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A B S T R A C T

Targeted attacks like Advanced Persistent Threats (APTs) have become a

primary concern of many enterprise networks. As a common approach to counter

these attacks, security staff deploys various security and non-security sensors

at different lines of defense (Network, Host, and Application) to track the

attacker’s behaviors during their kill chain. However, one of the drawbacks of

this approach is the massive amount of events raised by heterogeneous security

and non-security sensors. The bulk logged events makes it challenging to analyze

them for later processing, i.e., event correlation for timely detection of APT

attacks. Some research papers have been published on event aggregation to

reduce the volume of logged low-level events. However, most research works have

provided a method to aggregate the events of a single-type and homogeneous

event source, i.e., NIDS. In addition, their main focus is only on the degree to

which the event volume is reduced. At the same time, the amount of security

information lost during the event aggregation process is also significant. In this

paper, we propose a three-phase event aggregation method to reduce the volume

of logged heterogeneous events during APT attacks, considering the lowest rate

of loss of security information. To this aim, the sensors’ low-level events are first

clustered into similar event groups. Then, after filtering noisy event clusters, the

remaining clusters are summarized based on an Attribute-Oriented Induction

(AOI) method in a controllable manner to reduce the unimportant or duplicated

events. The method has been evaluated on the three publicly available datasets:

SotM34, Bryant, and LANL. The experimental results show that the method is

efficient enough in event aggregation and can reduce event volume up to 99.7%

with an acceptable information loss ratio (ILR) level.
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1 Introduction

Today, the variety of services organizations can pro-
vide in computer systems, and networks have be-

come necessary and inevitable. Providing many and
varied services will make the networks bigger and more
sophisticated the technologies used, i.e., cloud com-
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puting, the internet of things (IoT), and blockchain.
One of the main concerns of network growth is the
occurrence of complex security-related incidents due
to increasing network size, poor network management,
and less hardening of networks against cybersecurity
attacks [1, 2]. One of the main challenges in large net-
works is combating a modern type of attack, which is
getting more and more complex and targeted, i.e., ad-
vanced persistent threats (APTs) [3, 4]. In this type of
attack, the attacker, based on a variety of attack tools
and techniques, goes through a next-generation threat
life cycle to achieve its target, which is called intru-
sion kill chain (IKC) or cyber kill chain (CKC)[3, 5–8].
In other words, based on a specified IKC model, the
attackers use sequencing of attack stages involving
various attack steps to infiltrate the target network
and obtain their final goals by moving laterally across
multiple network hosts for exfiltration of sensitive
data or sabotage.

Generally, in an IKC model, the malicious intrud-
ers use combined attacks that exploit different vul-
nerabilities of the targeted network during the attack
scenario. In other words, one of the main character-
istics of an IKC-based attack is multi-level intrusion
which refers to the combined nature of these types of
attacks that uses all the Network, Host, and Appli-
cation levels security breaches to perform the attack
[7, 9, 10]. Hence, finding the root cause of security
incidents will be challenging for network security ad-
ministrators. Although the attackers use advanced
attack vectors at the side of the attack surface, some
promising approaches are proposed by the security
research communities to combat and minimize the
attacker’s behaviors.

Due to both the communal nature of the complex
attacks and the lack of any well-known attack signa-
tures for the modern IKC-based cybersecurity attacks,
traditional network-level security solutions like Fire-
walls and Intrusion detection systems (IDSs) are not
enough to prevent APT attack strategies and block
them, solely [7, 9–11]. One of the main promising ap-
proaches for tracking the attacker’s behaviors and
detecting the IKC is the use of multiple and various
heterogeneous security and non-security sensors in
different lines of defense of a monitored network (Net-
work, Host, and Application) to enhance the security
level and mitigate the potential risks caused by secu-
rity breaches [3, 9–11]. Security sensors generate se-
curity events with high risk, and non-security sensors
generate ordinary events of the system with low risk.

In an organization with heterogeneous sensors or
even total facilities like a security operation center
(SOC) and security information and event manage-
ment (SIEM), each sensor in a defense line tends to

operate differently on each class of attack regarding in-
trusion activities of a unique stage of IKC [10]. There-
fore, they record different intrusion reports and log
messages in various formats. Although heterogeneous
sensors play a vital role in enhancing the security of
computer networks, their use of them in organizations
will bring some main challenges which have been re-
ported in the previous works [11–13]. One of the main
drawbacks of using heterogeneous sensors is the mas-
sive amount of security and non-security events/alerts
raised by heterogeneous sensors, which most of them,
about 99%, are duplicated and have the exact root
cause or irrelevant and false-positive [12, 13]. So, this
makes it challenging to analyze logged events for later
processing, i.e., correlation analysis for complex at-
tack scenario detection like APT attacks, which is
performed using an alert/event correlation system of
total security solutions like SIEM.

Till now, various frameworks for the alert/event cor-
relation system have been proposed by researchers [12],
and [14] which include various functional components.
Figure 1 depicts the architecture of the proposed
alert/event correlation process model by Salah et al.
[12], which consists of four modules and eight compo-
nents. According to this figure, the components of the
alert preprocessing module have the task of normaliz-
ing events to convert the raw events logged by sensors
from different vendors into a unified format and to-
kenizing event features for further processing. The
components of the alert reduction module are respon-
sible for validating events to filter false-positive ones
by incorporating some contextual information about
the target network. The components of the alert cor-
relation module try to merge multiple alerts/events
which share the exact root cause for event reduction
purposes and then correlate the aggregated events for
constructing multi-stage attack scenarios. The output
of this module may be referred to the previous module
for further investigation. Finally, the components of
the alert prioritization module intend to analyze the
risk score of constructed attack scenarios for reporting
them to the security staff based on their severity.

Generally, in an event correlation system, the event
flooding problem and false-positive events detection
is solved by an event aggregation/fusion component
[12, 14, 15]. This component is desirable by fusing sim-
ilar events to an aggregated event (meta-event) and
also eliminating the redundant events [12, 13]. The
main idea of the event aggregation component is to
reduce the volume of logged events by various sensors
during IKC of APT attacks to better manage them
for later usage, like event correlation analysis that
aims to correlate event logs for identifying multi-stage
attack scenarios. To the best of our knowledge, there
is no suitable IKC-based aggregation method in the

ISeCure



180 Towards EA for reducing the volume of LEs during IKC stages of APT attacks — Ahmadian Ramaki et al.

 

Figure 1. An architecture of the proposed alert/event correlation process model by Salah et al. [12]

presence of heterogeneous sensors in the literature;
meanwhile, heterogeneous event aggregation is nec-
essary for timely detection and response to the APT
attack. Also, most methods in the literature rely only
on aggregating the events of an individual detection
level, i.e., the NIDS sensor from the network level. In
addition, most try to provide the maximum amount
of reduction in the volume of logged events, while they
do not care about the lack of security information in
the event logs.

In this paper, to overcome the current limitations
of the existing event aggregation methods, a heteroge-
neous event aggregation method is proposed to reduce
the volume of logged events during the IKC stages of
APT attacks. To this primary goal, after collecting
logged events by the various heterogeneous security
and non-security sensors, they are first normalized
into a standard log format to perform other opera-
tions related to event aggregation. Then, in the first
phase, according to a defined time window for receiv-
ing events by the aggregation component, they are
classified regarding the type of sensor. Afterward, the
related events to each sensor are clustered based on
attribute-based similarity matching. Next, in the sec-
ond phase, the generated event clusters are analyzed
using a clustering-based local outlier factor method
to remove and discard noisy events and false-positive.
Finally, in the third phase, the events in event clusters
are summarized based on an attribute-oriented induc-
tion method to summarize events flexibly and form
final aggregated events. Based on the experiments on
some publicly available datasets, SotM34, Bryant, and
LANL, the proposed method can reduce the volume
of logged events by the heterogeneous sensors to a
maximum level with an acceptable level of security
information loss. The main contributions of this paper
are as follows:

• First, we provide a mapping between different
IKC stages of the APT attacks and heteroge-
neous sensors of the three detection levels (Net-
work, Host, and Application) with their related
event features.

• Second, we propose a three-phase aggregation
method using clustering-based and attribute-
oriented induction methods for aggregating and
summarizing heterogeneous events.

• Third, we conduct an extensive performance
study based on the three publicly available
datasets to show the effectiveness of our ap-
proach and compare the method with existing
approaches regarding the main standard evalua-
tion metrics.

The rest of this paper is organized as follows. In
Section 2, state-of-the-art is reviewed to present some
related works to the alert/event aggregation meth-
ods. In Section 3, the relevant literature is reviewed to
give background information about the IKC models
of APT attacks and the most critical assumptions and
necessities to provide an event aggregation method
in the context of APT attacks. Section 4 presents the
proposed event aggregation method with the related
algorithms. Also, a concise and valuable running ex-
ample is provided to demonstrate the functions of the
proposed method components throughout the section.
In Section 5, we conduct several experiments based
on our proposed method using different well-known
and standard datasets in the intrusion detection field
to evaluate the correctness and performance of our ap-
proach by comparing it with the other related works.
In addition, in this section, several discussions are pre-
sented to analyze the effectiveness of the parameters
of the proposed method on each other, along with the
benefits and advantages of the methods for researchers
and practitioners. Finally, Section 6 concludes the
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paper and presents future work.

2 Literature Review

In the literature, many research works have been
found with different event aggregation approaches
for reducing the volume of logged events/alerts of
various sensors to improve their quality. Table 1 pro-
vides a comparative analysis of the existing research
on events/alerts aggregation methods. This section
briefly describes the leading existing research works
in this area.

Bryant and Saiedian in [7] proposed a framework
to model the APT attack life cycle for forensics in-
vestigation in the form of a newly introduced 7-phase
IKC model explained in the previous subsection. This
model focuses on phases that leave trails inside the vic-
tim’s network and can be observed within sensor data
at different detection levels. Their proposed system
reconstructs APT attack scenarios by aggregating and
correlating logged low-level events with heterogeneous
event log sources. During the IKC detection process,
their proposed correlation component aggregates low-
level events of each security sensor in a detection level
regarding a perfect similarity matching process based
on one or more event features. To this aim, source
and destination IP addresses are used for aggregation
analysis of network-level sensors like NIDS, Firewalls,
and Edge Router. Also, the Host/Computer Name
and User/Account Name are used to aggregate host-
level sensors like Host OS, HIDS, and Antivirus. In
addition, for aggregating Application-level services
like DNS, Email, and Web Servers, the IP address is
used for similarity analysis.

Ramaki et al. in [16] and [29], and also Soleimani
and Ghorbani in [22] have proposed two alert corre-
lation frameworks that are similar to each other to
detect multi-step attacks based on multi-layer episode
mining algorithms. The input of the two developed
systems is IDS alerts produced by the Snort IDS. Dur-
ing the correlation process by the proposed framework,
one of the main components is the aggregation compo-
nent for constructing hyper-alerts by fusing low-level
alerts and removing duplicated and unrelated alerts.
The proposed aggregation component in these frame-
works combines all individual alerts with the same
attack types. It creates a synthetic hyper-alert for
each attack type based on an aggregation time inter-
val as the time windows. The resulting hyper-alert is
an inclusive alert, which includes all similar alerts in
a specified time window. By applying attribute-based
similarity analysis, they have obtained an acceptable
level of event aggregation ratio (EAR), about 99.94%,
for the Snort alerts of multi-step attack scenarios in
the DARPA dataset. However, their approach is lim-
ited to the NIDS sensor and does not apply to a net-

work environment with multi-sensor, disparate and
heterogeneous sensors.

