate 2λk confirmations is (1− Pi)

2λk . Throughout our
analysis, we frequently use the expected value of δk
conditional to nk:

E[δk|nk] = λk + E[Rk]− nk

= λk +

nk∑
i=1

(1− Pi)
2λk − nk (5)

Definition 2. Stable tip selection algorithm. A tip
selection algorithm is stable if for any transaction
generation rate λk ∈ N such that ∀k ∈ N, λk < λmax,
the expected number of tips E[nk] is a finite value:

E[nk] < ∞,∀k ∈ N (6)

4 Theorems

Theorem 1 (Finite Number of Tips). If the expected
number of tips is finite, then the number of tips is
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Table 1. Notations used in the manuscript

Sign Description

Tk Set of all available local tips in round k

nk Number of tips in round k (nk = |Tk|)

δk Difference between nk+1 and nk

λk Number of newly generated blocks in round k

Pi Probability of selecting tip ti from set of tips T

Rk Tips remained from previous rounds in round k

P Probability vector [P1, P2, . . . , Pn]

1 Vector of all ones with length n

Pmin Minimum value of the probability vector P

Mp(.) Power mean function with power p

ak Normalized value of λk over nk (
λk
nk

)

almost surely (a.s.) finite.

E[nk] < ∞ =⇒ Pr[nk < ∞] = 1 (7)

The proof of this theorem is out of the scope of this
paper.
Lemma 1 (Boundedness of δk). The value of δk,
difference in number of tips of the two consecutive
rounds, is always bounded:

λk − nk ≤ δk ≤ λk (8)

Proof. The minimum value for the remaining tips is
zero and the maximum is n.

0 ≤Rk ≤ nk (9)

λk − nk ≤λk +Rk − nk ≤ λk (10)

λk − nk ≤δk ≤ λk (11)

As a result of Lemma 1 and Equation 2, we can say
the value of δk is bounded for all k:

∀k ∈ N : δk ≤ λk < λmax (12)

Theorem 2 (Stable Tip Selection Algorithms). A
tip selection algorithm used by all participants of the
network is stable if and only if:

∀k ∈ N,∃L ∈ R s.t. if nk > L then E[δk]nk < 0 (13)

The proof for Theorem 2 is presented in Appendix A.
Theorem 3 (Stability Conditions for Tip Selection
Algorithms). A tip selection algorithm that creates the
tip selection probability vector of P is stable in rate λk

if and only if:

∀k ∈ N,∃L ∈ R s.t. if nk > L then

M2λk
(1− P ) < 2λk

√
nk − λk

nk
(14)

In this equation,M2λk
is the power mean function with

the exponent value of 2λk.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

nk/λk

−0.5

0.0

0.5

1.0

E[
δ k
|n
k

]/
λ
k

Uniform TSA

Figure 4. Theoretical expected value of δk against the number
of tips nk for uniform tip selection algorithm (both values are

normalized by block generation rate λk)

The proof of Theorem 3 is in Appendix B.
Corollary 1. If a tip selection algorithm is stable
in the block generation rate λk, then it is also stable
for any other rate less than λk. Consequently, if a tip
selection algorithm is not stable for the block generation
λk it is not stable for any rate higher than λk.

The proof of Corollary 1 is presented in Appendix C.
Theorem 4. A tip selection algorithm with the mini-
mum tip selection probability Pmin = min(P ) is stable
for any transaction generation rate if and only if:

∀k ∈ N : Pmin >
1

2nk
(15)

Appendix D contains the proof for Theorem 4.

5 Stability of Uniform Tip Selection
Algorithm

Using Theorem 3 and the fact that for a uniform tip
selection algorithm ∀P ∈ P : P = 1

nk
we have:

M2λk
(1− 1

nk
) < 2λk

√
nk − λk

nk
(16)

nk∑
i=1

(1− 1

nk
)2λk < nk − λk (17)

Since the aim is to determine if Tangle is stable when
the number of tips goes towards infinity, the value of nk

is large enough to utilize exponential approximation.

nke
−2

λk
nk < nk − λk (18)

Similar to the proof of Theorem 4, we assume ak = λk

nk

and use Lambert W function to deduce the following
inequality:

ak < 1 + ake
−2
ak

<
2

W (−2
e2 ) + 2

≈ 0.79681213 (19)