Another research work is done by Husak et al. [17].
The authors of this paper proposed an alert aggre-
gation framework for NIDS alerts. They presented
four use cases for the aggregation of alerts from NIDS
sensors: duplicated alerts, continuing alerts, aggregat-
ing alerts from overlapping sensors (overlap in their
detection scope), and aggregating alerts from non-
overlapping sensors. They used an attribute-based
similarity analysis for the alert aggregation process
based on the main IDS alert features: source IP and
port number, destination IP and port, event type, sen-
sor ID, and timestamp. By doing some helpful case
studies on a private network, they found that the sys-
tem can aggregate volumes of low-level alerts up to
85% in the EAR rate. Like this work, Nadeem et al.
[27] proposed an attack graph generation process with
an alert aggregation component. This component is
responsible for aggregating the IDS alerts, resulting
in which hyper-alerts or attack episodes are generated.
By using attribute-based similarity analysis on the
alerts, their method yields a reduction ratio of 99.98%
of the original alert set.

Spathoulas and Katsikas [18] proposed an alert post-
processing framework to improve the quality of gener-
ated alerts by the NIDS sensor using alert aggregation.
The input of their developed system is alert sets of
multiple NIDS sensors. Their proposed system oper-
ates in three main phases, 1) the preparation phase
for merging the different received alert sets by various
NIDS sensors into one alert set, including aggregated
alerts with minimum information redundancy, 2) the
clustering phase for creating clusters of similar events
by using a set of defined similarity functions for each
of event features, and 3) visualizing phase for graphi-
cally representing generated clusters to depict overall
security status of the monitored network. The alert
aggregation based on each attack ID in the first phase
for creating aggregated alert sets and then cluster-
ing analysis on the output alert sets based on some
similarity functions provides insights into the main
explicit and implicit events that may be happening
on the monitored network.

Fredj in [28] has proposed a global alert correla-
tion system that receives heterogeneous security alerts
from network-level sensors, i.e., NIDS and Firewall,
unifies them by a customized event normalization for-
mat, discards false and unrelated alerts, aggregates
remaining important once, correlates normalized gen-
erated alerts for attack scenario reconstruction. To
minimize the number of generated alerts by the secu-
rity sensors and also decrease the overall overhead of
the alert correlation process, the use of an IP-based

ISeCure



182 Towards EA for reducing the volume of LEs during IKC stages of APT attacks — Ahmadian Ramaki et al.

Table 1. Overview of the related works to the event aggregation

Class

Metric Sensor Name(s) Aggregation Field(s) Aggregation Method
Evaluated Performance

Metric(s)
Ref.

NIDS
Source IP Address, Source Port Number, Destination IP

Address, Destination Port Number, Timestamp, Event Type,

Attack Severity

Attribute-based Similarity

Analysis
EAR [16]

NIDS
Sensor ID, Source IP Address, Source Port Number, Destination

IP Address, Destination Port Number, Timestamp, Event Type

Attribute-based Similarity

Analysis
EAR [17]

NIDS
Source IP Address, Destination IP Address, Attack ID, Attack

Classification
Clustering Analysis EPR [18]

NIDS

Source IP Address, Source Port Number, Destination IP

Address, Destination Port Number, Timestamp, Attack ID,

Event Name, Attack Classification, Priority, Protocol

Clustering Analysis, Text
Similarity Check

EAR [19]

NIDS

Source IP Address, Source Port Number, Destination IP

Address, Destination Port Number, Timestamp, Attack

Classification, Vulnerability ID (CVE)

Temporal Relationship
Analysis

EAR [20]

NIDS

Source IP Address, Source Port Number, Destination IP Address,

Destination Port Number, Timestamp, Attack Classification,
Priority, Protocol Type, TTL, TOS, Packet Length

Attribute-based Similarity

Analysis
EAR [21]

S
in

g
le
-t
y
p
e
S
o
u
r
c
e
s

NIDS
Source IP Address, Source Port Number, Destination IP

Address, Destination Port Number, Timestamp, Event Type,

Attack Severity

Attribute-based Similarity

Analysis
EAR [22]

NIDS

Source IP Address and/or Destination IP Address, Source Port

and/or Destination Port, Timestamp, Attack Severity,

Autonomous System Number (ASN), Protocol Name

Clustering Analysis EAR [23]

NIDS
Source IP Address, Source Port Number, Destination IP Address,

Destination Port Number, Timestamp, Attack Classification
Rough Set Theory EAR [24]

NIDS
Source IP Address, Destination IP Address, Timestamp, Attack

Classification, Vulnerability ID (CVE)
Clustering Analysis EAR, EPR [25]

NIDS
Source IP Address, Destination IP Address, Timestamp, Attack

Classification

Ontology-based Similarity

Analysis
EAR, ILR [26]

NIDS
Source IP Address, Destination IP Address, Destination Port,

Timestamp, Attack Classification

Attribute-based Similarity

Analysis
EAR [27]

Firewall, NIDS,

Antivirus, HIPS,
Domain Controller,

Host OS, Edge

Router, NetFlow

Source IP Address, Destination IP Address, Computer Name,

Account Name, Login Name

Attribute-based Similarity

Analysis
– [7]

Firewall, NIDS
Source IP Address and/or Destination IP Address, Source Port

and/or Destination Port, Attack Classification, Attack Severity

Attribute-based Similarity

Analysis
EAR [28]

M
u
lt
i-
ty

p
e
S
o
u
r
c
e
s

Firewall, NIDS

Source IP Address, Source Port Number, Destination IP

Address, Destination Port Number, Timestamp, Event Type,
Attack Severity

Attribute-based Similarity

Analysis
EAR [29]

alert aggregation component that works based on a
set of aggregation rules, i.e., similar source IP, similar
destination IP, and similar C class network address
to create alert clusters. However, it claims that the
aggregation component can deal with heterogeneous
log sources but is limited only to the network-level
sensors.

Sun and Chen in [19] have developed an IDS alerts
aggregation system based on the frequent pattern
growth-based approach. Their proposed system con-
sists of three main components: removal of noisy data,
mining association rules, and text similarity check.
They used the density-based spatial clustering of ap-
plications with noise (DBSCAN) algorithm for remov-
ing noise alerts. After filtering the noise data, they
applied the FP-Growth algorithm to mine association
rules based on a predefined time interval. By using
these rules, the alerts are grouped into one meta-alert.
Then, a text-similarity analysis of the resulting meta-
alerts outputs the final aggregated alert set.

Alserhani in [20] has provided an alert correlation

framework for detecting multi-step attack scenarios
called MARS. In the MARS engine, one of the main
components is event aggregation. This component is
responsible for fusing a series of NIDS alerts related
to a single step of a multi-stage attack based on a tem-
poral relationship. To this aim, they used a predefined
window time for determining whether two generated
alerts by the sensors are close enough to be aggregated
into a single alert. In the MARS framework, low-level
alerts are modeled into a directed acyclic graph (alerts
as vertices and casual relationships between alerts as
edges). Further aggregation based on a graph reduc-
tion technique removes duplication in graph vertices.
Their experimental results on the DARPA dataset
show that their method can reduce Snort alerts by
a maximum EAR rate of about %98.6 under certain
conditions.

Shittu et al. in [21] have proposed a comprehensive
system for analyzing intrusion alerts, called ACSA-
nIA, which operates some post-correlation analysis on
generated alerts set by a set of NIDS sensors. These
analyses include clustering and prioritizing alerts. One
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of the key benefits of the ACSAnIA framework is that
it aggregates low-level alerts using similarity analysis
to construct meta-alerts. They are a group of alerts
with identical values for the specified event features,
i.e., intrusion type, signature ID, source and destina-
tion IP addresses, and source and destination port
numbers. In this paper, for evaluation purposes, a
cluster quality metric, called silhouette coefficient, is
used for identifying well-clustered alerts where there
is a high intra-similarity between the alerts of each
cluster but a low inter-similarity between the various
alert clusters.

Carlisto et al. in [23] proposed multi-step attack
extraction models using process mining-based ap-
proaches. Based on their proposed method, the two
main concepts in process mining are mapped to the
area of intrusion alert analysis, activity, and case (pro-
cess instance). To this aim, each of the logged event
by the various NIDS sensors corresponds to an activ-
ity, and a case is multiple events that are grouped
and share the same information. In their proposed
approach, the aggregation component generates possi-
ble cases regarding typical features of the alerts. Each
case is related to a single step of a complex attack.
This work has two main aggregation strategies: one-
to-many (alerts with one single source IP address as
attackers and many destination IP addresses as tar-
gets) and many-to-one (alerts with many source IP
addresses as attackers and one single destination IP
address as targets).

Zhang et al. in [24] proposed an alert aggregation
framework for network-level sensors (NIDS and Fire-
wall) based on the Rough Set Theory. The proposed
framework consists of the four main steps as follows:
1) Alert normalization for converting logged event for-
mats to the standard IDMEF format to have a unified
set of events, 2) Feature weight assignment for com-
puting the importance of each event feature according
to information provided by it, 3) Similarity analysis
for computing similarity between two received alerts
based on a predefined threshold, and 4) comparing
time interval of alerts where if two detected similar
alerts (similarity ≥ threshold) by the previous com-
ponent occurred at a very close time interval, they
are aggregated. Their experimental results show that
their method can reduce low-level alerts by a maxi-
mum EAR rate of about %98.

Kim et al. in [25] proposed a scalable security event
aggregation system over MapReduce called SEAM-
MR. Their proposed system uses big data technologies
to deal with large-scale security data generated during
modern attacks, i.e., APTs. The SEAM-MR contains
three core functions, namely, 1) periodic aggregation
for collecting and aggregating events within the last

time window, 2) on-demand aggregation for accessing
users to the system for the aggregation analysis, and
3) query support for practical analysis to retrieve ag-
gregated events for situation analysis. They presented
seven usecases of aggregation of events from NIDS
sensors regarding their typical features, i.e., attack
source, attack target, attack source group, attack tar-
get group, and attack class. The aggregation engine
provides a set of MR functions for the seven situations.
They evaluated their method on a Hadoop cluster
using a variety of synthetic datasets with different
properties. They reported that the SEAM-MR system
decreases the volume of some datasets up to 85%.

Saad and Traore in [26] have developed an IDS alert
aggregation component to tackle the alert flooding
problem. To this aim, they proposed a new alert ag-
gregation and reduction technique based on semantic
similarity between IDS alerts. The key idea in the pro-
posed technique is that alerts that correspond to the
same attack instance are semantically similar, even
though they have different formats. Regarding the
developed approach, semantic similarity measures for
every two different alerts based on the attributes of an
IDS alert by proposing an ontology for the intrusion
detection domain. The key benefit of this approach
is information preservation during alert aggregation
purposes. Also, the authors proposed a new metric,
information loss ratio (ILR), and showed that their
system has a lower ILR metric level than traditional
aggregation techniques. Although ILR is a good met-
ric for aggregation components, their ontology is lim-
ited to IDS alerts. In this paper, we intend to expand
the ontology for all event types of different sensors in
all three mentioned detection levels.

3 Preliminary Research Questions and
Findings

According to the primary goal of this paper mentioned
in Section 1, after reviewing the event aggregation
methods presented in Section 2, it is required to re-
view state of art for answering the five main research
questions (RQs) to obtain this goal and guide us to
propose a novel event aggregation method. These RQs
are depicted in Table 2 along with their rationality
to justify their relation to the primary goal of this
study. In the rest of this section, firstly, the literature
is reviewed in Section 3.1 to Section 3.5, and finally,
the results are discussed in Section 3.6.

3.1 Typical Stages of IKC Models Used in
APT Attacks. (Regarding the RQ1)

To the best of our knowledge, based on a systematic
literature review (SLR) method in the area of APT
attacks, there are 18 different IKC models proposed
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Table 2. The main research questions (RQs) for the literature review

RQ# RQ Title Rational

1 What are the common stages of IKC models used in
APT attacks?

By answering this RQ, we understand the existing IKC models in state of the art and
the common stages of them used in APT attacks along-with the malicious activities

of the attackers during the stages. In addition, we choose a proper IKC model to

present our proposed event aggregation method based on it.

2 How is the layered security model used to log malicious
activities of attackers behind APT attacks?

By answering this RQ, we find out how the security staff tracks the signs of malicious
activities of the attackers during different stages of the IKC model. Also, we present a

mapping between chosen IKC stages and detection levels of the layered security model.

3 What are the most suitable sensors used to log events
during IKC stages?

By answering this RQ, we identify the most suitable security and non-security sensors
available at different detection levels as the main low-level event generators. In

addition, we recognize the main event features of each sensor for later usage in our
proposed event aggregation method.

4 What is a proper tool stack for event collection and

processing in the presence of heterogeneous sensors

and how does it work?

By answering this RQ, we understand the capabilities of a good event log collection

tool that can gather, analyze, and store generated raw event logs by various sensors

at different detection levels.

5 What is a suitable intrusion alert/event normalization

format for tokenizing information fields within the

events logged by heterogeneous sensors?

By answering this RQ, we find out how logged events by various sensors and different

vendors can convert to a unified data format to be understood by the components of

the proposed event aggregation method.

in this field both in academic research works includ-
ing [7, 9, 30–35], and reports of industrial companies
containing [36–43]. Each of all the existing IKC mod-
els has a specified number of stages (phases) used to
perform the targeted attacks using a set of intrusion
activities [5]. Based on the analysis done in [7], most
of the introduced models have a typical set of attack
stages used in APT attacks, which has led to the intro-
duction of the Bryant kill chain model. The developed
IKC model by Bryant and Saiedian has been made
using some modifications to previous models, [7] and
[30], which makes it a suitable choice for data-driven
analysis, i.e., event aggregation in the security solu-
tions like SIEM, SOC, and threat hunting. One of the
most important considerations that make this model
suitable for event logs-based processes in applications
like APT attack detection, threat intelligence, and
cyber situational awareness is the elimination of the
weaponization stage available in former IKC models
due to the failure to track the attacker’s activities on
the victim network. Themainmacro-phases and stages
of the Bryant IKC model are depicted in Figure 2.

As shown in Figure 2, the Bryant IKC consists of
seven stages which are described as follows (abbrevia-
tions are used throughout the following sections):

• Reconnaissance (REC): In this stage, the at-
tackers gather information about the target. The
main objective of this stage is to gain knowledge
about the victim and find practical methods and
technologies to intrude into the network.

• Delivery (DEL): In this stage, the attackers
try to deliver a prepared attack payload to the
network by using the established connections
between attacker-side nodes to a victim or a
collection of victims on the target side.

• Installation (INS): In this stage, the attack-

ers’ primary objective is to install attack pay-
load/malware on the infected systems. This
stage is necessary for persistent access to further
intrusion activities.

• Privilege Escalation (ESC): In this stage,
attackers aim to escalate their privileges on the
victims, which helps them move the target to
find valuable information.

• Lateral Movement (LAT): The main objec-
tive of this stage, sometimes called internal re-
connaissance, is to differentiate between the re-
connaissance activity from the external and in-
ternal networks. This stage is optional based on
the attack goals for moving laterally within the
compromised network.

• Actions on Objects (ACT): By using this
stage, the adversaries achieve the attack goals by
performing several destructive activities inside
the target network, which can take months.

• Exfiltration (EXF): In this stage, after the
successful execution of attack stages on the fi-
nal objects, the attackers attempt to exfiltrate
sensitive data from the target network by us-
ing suitable communication and control (C&C)
servers. In addition, to complete the mission,
he/she tries to delete intrusion evidence from
compromised machines.

Regarding Figure 2, it should be noted that some at-
tack stages of the Bryant IKC model are optional and
may not be performed by the attackers, or someone
may be repeated several times under different condi-
tions by them. In addition, sometimes, the stages of
the IKC may not be by the order shown in the figure
exactly because the attacker may not be successful at
one stage and may have to repeat the previous stages
of the IKC model. Generally, each stage of the IKC
model has some everyday intrusion activities as at-
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it often occurs outside the victim’s network and is not likely
to be observed within sensor data. The delivery phase was
shifted to occur immediately following reconnaissance and the
installation phase was shifted to occur after the delivery phase.
The exploitation phase was replaced by the delivery, installa-
tion and privilege escalation phases respectively, as components
of exploits, e.g. exploit delivery detected by an IDS, exploit in-
stallation detected by a malware detection engine, or privilege
process execution resulting from malicious code injection, are
often observed in these phases with no other unique identi-
fiers warranting a dedicated exploitation phase. The command
and control phase was omitted as the phases of delivery, in-
stallation, lateral movement or exfiltration exhibited evidence
of command and control based on the tools/techniques used.
The privilege escalation phase from the Mandiant model was
added in order to segregate privileged account data from routine
user data and facilitate identification of improper or anoma-
lous use of elevated credentials. The lateral movement phase
from the Mandiant model was introduced to differentiate
between reconnaissance activity originating from an exter-
nal network and reconnaissance activity from an internal
network. Finally, the exfiltration phase was added in order to
provide specific emphasis on anomalous data transfers origi-
nating from the internal network to an external network.

The new kill-chain phases were also designed to align with
natural identifiers leveraged by analysts when performing in-
vestigations within each phase. Reconnaissance activity was
often investigated based on the originating IP address, with data
generally reflecting a one to many relationships between the
source IP address and multiple destination IP addresses being

reconnoitered. Data within the delivery phase often exhib-
ited a single source IP address targeting a single destination
IP address and enumerating through a large number of po-
tential exploits. Installation activity was often investigated based
on the computer name of an infected machine, as IP address
data were often omitted from systems used to detect malware
or software modifications. Data within the privilege escala-
tion phase were investigated based on user credentials and
often exhibited a newly created administrator attempting to
perform multiple command line actions. Lateral movement was
also investigated based on the user credentials used and often
exhibited a single user attempting to access multiple differ-
ent machines. Actions on the objective were most commonly
investigated by the computer name of the system suspected
of compromise in order to determine the nature of changes
to the system. Finally, the egress phase was investigated by
analysis of unusual foreign destination IP addresses.The ability
to apply a natural identifier to each phase during investiga-
tions was assessed to be an advantage over existing kill-
chain models which occasionally resulted in inconsistent
investigation methodologies.

Forensic data were analyzed from a pool of historical data
breaches and sanctioned penetration tests conducted by third
parties in order to identify specific indicators of activity within
each phase of the new model. Analysis indicated distinct traits
identifiable in data extracted from four distinct macro phases:
network, endpoint, domain, and egress. Data extracted from
each of these phases could be further deconstructed into sub-
phases based on attacker actions or anomalous behaviors
observed in data. Fig. 1(c) below depicts the new model which

(a) Lockheed Martin Kill-Chain[13]

(b) Mandiant Attack Lifecycle[14]

(c) Bryant Kill-Chain

Fig. 1 – Three kill-chain models: (a) Lockheed Martin Kill-Chain, (b) Mandiant Attack Lifecycle, and (c) Bryant Kill-Chain.

200 c om pu t e r s & s e cu r i t y 6 7 ( 2 0 1 7 ) 1 9 8 – 2 1 0

Figure 2. Bryant kill chain model macro-phases and attack stages [7]

tack steps used by the attackers for attack progression
during the IKC. Table 3 presents a mapping between
the Bryant IKC stages and the commonly used intru-
sion activities by the adversaries behind APT attacks.
Based on the results of this table, the malicious activ-
ities used by the attackers range from passive attacks,
i.e., various types of network scanning and social en-
gineering attacks, to active ones, i.e., vulnerability
exploitation, malicious code execution, software mod-
ification, and eventually system destruction or data
theft.

3.2 The Role of the Layered Security Model
in Network Security (Regarding the RQ2)

In the network security area, the layered security
model is defined as the concept of securing a computer
network through a sequence of defensive mechanisms
so that if one fails, another is already in place to pre-
vent an attack [6, 7, 44]. The basic assumption of
this model is that no single solution can successfully
safeguard the network from attacks due to the great
variety of attacks. According to Figure 2, when the
attacker initiates an APT attack by using different in-
trusion activities at the network level, he/she accesses
his/her goal in the compromised machines of the in-
ternal domain, followed by some intrusion activities
in the host and application levels [7, 9, 10]. Hence,
regarding Figure 3, three primary detection levels are
used for deploying various security and non-security
sensors to log events during the intrusion activities
of each IKC stage. In other words, an APT attack
scenario based on the IKC model consists of a suc-
cession of events logged by security and non-security
sensors. These logged events by heterogeneous sensors
with different functionalities can be categorized into
three main categories, 1) benign or normal events (un-
colored points), 2) suspicious events (colored points),
and 3) attack-related events (colored and patterned
points). According to Figure 3, 1) a significant part of
the logged events during attack scenarios are benign,
2) the variety of logged suspicious events depends on
the number of deployed sensors in the monitored net-
work, 3) suspicious events are related to failed attack
attempts, and 4) the attack-related events may con-
struct different attack scenarios. A mapping between
the IKC stages and the three primary detection levels
is depicted in Figure 4. The colors in this figure, from

green to red, indicate the risk level of the attacker’s
activities advancing the IKC model from low to high.

In this paper, the selected Bryant IKC model is used
for two primary purposes, 1) designing a mapping
between IKC stages and their related sensors and 2)
presenting the behavior of APT attackers based on
the IKC stages during a sample attack scenario. The
first is explained in Section 4.1, and the second is
provided in the following. To this aim, Figure 5 shows
an example IKC-based attack scenario and its stages
as a sequence diagram to model the attack life cycle.
As illustrated in the figure, during the attack scenario,
the attacker aims to intrude into the internal network
to steal a credential file of the organization. The main
steps of the APT attack scenario with the related
IKC stages are provided in the following. It should
be noted that this example is used in the following
sections to understand how the proposed aggregation
method works.