Thus, for a uniform tip selection algorithm, if the ratio
between the expected number of tips E[nk] and the
block generation rate λk is larger than 1

0.7968 = 1.255,
then the expected value of δk is less than zero. Fig-
ure 4 shows the expected value of δk against nk both
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Figure 5. Normalazed expected value of δk conditioned to nk for various values of α with a fixed block generation rate of 50
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Figure 6. δk for various values of α while the block generation rate is fixed and equal to 50 (The graph shows that slight increase

in the value of α steers the Tangle toward instability)

normalized by λk. When there are only small varia-
tions in the number of newly generated blocks in each
round λk, the number of tips is likely to be approxi-
mately equal to 1.255λk. This value acts as a stability
point since values higher than that lead to negative ex-
pected growth in the number of tips, and values lower
cause positive growth. On that account, the number
of tips in each round is expected to be 25.5% more
than the number of newly generated blocks. Similar
results have been reported in [14] using a different
mathematical model. Our model demonstrates this
value as a stability point.

6 Analyzing the Stability of MCMC
Algorithm

To find the probability that the MCMC algorithm
assigns to each tip, we use a program to run the algo-
rithm multiple times and analyze the output proba-
bility vector P .

It is expected that different values ofα in theMCMC
tip selection algorithm will lead to a variety of stability
levels. Lower α values result in probability distribu-
tions closer to uniform. Higher values of α cause more
variance in the values of P elements.

Based on Theorem 4, we demonstrate that the

ISeCure



158 Analysis of IOTA Tangle Stability in High Transaction Rates — Yajam, and Akhaee

1 2 3 4 5 6 7

nk/λk

0.0

0.1

0.2

0.3

0.4

0.5

E[
δ k
|n
k

]/
λ
k

depth = 40 (regression)

depth = 30 (regression)

depth = 20 (regression)

depth = 15 (regression)

depth = 10 (regression)

Uniform TSA

depth = 40

depth = 30

depth = 20

depth = 15

depth = 10

Figure 7. Normalized expected values of δk conditioned to nk for α = 0.1 calculated after various number of rounds
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Figure 8. Value of Pmin against different values of block
generation rates λk for α = 0 (Each value is extracted from
more than 1000 executions)

MCMC algorithm does not have the requirement for
a stable tip selection algorithm at high transaction
rates. To run the MCMC algorithm multiple times,
we developed a program in the Python programming
language using the ”networkx” package. Our program
runs the MCMC algorithm for various values of param-
eter α in any desirable block generation rate. It starts
with a genesis block and adds new blocks to the DAG
structure based on MCMC TSA. In each round, new
blocks choose their parents by executing the MCMC
tip selection algorithm with a preconfigured α param-
eter. After a certain number of rounds, we calculate
the output probability vector P assigned to the tips.

Our first result using the program is depicted in Fig-
ure 5, which shows that for relatively high values of α,
the number of stale blocks grows very fast. This figure
is generated by calculating the value of E[δk|nk]/λk

after 15 rounds of adding new blocks (k = 15). In
each round, the block generation rate is 50. For each
α value, more than 1000 experiments with different
random values are executed. We used an exponential

regression for each α value to better illustrate the re-
sults. The results show that for higher values of α, the
Tangle is extremely unstable since there is a signifi-
cant growth in the number of tips. The instability of
MCMC tip selection with large values of α has been
reported in [14, 25]. In Figure 5, the result from the
theoretical assessment of the uniform tips selection
algorithm is also depicted. This shows that the uni-
form tip selection algorithm has the lowest expected
number of tips at all block generation rates.

Figure 6 shows another result of running the MCMC
algorithm. It provides similar information to the pre-
vious figure but with very small variations in the value
of α. This figure emphasizes that every slight change
in α could significantly affect the Tangle’s stability.
These results are for a block generation rate of 50 new
blocks per round. The results of the expected number
of tips are calculated after running 15 rounds.

Results shown in Figure 7 confirm that when the
average of E[δk|nk] is above zero, rounds of running
MCMC lead to a higher number of tips in the next
rounds (instability). The figure shows the number of
tips for a block generation rate of 50 and α = 0.1 with
varying values of rounds (depth).