(1) Active Scanning (REC): The attacker ini-
tiates (with IP address 172.25.110.11) the at-
tack by scanning the target network (IP address
range 192.168.1.1/24) to find some organiza-
tion’s hosts, which are up for delivering various
services.

(2) Application Vulnerability Scanning
(REC): After scanning activities and identi-
fying open ports on a specified host (with IP
address 192.168.1.12), the attacker attempts
to gather information about the system by
enumeration. In this step, the attacker finds a
vulnerable Adobe Reader application on the
enumerated host.

(3) File Attachment (DEL): According to the
founded vulnerability, the attacker develops mal-
ware, attaches it to a PDF file, and sends the
malicious PDF to the target host via an email.

(4) Drive by Download (INS): After opening
Gmail in the browser by the user on behalf of the
targeted host, he/she is tempted to download
the attached malicious PDF with an embedded
malicious payload.

(5) Malicious Code Execution (INS): After
downloading, the user starts the trojan PDF file
installation process which causes the embedded
malicious payload to open a reverse connection
to a remote C&C server.
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Table 3. Common intrusion activities during each stage of the Bryant IKC model

No. Bryant IKC Stage Intrusion Activities

1 Reconnaissance Network Probing, Active Scanning, Social Engineering, Network Topology Obtaining, Web Application

Vulnerability Scanning, Database Vulnerability Scanning, Zero-day Vulnerability Scanning, Spear Phishing,

Email Spam, Phishing Websites, Acquiring Removal Devices

2 Delivery Abusing Benign Applications’ Vulnerabilities, File Attachment, Spear Phishing Link, Compromised Legitimate

Websites, Rogue DNS, Rogue Software, SQL Injection

3 Installation Drive-by Download, Vulnerability Exploitation, Malicious Code Execution, Software Modification, RAT and
Installing Backdoor and Rootkit, Modifying Registry Key, DLL Hijacking, DLL Side Loading, Scheduled Task

4 Privilege Escalation Create or Modify Valid Accounts, Create or Modify System Process, Domain Policy Modification, Vulnerability

Exploitation, Process Injection, Defense Evasion, Credential Access

5 Lateral Movement Internal Reconnaissance, Internal Spear Phishing, Session Hijacking, Lateral Tools Transfer, Remote Service
Exploitation

6 Actions on Objects Command Execution, Reverse Connection, Sensitive Data Collection/ Manipulation/Deletion, Email Collec-

tion, Data Obfuscation, Capture Keystroke, Violation Against Data, DDoS Attack, Maintaining Remote
Access, Clear Logs

7 Exfiltration Data Exfiltration/Theft, Automated Exfiltration, Scheduled Transfer

Network Host Application

Attack Scenario 1

Attack Scenario 2

Attacker’s Goals

Attack-related EventsSuspicious Events Complex Attack PathBenign Events

Figure 3. Logging events by heterogeneous sensors at different detection levels, Network, Host, and Application

Reconnaissance

Delivery

Installation

Privilege Escalation

Lateral Movement

Actions on Objects

Exfiltration

Time

Network (N)

Host (H)

Application (A)

Figure 4. Bryant IKC stages mapping to the detection levels,
Network, Host, and Application

(6) Command Execution (ACT): After estab-
lishing the connection between a compromised
host and the C&C server, the C&C server sends
a command to search for a credential file con-
taining an employee’s private information.

(7) Maintaining Remote Access (ACT): The
C&C server forwards some commands to down-
load a vulnerability scanner tool from the server
through the file transfer protocol (FTP).

(8) Sensitive Data Collection (ACT): After

downloading the scanner, the compromised host
as a C&C client receives commands to run the
downloaded scanner and send the credential file
to a specified remote web server.

(9) Data Exfiltration (EXF): After executing
commands by the infected system, it sends the
credential file to the web server through hyper-
text transfer protocol (HTTP) protocol.

(10) Internal Reconnaissance (LAT): To collect
more information about the targeted network,
the attacker starts to move laterally in the in-
ternal network by using the conquered machine
as a pivot for the later intrusion activities.

3.3 Suitable Sensors for Logging Events
during IKC Stages (Regarding the RQ3)

According to the related studies [5, 7, 9, 13, 16, 45],
to track APT attacks, at first, it is required to collect
events logged by the heterogeneous sensors which are
deployed in different detection levels. Sample moni-
tored network with heterogeneous sensors from differ-
ent detection levels is shown in Figure 6. As shown in
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this figure, the collector agents transfer logged events
by the Network level sensors (i.e., IDS, Router, and
Switch), Host level sensors (i.e., HIDS, Antivirus, and
OS logs), and Application level sensors (Email, Web
and Database servers) to a security incident manage-
ment platform of the organization like a SIEM solu-
tion.

Each sensor has a specified set of attributes/features
according to the sensor functionality within a pre-
defined format. Based on our analysis, many stud-
ies have mentioned the suitable main sensors for log-
ging security and non-security events alongside their
features. However, these are not discussed in detail
[7, 8, 10, 11, 17, 18, 28, 44–48]. Table 5 presents the
most suitable heterogeneous sensors in each detection
level with their event features used as the input for
the proposed event aggregation method.

As mentioned before, during each attack stage of an
IKC model, some low-level events are logged by the
various heterogeneous sensors of the different detection
levels. For example, a list of logged low-level events
during the attack steps of the sample APT attack
scenario (Figure 5) is shown in Table 6. According to
the table, each event has a unique sensor ID (SID)
and a set of features logged by the sensor which is
provided in Table 5 for each SID. The empty cells in
the table show that the related sensor has no value for
the feature. It should be noted that for simplicity, only
some essential features of the sensors are mentioned
in the table.

3.4 The Proper Tool Stack for Event
Processing (Regarding the RQ4)

Generally, before later processing on the logged events,
i.e., event aggregation, at first, low-level events logged
by the heterogeneous sensors must be collected and
stored. So far, in the security event collection and
monitoring field, various tools have been developed
with different functionalities and capabilities [49]. One
of the most widely used of them is the Elastic or
ELK stack. This platform consists of three main parts
(nodes), Elasticsearch for event gathering and index-
ing, Logstash for event normalization and transform-
ing, and Kibana for event visualization and dashboard-
ing [50]. In the ELK architecture, some agent-based
event collectors are called Beats [51]. Beats are data
shippers (log forwarders) of the ELK stack, which
have different types for various platforms and appli-
cations, i.e., Filebeat and Winlogbeat. The main rea-
sons for choosing Beats of ELK stack to collect logged
events in our method are as follows: 1) the ability to
deploy agents in different detection levels (Network,
Host, and Application), 2) their high-speed capability
and good performance delivering in event collection

and processing, and 3) provide scalability due to the
distributed architecture of the ELK stack nodes.

3.5 The Suitable Event Normalization
Format (Regarding the RQ5)

After collecting heterogeneous events, the gathered
events may have various formats according to the vari-
ety of output log formats of a specific sensor [12, 13, 16].
Hence, before any later processing like aggregation
analysis, it is first required to convert the event for-
mat to a unified and standard log format to under-
stand more of the meaning of the events by the other
components [12, 13]. The event normalization compo-
nent is a fundamental component of the schema that
converts all received low-level events into a joint and
standard log format. Till now, security researchers in
the intrusion detection field have developed several
event normalization formats [13, 52]. To our knowl-
edge, one of the recently developed normalization for-
mats appropriate for applying in an environment with
heterogeneous sensors is object log format (OLF) [52].

In this paper, we use the Logstash module of the
ELK stack to convert received events to the OLF for-
mat. For this purpose, based on the output of each
sensor in the system, first, the set of required informa-
tion fields (features) is determined based on the OLF
format for normalization. Next, essential fields of that
sensor event are extracted and tokenized by defining a
regular expression in the form of a well-defined Regex
pattern for each type of sensor. For example, this op-
eration for the output of the Snort IDS sensor from
the network detection level is depicted in Table 4. The
used Regex pattern in this figure is the Grok pattern,
a facility of Logstash module [1]. It should be noted
that each sensor has its own Grok pattern for event
normalization purposes. After extracting the main in-
formation fields from the logged events by a unique
sensor, they can be stored in a CSV file format with
column names of OLF format related to each security
sensor for further usage.

3.6 Discussion

In this section, the most important results obtained
from the literature review are discussed. The discus-
sion is provided to understand the main challenges
and issues of the existing works and the requirements
and capabilities of a recommended event aggregation
method capable of reducing the volume of logged
events by heterogeneous sensors. The main remark-
able results are as follows:

• After studying the details of the existing IKC
models in Section 3.1, it can be found that the
Bryant kill chain presents the typical attack
stages of them used in APT attacks. Hence, this
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Figure 5. A sample APT attack scenario based on the Bryant IKC stages
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Figure 6. Sample monitored network with deployed heterogeneous sensors

IKC model is chosen for further usage related to
the aggregation analysis. In addition, a publicly
available dataset by the presenters of this model
will be a good case for the evaluation purposes
of the proposed method.

• By investigating the layered security model and
finding its relationship to the typical stages
of the IKC models used in APT attacks (Sec-
tion 3.2), it can be found that the primary de-
tection levels as layers of security for tracking

ISeCure



July 2023, Volume 15, Number 2 (pp. 178–215) 189

Table 4. Sample converted Snort IDS event type of alert to the OLF format

Raw Event Mar 31 20:20:21 bastion snort[2546]: [1:2003:8] MS-SQL Worm propagation attempt[Classification: Misc
Attack] [Priority: 2]: UDP 60.40.70.25:3354 -¿ 11.11.79.90:1434

Regex
Pattern

{%{MONTH}+%{MONTHDAY+%{TIME}:time}%{HOSTNAME:host}%{PROG:appname}
{\[%{INT:pid}\]\:\[%{INT:generator˙id}:%{INT:signature˙id}:%{INT:signature˙revision˙id}\]:
event˙id\}(?< module > \b[\w\−] + \b)%{DATA:msg}\[Classification\:%{DATA:original˙event}\]
\[Priority\:%{INT:priority}\]\{%{WORD:protocol}\}%{IP:src˙addr}:%{INT:src˙port}\−\>
%{IP:dst˙addr}:%{INT:dst˙port}}

Normalized

Event in OLF
Mar 31 20:20:21(time) bastion(producer -¿ host) snort(producer -¿ appname)[2546(producer -¿ pid)]:
[1:2003:8](event id) MS-SQL(producer -¿ module) Worm propagation attempt(msg) [Classification:

Misc Attack](original event) [Priority: 2]:(priority) UDP(network-¿udp) 60.40.70.25(network-¿src ipv4)
3354(network-¿src port) 11.11.79.90(network-¿dst ipv4) 1434(network-¿dst port)
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Figure 7. An abstract schema of a heterogeneous event aggregation framework

and mitigating the intrusion activities during
the stages of IKC model are Network, Host, and
Application. Hence, based on these detection
levels, we present a set of heterogeneous security
and non-security sensors useful for logging APT
attack symptoms during the IKC stages and
their related attack steps (Section 3.3). Besides,
for proposing our event aggregation method, a
good event feature analysis is done based on the
suitable sensors related to each detection level.

• According to the presented analysis in Table 1
(Section 2), we found that many different tech-
niques have been used in the aggregation compo-
nent of an alert/event correlation system, includ-

ing statistical, clustering, and attribute-based
similarity analysis. Generally, the main short-
coming of the existing machine learning-based
methods is their low flexibility in adapting to
the needs of users and experts for the degree
of aggregation. In addition, these methods are
impractical for conducting aggregation analysis
with massive data generated by heterogeneous
sensors due to high computational costs and
poor performance. Moreover, it could be inferred
that some research works suffer from producing
irrelevant aggregated events due to failure to re-
move false-positive events that cause incorrect
attack scenarios in the later stages of an event
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Table 5. Heterogeneous security and non-security sensors of different detection levels and their event features

Detection Level

Network Host Application

Sensor-ID (SID)
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1 Timestamp ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 Source IP Address ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – ✓ ✓ ✓ – ✓ ✓ ✓ ✓ ✓ ✓

3 Source MAC Address – – – – ✓ – – – – – – – – – ✓ – – ✓ – ✓

4 Source Port ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – ✓ ✓ ✓ – ✓ – – – – ✓

5 Destination IP Address ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – ✓ ✓ ✓ – ✓ ✓ ✓ ✓ ✓ ✓

6 Destination MAC Address – – – – ✓ – – – – – – – – – ✓ – – – – ✓

7 Destination Port ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – – ✓ ✓ ✓ – ✓ ✓ – – ✓ ✓

8 Event/Attack Type/Class/Name ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

9 Event/Attack/Signature ID ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 CVE ID ✓ – – ✓ – – ✓ ✓ – – – – – ✓ – – – – – –

11 Priority/Severity Level ✓ ✓ – ✓ – – ✓ ✓ – – – – – ✓ – – – ✓ – –

12 Process Name – – – – – – – – – – ✓ ✓ – – – – – ✓ ✓ –

13 Process ID – – – – – – – – – – ✓ ✓ – – – – – ✓ ✓ –

14 Parent Process ID – – – – – – – – – – – ✓ – – – – – – – –

15 File Name – – – – – – – ✓ ✓ ✓ ✓ – – – – – – ✓ ✓ –

16 File Path – – – – – – – ✓ ✓ ✓ ✓ – – – – – – ✓ ✓ –

17 File Hash – – – – – – – – – – – – – – – – – ✓ – –

18 Folder Name – – – – – – – – – – ✓ – – – – – – – – –

19 Folder Path – – – – – – – – – – ✓ – – – – – – – – –

20 Registry Key – – – – – – – – – – ✓ – – – – – – – – –

21 Privilege Information – – – – – – – – – – ✓ – – – – – – – – –

22 Payload ✓ – – ✓ – – – ✓ ✓ ✓ – – – – – – – – – –

23 Queried Name – – – – – – – – – – – – – – ✓ – – – – –

24 Queried Type – – – – – – – – – – – – – – ✓ – – – – –

25 Resolved IP Address – – – – – – – – – – – – – – ✓ – – – – –

26 Message Type (Request/Response) – – – – – – – – – – – – – – – ✓ ✓ – – –

27 Message Length – – – – – – – – – – – – – – – ✓ ✓ – – –

28 URL Path ✓ – – – – – – – – – – – – – – ✓ ✓ ✓ – ✓

29 Client Request Method (Get/Post) – – – – – – – – – – – – – – – – ✓ ✓ – ✓

30 Response Code – – – – – – – – – – – – – – – – ✓ – – ✓

31 Host/Computer Name – – – – – – – ✓ ✓ ✓ ✓ – ✓ – – – – ✓ ✓ –

32 User/Account Name – – – – – – – ✓ ✓ ✓ ✓ – ✓ – – – – ✓ ✓ ✓

33 User/Account Group Name – – – – – – – ✓ ✓ ✓ ✓ – – – – – – – – ✓

34 Referrer of Requested URI – – – – – – – – – – – – – – – – ✓ – – ✓

35 Resolved – – – – – – – – – – – – – – – – ✓ – – –

36 Object Name – – – – – – – – – – ✓ ✓ – – – – – – – –

37 Time to Live (TTL) ✓ ✓ – – – – – – – – – – – – – – – – – –

38 Domain Name – – – – – – – – – – – – – – ✓ ✓ ✓ ✓ ✓ ✓

39 Email Address – – – – – – – – – – – – – – – ✓ – ✓ – –

40 Session ID – ✓ ✓ – ✓ ✓ – – – – – – – – – – – – ✓ –

41 Protocol Type ✓ ✓ – – ✓ ✓ ✓ – – – – – – – – – – – – ✓

42 Transmitted Bytes – – ✓ – ✓ ✓ ✓ – – – – – – – – ✓ – – – ✓

*Security Sensor, **Non-security Sensor

correlation system.
• Regarding the provided comparison in Table 1,
it can be found that the related works can

be classified into two main categories, namely,
single-type and multi-type event source. Single-
type event source class introduces those research
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Table 6. Sample logged events by heterogeneous sensors during the sample attack scenario in Figure 5

Step# SID ID Data Time
Source IP
Address

Source
Port

Destination IP
Address

Destination
Port

Event
ID

TTL Protocol
Computer
Name

User Account File Name File Path Process ID Other Features

1 e1 Feb 25 12:11:05 172.25.110.11 80 192.168.1.12 20 r-c1-1 63 UDP – – – – – –

2 e2 Feb 25 12:11:10 172.25.110.11 2256 192.168.1.12 22 d-c2-1 39 ICMP – – – – – –

1 e3 Feb 25 12:11:12 172.25.110.11 80 192.168.1.12 20 r-c1-2 55 UDP – – – – – –
1

2 e4 Feb 25 12:11:28 172.25.110.11 2265 192.168.1.12 22 d-c1-1 48 ICMP – – – – – –

1 e5 Feb 25 12:11:30 172.25.110.11 2265 192.168.1.12 190 r-c2-1 159 TCP – – – – – –

1 e6 Feb 25 12:11:01 172.25.110.11 2256 192.168.1.12 190 r-c2-2 252 TCP – – – – – –

2 e7 Feb 25 12:12:32 172.25.110.11 443 192.168.1.12 22 d-c1-2 48 ICMP – – – – – –
2

2 e8 Feb 25 12:12:36 172.25.110.11 2265 192.168.1.13 20 f-c3-1 252 TCP – – – – – –

3 1 e9 Feb 25 12:12:41 172.25.110.11 2265 192.168.1.12 190 r-c2-2 199 TCP – – – – – –

4 11 e10 Feb 25 12:12:41 172.25.110.11 – 192.168.1.12 – h-c1-2 – – Client1 John mal.pdf c: documents p1 Parent Process ID = p0

11 e11 Feb 25 12:12:46 172.25.110.11 – 192.168.1.12 – h-c1-2 – – Client1 John mal.pdf c: documents p2 Parent Process ID = p1

11 e12 Feb 25 12:12:58 172.25.110.11 – 192.168.1.12 – e-c2-2 – – Client1 John mal.pdf c: documents p3 Parent Process ID = p1

10 e13 Feb 25 12:13:08 172.25.110.12 – 192.168.1.12 – h-c1-1 – – Client1 John mal.pdf c: documents p1 Parent Process ID = p2
5

5 e14 Feb 25 12:17:43 192.168.1.12 80 172.25.110.11 80 r-c1-1 – – – – – – – –

13 e15 Feb 25 12:18:24 192.168.1.12 – 192.168.1.12 – l-c1-1 – – Client1 John – – – –

13 e16 Feb 25 12:18:38 192.168.1.12 – 192.168.1.12 – g-c1-1 – – Client1 John – – – –6

12 e17 Feb 25 12:19:02 192.168.1.12 – 192.168.1.12 – p-c1-2 – – Client1 John plan.txt d: mng/plan p4 –

17 e18 Feb 25 12:19:12 192.168.1.12 1265 172.25.110.11 53 e-c1-1 – – – – – – –
Query Type = request, Queried

Domain = external.com

7
11 e19 Feb 25 12:19:35 172.25.110.11 53 192.168.1.12 1265 e-c1-2 – – – – – – –

Query Type = response, Resolved
IP Address =172.25.110.10

8 1 e20 Feb 25 12:19:49 192.168.1.12 – 172.25.110.10 – f-c1-2 – – Client1 John plan.txt d: mng/plan – –

9 12 e21 Feb 25 12:20:13 192.168.1.12 – 172.25.110.10 – w-c1-2 – – – – – – p4
Host Domain = external.com,

Referrer = external.com

15 e22 Feb 25 12:20:23 192.168.1.12 – 192.168.1.12 – p-c1-1 – – Client1 John nsu.exe c: downloads p5 –
10

15 e23 Feb 25 12:20:55 192.168.1.12 1234 192.168.2.1 2145 s-c1-1 165 – – – – – – –

works which have proposed aggregation tech-
niques for logged events by a unique security
device [16–26]. The main concentration of this
class is the network-based IDS (NIDS) sensors.
In contrast, the related works to the multi-type
event source class aim to aggregate heteroge-
neous events which are produced by different
devices of a monitored network [7, 28, 29]. These
works combine a series of events with similar
event features, which refer to attack stages re-
lated to the same activity. However, most re-
search works have provided a method to aggre-
gate the events of a single-type event source,
i.e., NIDS. Also, there is no suitable IKC-based
aggregation method in the presence of heteroge-
neous sensors in the literature.

• In most related works, only the EAR is used to
evaluate the aggregation methods. However, this
is a volume-centric metric and, therefore, could
not measure output quality in the event aggre-
gation methods. To the best of our knowledge,
there is no suitable method in the literature to
consider information loss problems during the
aggregation process in the presence of heteroge-
neous sensors.

In this paper, to address the problems mentioned
above and issues, we propose a three-phase event
aggregation method in the next section that collects,
normalizes, clusters, filters, and summarizes logged
events by various heterogeneous sensors during the
IKC stages of APT attacks to generate aggregated
events in a controllable and flexible manner.

4 The Proposed Event Aggregation
Method

In this section, we introduce our proposed event ag-
gregation method. Before describing the proposed
method, it is required to explain an abstract schema
of a heterogeneous event aggregation framework to un-
derstand our proposed method’s position in the whole
structure. The abstract schema is shown in Figure 7,
which consists of the five principal layers as follows:

• Hardware (Layer 1): in a monitored network,
each of the heterogeneous sensors can be in the
form of a dedicated physical machine or a virtual
machine configured and managed by security
staff for logging events.

• Heterogeneous Events Logging (Layer 2):
in this layer, low-level events are logged by the
various sensors of the different detection levels
(Network, Host, and Application) during the
time. The logged events by heterogeneous sen-
sors are collected by the Beats of the ELK stack.
Afterward, the collected events are transferred
to the OLF format and stored in Elasticsearch.
Then, the normalized events are ingested to the
upper layer in a streaming fashion for the related
processing to the event aggregation analysis.

• Event Preprocessing (Layer 3): in this layer,
after the collection of logged events from het-
erogeneous sensors (with a variety of event log
formats regarding different types and vendors of
a specific sensor), they are received by an event
normalization component which converts them
into a common event format by using a standard
normalization format which is an essential task
for later processing, i.e., aggregation analysis.

• Event Processing (Layer 4): this layer con-
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tains a three-phase event aggregation process
that receives normalized events in a specified
time interval as input and, after event cluster-
ing, filtering, and summarizing processes on the
received events, produces the final aggregated
events as output.