Figure 8 shows that the MCMC algorithm assigns
probabilities less than 1

2nk
to some tips even when the

block generation rate is low. According to Theorem 4,
if the minimum probability of choosing a tip among
all available tips is less than 1

2nk
, then there exists a

block generation rate that makes the Tangle unstable.
Results of execution of MCMC algorithm in Figure 8
indicates that the value of Pmin for MCMC algorithm
with α = 0 is less than 1

2nk
for most block generation

rates and it drops lower by increasing the rate.
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Figure 9. Average value of E[δk|nk] for different values of α (Figures are depicted in block generation rate λk intervals from 1 up
to the point that the Tangle becomes unstable. Each data point is extracted from more than 1000 executions)

In Figure 9 the value of E[δk|nk] for different values
of α is depicted. These results show that for any value
of α in the MCMC tip selection algorithm, there exists
a block generation rate that makes IOTA’s Tangle
unstable (positive E[δk|nk] value). Although this point
is relatively high for very small values of α (e.g., zero),
still a rate that leads to Tangle instability exists. This is
consistent with our theoretical results that the MCMC
algorithm cannot be stable when the block generation
rate (λk) approaches infinity.

7 Discussion about Remedies

Based on the theoretical analysis in Section 4 and Sec-
tion 6, the MCMC algorithm with α = 0, which, at the
time of writing, is being used for IOTA cryptocurrency
cannot be stable for high transaction rates. As IoT
networks handle millions of transactions per second,
this limitation would eventually halt the growth of
the cryptocurrency. Based on the results of our study,
we suggest using different tip selection algorithms to
fix this issue.

In Section 5, proofs for the stability of the uniform
tip selection algorithm for any block generation rate
have been presented. Other research works reported
confirming results [14, 25, 31]. As a remedy to the
stability problems in IOTA’s Tangle, we suggest using
a uniform tip selection algorithm instead of theMCMC
algorithm. Although this approach affects the role of
the tip selection algorithm against double-spending
attacks, the designers could use other more studied
techniques for tackling such attacks, such as the proof-
of-stake voting approach of [32], which has gained
much attention recently.

On the other hand, the protocol designers could
increase the number of required parents for a block
to be accepted in the Tangle to m > 2. This could
change the condition of Theorem 4 to the following:

∀k ∈ N : Pmin >
1

m× nk
(20)

Although this does not lead to stability at all block
generation rates, it could push the instability point to
a much higher value.

One of the concerns regarding IOTA’s Tangle is de-
termining which transaction generation rates for dif-
ferent tip selection algorithms and network conditions
are stable. This is especially relevant for users and
developers who use MCMC TSA, as, according to our
findings is not stable in high transaction rates. A pos-
sible future work could use a different mathematical
framework and more extensive simulations to derive
an upper bound for stable transaction generation rates
when utilizing MCMC TSA. It could also compare it
with other TSA. This would help users and developers
decide about IOTA for their IoT applications.

8 Conclusion

In this paper, we have presented a mathematical model
to analyze the stability of Tangle, a DAG-based con-
sensus algorithm for IOTA cryptocurrency. Our main
findings are:

• We derived the necessary and sufficient condi-
tions for stable tip selection algorithms. These
conditions require that all tips have at least a
1/(2n) selection probability, where n is the num-
ber of tips.

• We proved the stability of the uniform tip se-
lection algorithm, which selects tips randomly
with equal probability, at all transaction rates.
This confirms previous works that used different
models.

• We showed that the Markov chain Monte Carlo
tip selection algorithm, used in IOTA’s imple-
mentation, is unstable at high transaction rates.
We discussed the security and scalability impli-
cations of this result and suggested some solu-
tions.

In future work, we aim to extend our analysis to other
tip selection algorithms proposed in the literature. We
will compare their performance and stability with the
uniform tip selection algorithm.
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A Proof of Theorem 2

Proof. Proof of necessity. For a stable tip selection
algorithm, if the expected number of tips is finite for
all k then there exists a value L∗ ∈ R greater than all
values of E[nk].

E[nk] < L∗ < ∞ (A.1)

Without loss of generality, we can replace k with k+1
and subtract nk from both sides of the inequality:

E[δk|nk] < L∗ − nk (A.2)

Since nk > 0, we can deduce that for values of nk

greater than L∗:

E[δk|nk] < 0 (A.3)

As a consequence, for a stable tip selection algorithm
the condition is necessary.