• Presentation (Layer 5): in this layer, a set
of aggregated events (without any redundant
information) are reported to the security admin-
istrators based on queried data to give them a
complete picture of the organization’s security
status.

After a brief explanation of the event preprocess-
ing layer components in the abstract schema, in the
rest of this section, a detailed description of the three
main components of the proposed event aggregation
method, namely, event aggregation, event filtration,
and event summarization (event processing layer of
abstract schema in Figure 7) are provided. It should be
noted that during the description of the components,
as needed, the events logged in the sample attack sce-
nario presented in Table 6 are used for understanding
the input, process, and output of the three compo-
nents mentioned above. The workflow of the main
components in the event processing layer is shown in
Figure 8, described in the following subsections. In ad-
dition, a list of abbreviations and symbols is provided
in Table 7 to make it easier and better to understand
the contents of the algorithms, figures, formulas, and
tables of this section and the following sections.

4.1 Event Aggregation Component

The event aggregation component works based on
the clustering analysis technique, shown in the Al-
gorithm 1. As illustrated in the algorithm, this com-
ponent receives a set of various sensor types (each
sensor has a unique sensor-ID), a predefined aggre-
gation time window (ATW ) for event streaming, a
set of received heterogeneous events in the ATW, and
a configuration file as input. The configuration file
contains two types of event feature sets for each sen-
sor, namely, the non-summarizable feature set NSFS
(more critical features of a unique sensor used in the
event aggregation component) and the summarizable
feature set SFS (less critical features of a unique sen-
sor used in the event summarization component, Sec-
tion 4.2.1) and a time window length (TWL) of each
sensor for aggregation analysis. After the aggregation
process, the algorithm generates aggregated events as
output and sends them to the following process. In
the event aggregation component, after receiving an
event set in an ATW and retrieving the parameters
from the configuration file (Lines 1-2), the heteroge-
neous events are classified into distinct groups based
on their sensor-ID (Line 3). Then, the related event

groups to sensor-ID from heterogeneous sensor sets
are sorted based on the event timestamp (Lines 4-7).
Afterward, based on the NSFS of the sensor-ID, a set
of aggregation rules is created (Lines 8-9). The aggre-
gation process uses the aggregation rules regarding
the TWL of the sensor-ID. The basic philosophy of
this process is that if two events of a unique sensor
have the same value for the NSFS while being close in
time regarding the TWL, then they can be aggregated
to create an event cluster. The candidate NSFS and
SFS of each sensor mapped to the seven Bryant IKC
stages are shown in Figure 18 in Section 6.

For the aggregation of each sensor event using aggre-
gation rules, at first, they are classified into different
event classes according to their event type or event id
(EID) (feature 8 and 9 in Table 5) (Line 12). For each
event class, an array of events with a unique event
type is created, containing a set of ordered events
that are similar in event type (Lines 13-14). In other
words, one array of events is created for each event
type. Then, similar events of the array are grouped
within a cluster that inherits the NSFS of the corre-
sponding aggregation rules. A forward scan is enough
for each array to accomplish the needed event clus-
tering. By using two indices (base and current), each
event (base event) is compared to its following events
(current events) in the array. If they have similar fea-
ture values according to all aggregation rules related
to a specified sensor and their time difference to the
base event is lower than the TWL of the sensor-ID,
the events are grouped into a unique cluster (Lines
15-33). The value of TWL is specified according to the
speed of the event generation for each of the hetero-
geneous sensors. Afterward, those events in the TWL
that satisfy aggregation rules are joined to the base
event (Lines 23-26). After detecting two similar events,
the number of the base event is incremented by 1, the
current event is added to the generated cluster, and
the value of the current index is set to 0, which means
the event has been analyzed. After carrying out the
mentioned process for distinct event types of all het-
erogeneous sensors, the aggregated events in the form
of different event clusters (Lines 34-35) with different
members are passed to the next event cluster filtration
component to detect and filter noisy event clusters.

The output of the aggregation component for some
logged events in Table 6 is illustrated in Figure 9.
For the sake of simplicity, assume that the NIDS
and Firewall events from the Network level (e1 to
e9) and the Host OS events from the Host level are
considered for the aggregation analysis. Also, it is
assumed that after the event collection process, the
logged events are normalized and sent to a central
correlation system, including the aggregation process.
According to Table 6, the NIDS, Firewall, and Host
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Algorithm 1 Event Aggregation(SS,ES,ATW,CF )

Input:
SS, a heterogeneous sensor set with a unique sensor-ID for each sensor type
ATW, aggregation time window for event streaming
ES, an event set received in the ATW
CF, a configuration file containing various sensors features information i.e. NSFS and SFS for each sensor and
the aggregation-related threshold values
Output:
ECS, event clusters set

1: Get ES based on ATW size
2: Read CF
3: Classify heterogeneous logged events based on each sensor-ID s
4: Foreach (sensor-ID s in SS) do
5: Get TWL of the s
6: Get events of the s from the ES as s-es
7: Sort events in s-es based on timestamp
8: Get NSFS (f1 − fj−1) from the CF for the s
9: Get a set of aggregation rule (aggrule) based on NSFS (f1 − fj−1) as s-aggrules

10: Get ϵ from the CF
11: Forall (event e in s-es) do
12: Create an EID set from the EIDs of events in s-es as eid-s
13: Foreach (EID in eid-s) do
14: Create an array of events[] containing EID
15: base=0
16: While (base < events.size) do
17: If (events[base].number > 0) Then
18: current = base + 1
19: While ((current < events.size) ∧ (timediff (base, current) < ϵ)) do
20: Foreach (aggrule in s-aggrules) do
21: eventsim[] = checksim(base, current) //If base = current, checksim returns 1
22: EndForeach
23: If (eventsim = 1)
24: events[base].number = events[base].number + 1
25: events[base] = events[base] + events[current]
26: events[current].number = 0
27: Else
28: current = current +1
29: EndIf
30: EndWhile
31: Else
32: base = base + 1
33: EndIf
34: ECS = events
35: Return ECS
36: EndWhile
37: EndForeach
38: EndForall
39: EndForeach
40: EndFunction
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Figure 8. The workflow of the main components in the proposed event aggregation method

OS sensors have logged 5 (red color), 4 (yellow color),
and 3 (green color) events, respectively.

Regarding Algorithm 1, logged low-level events by
the mentioned sensors are received by the event aggre-
gation component (part (a) in Figure 9). Based on the
three SIDs in Table 6, the low-level events are catego-
rized into three different event sets, NIDS events (IDs
e1, e3, e5, e6, and e9), Firewall events (IDs e2, e4, e7,
and e8), and Host OS events (IDs e10, e11, and e12)
(part (b) in Figure 9). As mentioned before, some ag-
gregation rules are used to cluster the low-level events
according to the NSF set of a unique sensor type.
Based on the provided information on the NSF of the
three sensors in Table 8, the related aggregation rules
are shown in Table 9 (for any two subsequent events
ei and ej).

So, based on the execution of the Algorithm 1 on the
three separated event sets, it could be inferred that the
NIDS events can be clustered into two event clusters,
C0 (e1, e3, and e5) and C1 (e6 and e9), regarding
aggregation rules with Rule ID 11 (with TWL=60
seconds), 12, and 13 of Table 9. For the Firewall
events, the logged low-level events are also clustered
into three event clusters, C2 (e2 and e4), C3 (e7),
and C4 (e8), according to the aggregation rules with
Rule IDs 21 (with TWL=60 seconds), 22 to 25 of
Table 9. In addition, regarding Host OS events, there
are two distinct event clusters, C5 (e10) and C6 (e11
and e12), regarding aggregation rules with Rule IDs
31 (with TWL=300 seconds), 32 to 37 of Table 9. The
event aggregation analysis and also the resulting event

clusters are depicted in Figure 9 from part (c) to part
(g).

4.2 Event Filtration Component

After generating event clusters from low-level events,
it is time to identify significant events within a large
set of logged events and filter noisy ones because
they are false-positive and irrelevant. These events
are generated due to many causes like misconfigura-
tion, low accuracy of applied detection methods, and
lack of attention to contextual information of target
during the event generation [13]. In the literature,
many techniques exist for event verification and fil-
tration [12, 13]. One of the most important ones is
using outlier detection-based approaches [53]. In this
paper, we use local density cluster-based outlier factor
(LDCOF)[54], an extension of clustering-based local
outlier factor (CBLOF)[55]. By leveraging this met-
ric, the system can detect noisy event clusters and
filter them. A noisy event cluster is a cluster in which
events are recognized as those belonging to none of
the event clusters. Detecting and filtering noisy clus-
ters is helpful to have a set of high-quality real event
clusters for the next processing step. The procedure
of the event cluster filtration algorithm is depicted in
the Algorithm 2.

Regarding Algorithm 2, for detecting outlier event
clusters, the component receives generated event clus-
ters set (ECS ) by the previous component and the
configuration file as input. It generates a set of ag-
gregated events for each sensor. After receiving ECS,
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Table 7. The list of abbreviations and symbols used in this section and the following sections

(a) Abbreviations

Abbreviation Definition

AES Aggregated event set

AOI Attribute-oriented induction

APC Aggregation performance curve

ATW Aggregation time window

CBLOF Clustering-based local outlier factor

CF Configuration file

CQ Cluster quality

DBI Davies-Bouldin index

DI Dunn index

EAR Event aggregation ratio

ECS Event clusters set

EID Event ID

EPR Event processing ratio

EPS Event per second

IC Information content

ILR Information loss ratio

LC Large event cluster

LCA Least common ancestor

LDCOF Local density cluster-based outlier factor

NIDS Network-based intrusion detection system

NSF Non-summarizable feature

NSFS Non-summarizable feature set

OS Operating system

SC Small event cluster

SES Summarized event set

SF Summarizable feature

SFS Summarizable feature set

SS A heterogeneous sensor set

TCP Transmission control protocol

TTL Time to live

TWL Time window length

UDP User datagram protocol

(b) Symbols

Symbol Description

Sensor −
ID/SID

A unique ID of a heterogeneous sensor

S/s Sensor-ID

e A unique logged event

s− es An event set logged by sensor with sensor-ID s

fj jth feature of a logged event e

aggrule Aggregation rule for a unique sensor-ID

s− aggrules A set of aggregation rules for a sensor-ID s

ε Create-time difference threshold

α Parameter for calculation of SC and LC

β Parameter for calculation of SC and LC

Ci ith event cluster

C Event cluster set

ae Aggregated event

eid− s A set of event ID

events[] A set of events with a unique EID logged by a unique SID

events.size Size of events [] array containing events with same EID

base Pointer of the base logged event in array

current Pointer of the current logged event in array

D Dataset

ei ith logged event

c A unique concept with the related concept tree

nc The number of events in cluster

diam(ci) Diameter of event cluster ci

EARmax The maximum rate of EAR

EPRmax The maximum rate of EPR

srcIP Source IP address

dstIP Destination IP address

srcPort Source port number

dstPort Destination port number

compName Computer name

usrAccount User account name

parProcessID Parent process ID

Table 8. Sample sensors features classification into NSF and SF

Sensor-ID

Feature Name Date Time
Source IP

Address

Source

Port

Destination IP

Address

Destination

Port
Event ID TTL Protocol

Computer

Name

User

Account

File

Name
File Path

Process

ID

Parent

Process ID

1
Feature Type NSF NSF SF NSF SF SF SF SF – – – – – –

Threshold Value – – 1 – 1 2 1 1 – – – – – –

2
Feature Type NSF NSF NSF NSF NSF SF SF SF – – – – – –

Threshold Value – – – – – 2 1 1 – – – – – –

11
Feature Type NSF NSF – NSF – SF – – NSF NSF NSF SF SF NSF

Threshold Value – – – – – 2 – – – – – 3 3 –

they are first sorted based on the number of events
in each cluster, as shown in the figure (Lines 1-2). By
considering the two numeric parameters α and β (Line
3), the generated clusters are divided into two sets,
large clusters (LC ) and small clusters (SC ), regard-
ing the size of clusters (Line 4). Suppose |C1|> |C2|>
|C3|> · · · > |Ck|, then b is the boundary of a cluster,
small or large, such that |C1|+|C2|+ · · ·+ |Cb| ≥ |D|
* α or |Cb|/|Cb+1| ≥ β where D is the whole dataset.
It should be noted that α and β parameters are set
so that the following conditions are met, 1) most of

the events in the dataset are not outliers, and 2) LC
and SC should be significantly different in size. Hence,
LC={Ci|i ≤ b} and SC={Cj |j > b}. After identi-
fying LC and SC clusters, each event of a cluster is
assigned with the LDCOF factor to evaluate whether
the event cluster is noise or not (Lines 6-13). The re-
lated equation to the factor is shown in Equation 1
where the average used distance of cluster in this equa-
tion is computed based on Equation 2. This factor
is calculated according to the size of the cluster and
the distance between the target event and its nearby
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Table 9. Sample aggregation rules for the sensors (a-aggrules in Line 20 in Algorithm 1) NIDS, Firewall, and Host OS sensors

Sensor-ID (Name) NSF Name
Aggregation Rule

(aggrule) ID
Aggregation Rule (aggrule in Line 20 in Algorithm 1)

Date Time 11 If ((ej .dateTime – ei.dateTime) ¡ ε)

Source IP Address 12 If (ei.srcIPAddress = ej .srcIPAddress)1 (NIDS)

Destination IP Address 13 If (ei.dstIPAddress = ej .dstIPAddress)

Date Time 21 If ((ej .dateTime – ei.dateTime) ¡ ε)

Source IP Address 22 If (ei.srcIPAddress = ej .srcIPAddress)

Source Port 23 If (ei.srcPort = ej .srcPort)

Destination IP Address 24 If (ei.dstIPAddress = ej .dstIPAddress)

2 (Firewall)

Destination Port 25 If (ei.dstPort = ej .dstPort)

Date Time 31 If ((ej .dateTime – ei.dateTime) ¡ ε)

Source IP Address 32 If (ei.srcIPAddress = ej .srcIPAddress)

Destination IP Address 33 If (ei.dstIPAddress = ej .dstIPAddress)

Computer Name 34 If (ei.compName = ej .compName)

User Account 35 If (ei.usrAccount = ej .usrAccount)

File Name 36 If (ei.fileName = ej .fileName)

3 (Host OS Log)

Parent Process ID 37 If (ei.parProcessID = ej .parProcessID)

e1 e2 e3
e4 e5 e6 e7 e8 e9 e10 e11 e12

ATW = 120 Seconds

5 10 12 28 30 61 92 96 101 101 106 118Timestamp

0 1 2 3 4 5 6 7 8 9 10 11

e1 e3 e5 e6 e9
e2 e4 e7 e8 e10 e11 e12

e1

e3

e5

e6

e9

e2

e4

e7 e8
e10 e11

e12

e1 e3
e5 e6e6 e9 e7

e11
e12

e10

e2
e4

e8

0 1 2 3 4 0 1 2 3 0 1 2

0 1 2 3 4 0 1 2 3 0 1 2

C0

C1

C2

C3

C4

C5

C6

(a) (b)

(f)

(g)

Array Index

e1 e3 e5 e6 e9
e2 e4 e7 e8 e10 e11 e12

0 1 2 3 4 0 1 2 3 0 1 2

(c)

e1

e3

e5 e6 e9
e2

e4

e7 e8 e10 e11 e12

0 1 2 3 4 0 1 2 3 0 1 2

(d)

base current base current base current base current base current base current

e1

e3

e5

e6 e9
e2

e4

e7 e8 e10 e11 e12

0 1 2 3 4 0 1 2 3 0 1 2

(e)

base current base current basecurrent

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 20 r-c1-1 63 UDP

1st iterationfj = Source Port

Regarding part (c) in Fig. 9 (Threshold Value = 1)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved r-c1-1 63 UDP

1st iterationfj = Destination Port

Regarding part (c) in Fig. 9 (Threshold Value = 1)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved UDP Scan 63 UDP

1st iterationfj = Event ID

Regarding Fig. 10 (Threshold Value = 2)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved Port Scan 63 UDP

2nd iterationfj = Event ID

Regarding Fig. 10 (Threshold Value = 2)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved Port Scan Very Low UDP

1st iterationfj = TTL

Regarding part (a) in Fig. 9 (Threshold Value = 1)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved Port Scan Very Low Transport Layer

1st iterationfj = Protocol Type 

Regarding part (b) in Fig. 9 (Threshold Value = 1)

C0

C1

C2

Figure 9. Sample output of event aggregation component, (a) low-level event stream, (b) grouped events, (c)-(f) event aggregation
(ATW=120 Sec., TWLNIDS=TWLFirewall=60 Sec., and TWLHostOS=120 Sec.), and (g) resulted event clusters

cluster. The rationale behind this is that when small
clusters are considered outlying (noisy), the events

within the SC are assigned to the nearest LC, which
becomes its local neighborhood. Thus, the events in
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SC are all outliers when compared with those in LC
and discards from the ECS. Finally, the remaining
event clusters are passed to the next component as the
final aggregated event set (AES ) (Lines 14-15). In our
example, event clusters C0, C1, C2, and C6 identified
as large clusters, while C3, C4, and C5 are considered
to be small clusters. Thus, by setting α = 0.75 and β
= 1, it can be inferred that the events in clusters C3

and C5 are outliers and can be discarded.

LDCOF (e) =

{ min(d(e,Cj))

distanceavg(Cj)
, if e ∈ Ci ∈ SC where Cj ∈ LC,

d(e,Ci)

distanceavg(Ci)
, if e ∈ Ci ∈ LC

(1)

distanceavg(C) =

∑
i∈C

d(i, C)

|C|
(2)

4.2.1 Event Summarization Component

After completion of the aggregation component, the
resulting event clusters are injected into the summa-
rization component to find duplicated events and elim-
inate redundant ones. The procedure of the event sum-
marization component is shown in the Algorithm 3.
Based on the figure, this component receives the
sensor-ID of sensor, a set of clustered events with the
same sensor-ID, and the configuration file as input
and returns a set of summarized events as output.
Besides the information mentioned above about the
configuration file, it also contains concept trees of
the different sensors SFS used for the summarization
component based on an AOI, which gives extra flexi-
bility over traditional machine learning techniques for
data fusion. According to the [56, 57], a concept tree
describes the abstraction relationship (i.e., generaliza-
tion/specialization) between similar concepts using
a hierarchical structure. In the concept tree of an at-
tribute, the root node contains the most abstract form
of the concept, and the intermediate and leaves nodes
represent refined concepts and instances, respectively.

In the summarization component, for each summa-
rizable feature (SF ), there is a unique concept tree in
that the feature name is the root node. At the same
time, the attribute values correspond to the tree’s
leaves. Some examples of the concept trees for differ-
ent event features are in Figure 10 and Figure 11. As
mentioned in the Algorithm 3, for a given clustered
event from the aggregation component, at first, the
SF of the corresponding sensor type is obtained with
the related threshold vector. The threshold vector of
the sensor indicates the level of summarization process
for each SF of it according to the depth of SF concept
tree. In other words, based on the depth level of the
concept tree, the event summarization method oper-
ates by the defined threshold vectors in a completely

flexible manner. After retrieving the SFS and their
associated threshold vectors, for each SF (Lines 1-3),
the related concept tree of the feature is extracted
from the configuration file (Line 4). The extracted
tree shows the relationship between children and par-
ents as a directed edge from child to parent. Then, the
following tasks are repeated for each SF until nothing
else is left in the SFS vector.

For the examined SF, at first, the value of the total-
distinct-values is calculated based on the different
values for the SF in the generated event cluster (Line
5). Then, the value is compared with the corresponding
threshold value in the threshold vector (Line 6). As
long as the total-distinct-values for a given SF is more
significant than a predefined threshold value, the SF
value of the events is replaced with the value of its
parent for all events in the event cluster; otherwise, it
is kept (Lines 7-13). At the end of each repetition of
the generalization loop, the total-distinct-values of the
SF is calculated again for the last comparison (Line
14). In addition, if some duplicated events are in the
generalized event set, similar events are fused into a
unique summarized event, and duplicated ones are
deleted (Lines 15-20). It should be noted that if the
value of total-distinct-values is still more significant
than the defined threshold value, the generalization
process continues. This process will continue until all
features in the SFS of the sensor have been checked and
no other features are left. The resulting non-repetitive
events of the final round are reported as the output
of the summarization component (final aggregated
events) (Line 23).

Regarding our example, after event aggregation and
outlier event filtration processes, five event clusters,
including ten different events, are injected into the
event summarization component. As mentioned in the
Algorithm 3, for the event summarization process, it
is required to define the concept tree of the features in
the SF set of a specified sensor. As seen in Table 8, the
SF set of the NIDS and firewall sensors are {Source
Port, Destination Port, Event ID, TTL, Protocol}with
threshold vector {1, 1, 2, 1, 1} and {Event ID, TTL,
Protocol} with threshold vector {2, 1, 1}, respectively.
Also, the SF set of the Host OS is {Event ID, File
Path, Process ID} with threshold vector {2, 3, 3}.
Based on the defined SF sets for the sensors in Table 8,
Figure 10 and Figure 11 indicate their related concept
trees. A running example of Algorithm 3 is shown in
Figure 12 for event e1 of the NIDS sensor.

Table 10 shows the final results of the event sum-
marization component on the event clusters C0, C1,
C2, C4, and C6. According to the results of this com-
ponent, the pairs of events (e1, e3), (e2, e4), (e6, e9),
and (e11, e12) are summarized and formed the aggre-
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Algorithm 2 Event Cluster F iltration(ECS, CF )

Input:
ECS, event clusters set
CF, a configuration file containing various sensors features information i.e. NSFS and SFS for each sensor and
the aggregation-related threshold values
Output:
AES, a set of aggregated events

1: Get ECS //ECS = {C1, C2, C3, · · · , Ck}
2: Sort event clusters in ECS based on their size //∥C1∥≥ ∥C2∥≥ ∥C3∥≥ · · · ≥ ∥Ck∥
3: Get α and β parameters
4: Compute LC and SC based on the α and β parameters
5: AES = ϕ
6: Foreach (event e in ECS ) do
7: If (e belongs to Ci ∈ SC) Then
8: Compute LDCOF score of e based on the Equation 1
9: ECS = ECS - e

10: Else
11: Compute LDCOF score of e based on the Equation 1
12: AES = AES ∪ e
13: EndIf
14: AES = ECS ∪ AES
15: Return AES
16: EndForeach
17: EndFunction
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Figure 10. Sample concept trees for some SF features, (a) TTL, (b) Protocol Type, (c) Port Number, (d) Process Name, and (e)

File Path

gated events ae1, ae2, ae4, and ae6. In addition, the
two events e5 and e8 are not summarized with other
events and remain in the output aggregated event set.
For example, the analyzes performed by the event
summarization component on the NIDS sensor event
clusters, C0 and C1, are given below.