Proof. Proof of sufficiency. First:

if nk > L then E[δk|nk] < 0 =⇒ (A.4)

if nk > L then E[nk+1] < nk (A.5)

By replacing k with k − 1, we have:

if nk−1 > L then E[nk] < nk−1 (A.6)

From Lemma 1, we have:

δk < λmax (A.7)

Thus, the expectation of δk conditional to any other
variable is less than λmax:

E[δk|nk] < λmax (A.8)

E[nk+1] < λmax + nk (A.9)

We can simply replace k with k − 1:

E[nk] < λmax + nk−1 (A.10)

From Equation A.6 and Equation A.10:

E[nk] < max(nk−1, λmax + L) (A.11)

It is safe to assume that the number of tips in the
initial state is finite.

∃L > 0 : n0 < L0 (A.12)

Using induction from Equation A.11 and Equa-
tion A.12:

E[nk] < max(L0, λmax + L) =⇒
E[nk] < L

′
< ∞ (A.13)

B Proof of Theorem 3

Proof. From Theorem 2 and the definition in Equa-
tion 5, a tip selection algorithm is stable if and only if:

if nk > L then λk +

nk∑
i=1

(1− Pi)
2λk − nk < 0 (B.1)

if nk > L then
1

nk

nk∑
i=1

(1− Pi)
2λk <

nk − λk

nk
(B.2)

Since for nk < λk definitely the number of tips will in-
crease, we can assume that both sides of the inequality
are positive values:

if nk > L then 2λk

√√√√ 1

nk

nk∑
i=1

(1− Pi)2λk < 2λk

√
nk − λk

nk

(B.3)
Using the definition of the power mean function:

if nk > L then M2λk
(1− P ) < 2λk

√
nk − λk

nk
(B.4)

C Proof of Corollary 1

Proof. From the definition of δk in Equation 5, it can
be inferred that the second partial derivative of δk
with respect to λk is non-negative for all λk ≥ 0.

∀λk ≥ 0 :
∂2δk
∂λ2

k

≥ 0 (C.1)

Also, the value of δk is zero for λk = 0 since when there
exists no newly generated block, then the number of
tips must not change.

for λk = 0 : nk = 0 (C.2)

if δk is less than zero for the block generation rate
λk, then it is also less than zero for any rate less than
λk.

D Proof of Theorem 4

Proof. As a result of Corollary 1, if a tip selection
algorithm is stable for λk → ∞, then it is stable for
all values of λk.

One of the properties of the power mean function is
that when the exponent approaches infinity (2λk →
∞), its output approaches the maximum value of the
input vector.

lim
λk→∞

M2λk
(1−P ) = max(1−P ) = 1−Pmin (D.1)

Therefore, from Theorem 3, we can infer that if the
following inequality holds for λk → ∞, then for all
values of λk > 0

1− Pmin < 2λk

√
nk − λk

nk
(D.2)
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Since all values are positive, we may raise both sides
to the power of 2λk.

(1− Pmin)
2λk <

nk − λk

nk
(D.3)

We know that nk is at least as large as λk, thus Pmin

which is smaller than 1
nk

approaches zero. Therefore,
we can safely use this exponential approximation:

e−2λkPmin <
nk − λk

nk
(D.4)

With a change of variables ak = λk

nk
. We also assume

that Pmin is equal to 1
nk

multiplied by a constant

coefficient θ. (Pmin = θ
nk

)

e−2θak + ak − 1 < 0 (D.5)

This inequality can be solved with a close form formula
using Lambert W Function.

2θ > 1 (D.6)

0 < ak <
1

2θ
W (− 2θ

e2θ
) + 1 (D.7)

Here, W is the Lambert W Function. From Equa-
tion D.6 it can be inferred that:

θ >
1

2
(D.8)

Pmin >
1

2nk
(D.9)

From Equation D.7, we can calculate the lowest L that
all values of nk larger than L result in a negative value
of E[δk|nk]. This is the limit L explained in Theorem 2.

L =
2θ

W
(
− 2θ

e2θ

)
+ 2

λk (D.10)
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