• The (e1, e3, and e5) event cluster of the NIDS: re-
garding the four SF of the NIDS sensor and their

related concept tree, the events of this cluster
are summarized. For this purpose, at first, the
Source Port and Destination Port values of the
events are examined based on the Port Number
concept tree (part (c) in Figure 11). In this step,
regarding the Source Port values of the three
events and their parent name in the related con-
cept tree, the value of this feature for events e1,
e3, and e5 is changed to Reserved, Reserved, and
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Algorithm 3 Event Summarization(S,AES,CF )

Input:
S, a sensor with a unique sensor-ID
AES, aggregated event set with the same sensor-ID
CF, a configuration file containing various sensors features information i.e. NSFS and SFS for each sensor and
the aggregation-related threshold values
Output:
SES, summarized event set with the same sensor-ID

1: Get SFS (fi − fn) of s from the CF
2: Foreach (feature fj in SFS (fi − fn) do
3: Get threshold numeric value for fj
4: Get Feature fj concept tree hierarchy from CF
5: total distinct values = the number of distinct values of AES with fj + threshold numeric value for fj
6: While (total distinct values > threshold numeric value fj) do
7: Forall (ae in AES ) do
8: If (fj value of ae has a parent in fj concept tree) Then
9: fj value of ae = parent value

10: Else
11: fj value of ae = fj value of ae
12: EndIf
13: EndForall
14: total distinct values = the number of distinct values of AES with fj
15: If (duplicate ae exists in AES ) Then
16: Merge identical events into unique ae in AES
17: SES = SES ∪ AES
18: Else
19: Break
20: EndIf
21: EndWhile
22: EndForeach
23: Return AES
24: EndFunction
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Figure 11. Sample concept tree for the Event ID feature

Deterministic, respectively. Since the threshold
value of the Port Number is 1 (see Table 8), and
there is no parent in the concept tree for further
analysis, the summarization process is finished
for the Port Number feature. Then, this analy-
sis is done for the remained SF according to the
concept trees of each of them. The results of the
summarization process show that e1 and e3 are

duplicated, and so on; one can be eliminated,
but e5 remains in the final event set.

• The (e6 and e9) event cluster of the NIDS: based
on the analysis mentioned above for the previous
event cluster and regarding the Source Port val-
ues of the two events and their parent name in
the Port Number concept tree, the event values
are changed to the Deterministic value. Since
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e1
e2 e3

e4 e5
e6 e7 e8

e9 e10 e11
e12

Time Window

5 10 12 28 30 61 92 96 101 101 106 118Timestamp

0 1 2 3 4 5 6 7 8 9 10 11

e1 e3 e5 e6 e9
e2 e4 e7 e8 e10

e11 e12

e1

e3

e5

e6

e9

e2

e4

e7 e8
e10 e11

e12

e1 e3
e5 e6e6 e9 e7

e11
e12

e10

e2
e4

e8

0 1 2 3 4 0 1 2 3 0 1 2

0 1 2 3 4 0 1 2 3 0 1 2

C0

C1

C2

C3

C4

C5

C6

(a) (b)

(f)

(g)

Array Index

e1 e3 e5 e6 e9
e2 e4 e7 e8 e10

e11 e12

0 1 2 3 4 0 1 2 3 0 1 2

(c)

e1

e3

e5 e6 e9
e2

e4

e7 e8 e10
e11 e12

0 1 2 3 4 0 1 2 3 0 1 2

(d)

base current base current base current base current base current base current

e1

e3

e5

e6 e9
e2

e4

e7 e8 e10
e11 e12

0 1 2 3 4 0 1 2 3 0 1 2

(e)

base current base current base current

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 20 r-c1-1 63 UDP

1st iterationfj = Source Port

Regarding part (c) in Fig. 9 (Threshold Value = 1)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved r-c1-1 63 UDP

1st iterationfj = Destination Port

Regarding part (c) in Fig. 9 (Threshold Value = 1)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved UDP Scan 63 UDP

1st iterationfj = Event ID

Regarding Fig. 10 (Threshold Value = 2)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved Port Scan 63 UDP

2nd iterationfj = Event ID

Regarding Fig. 10 (Threshold Value = 2)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved Port Scan Very Low UDP

1st iterationfj = TTL

Regarding part (a) in Fig. 9 (Threshold Value = 1)

Date Time
Source IP 
Address

Source Port
Destination IP 

Address
Destination 

Port
Event ID TTL Protocol

Feb 25 12:11:05 172.25.110.11 Reserved 192.168.1.12 Reserved Port Scan Very Low Transport Layer

1st iterationfj = Protocol Type 

Regarding part (b) in Fig. 9 (Threshold Value = 1)

C0

C1

C2

Figure 12. Operation of the Algorithm 3 on the NIDS sensor events in our example

the threshold value of the Port Number is 1 (see
Table 8) and the identical values, Deterministic,
for the feature Source Port, the summarization
process is finished for the Port Number feature.
After the summarization process for the next
SF features, the results show that the Desti-
nation Port, Event ID, TTL, and Protocol are
equaled to Reserved, TCP Scan, Very High, and
Transport Layer, respectively for the two events.
Therefore, based on the summarized events, it
could be inferred that e6 and e9 are redundant,
and so on; one can be deleted.

5 Evaluation and Discussion

After explaining the proposed event aggregation
method in the previous section, the evaluation method
and the results of the experiments are described in
this section. In the rest of this section, at first, the
experimental results of the simulation and numerical
analysis are reported in Section 5.1 by applying the
proposed method on events of standard datasets. In
addition, Section 5.2 provides some brief analytical
discussion about the proposed method and its ef-
fects on the area of complex IKC-based APT attack
scenarios detection and its limitations.

5.1 Simulation and Numerical Experiments

For the evaluation purposes of the proposed event ag-
gregation and summarization method, a study has
been conducted on the existing datasets in the area
of intrusion detection. A comparative analysis of the
datasets is provided in Table 16, in Section 6. Re-
garding Table 16, the three more relevant and pub-
licly available datasets are chosen for the evaluation,
namely, SotM34 [58], Bryant [7], and LANL [59]. It
should be noted that all three mentioned datasets
contain a set of heterogeneous events logged by dif-
ferent sensors of the three mentioned detection levels

(Network, Host, and Application).

5.1.1 Datasets

The three chosen datasets for the simulation and nu-
merical evaluation of the proposed event aggregation
method are briefly explained from different aspects,
i.e., including heterogeneous sensors and event size.

• SotM34: In the area of intrusion detection, one
of the primary multi-source datasets is SotM34
[58], which creates by the netForensics Honeynet
team during the Honeynet Project, Scan of the
Month challenge. The dataset contains various
heterogeneous events from three different se-
curity sensors, namely, NIDS (Snort), Firewall
(IPTables), Host OS (Linux Syslog), and the
only non-security sensor, Web Server (Apache).
Different sensors in a honeypot system log the
events. According to the SotM34 simulation
environment, three central systems are used
for recording the Honeynet activities, namely,
bridge, bastion, and combo, for about four weeks
(from 22 February 2005 to 17 March 2005). The
first system filters malicious connections, and
the second runs a NIDS service based on the
well-known Snort tool. The third system is also
used for the victim, which contains multiple vir-
tual IP addresses on a specified network range.
In our evaluation, the low-level events logged by
the different sensors (260337 individual events)
are used for the experiments.
Part of the SotM34 dataset events forms an

IKC-based multi-stage attack scenario [60]. Ac-
cording to the attack scenario, after identifying
the target network machines by performing re-
connaissance scans, the attacker sends a back-
door to a Combo node of the target network.
Then, after downloading the backdoor by an
authorized user, the backdoor is successfully in-
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Table 10. The resulted aggregated events in our example
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– – – – – –
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172.25.110.11 2256 192.168.1.12 22 ICMP Very Low
Network
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– – – – – –
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– – – – – –
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11 ae6
Feb 25
12:12:46

172.25.110.11 – 192.168.1.12 – OS Exploit – – Client1 John mal.pdf C p1 p1

stalled and runs on the victim’s machine. In this
step, the attacker exploits a vulnerability of an
installed program on the Combo machine of the
topology called AWStats, an Apache web server
monitoring tool, to install the backdoor. Then,
the adversary connects to the backdoor and
makes multiple outbound HTTP connections to
a server on the Internet. The logged events in
the last step show that this was an exfiltration
attack using some searching commands for files
on the target machine, the Combo server.

• Bryant: As mentioned before, one of the main
IKC models in the area of IKC-based multi-step
attacks is the Bryant kill chain model [7], which
is described in detail in Section 3.1. Regarding
this model, the inventors of this IKC model have
released a new heterogeneous events dataset
based on their proposed IKC model, which is
accessible upon request. The Bryant dataset in-
cludes 5962 different attack-related events which
are related to a sample IKC-based APT attack
scenario. The detailed explanation of the at-
tack scenario and network topology for the at-
tack simulation is described in [7]. According to
their network topology, all the events are logged
by some heterogeneous sensors, namely, NIDS,
Firewall, and Edge Router from the Network
level, HIPS, Antivirus, Vulnerability Scanner,
and Host OS from the Host level, and Domain
Controller from the Application level.
A custom APT attack scenario was created to

stimulate all seven IKC stages across multiple
machines, generating data from multiple detec-
tion sensors and ultimately resulting in success-
ful data theft. Regarding Figure 6 in [7], an at-
tacker located on an external network attempt-
ing to access the internal corporate network. The
attacker performs initial probing activities to
identify victim machines. Then, he/she sends a
phishing email through the corporate mail server
to trick a user into installing a legitimate pro-
gram with a known vulnerability and a custom
backdoor disguised as a patch to the vulnerable
program. After installing the fake patch by the

user, a remote shell is established for the attacker
machine. Then, the attacker conducts privilege
escalation and initiates a remote desktop session
on the compromised machine. After identifying
the internal IP addresses of the company DMZ
servers, he/she tries to find the SQL database
of the web server and email server and exfiltrate
them from the internal corporate network.

• LANL: One of the other primary datasets
containing multi-source cybersecurity events is
released by Los Alamos National Laboratory
called LANL dataset to citer65. This high-
volume dataset (about 10.7 GB) is publicly
available and includes events of five different
sensors, namely, NetFlow, Host OS, Audit Logs,
and DNS Server, with 1,648,275,307 events.
This dataset contains the normal behaviors
of 12425 users, and 117684 computers of the
LANL company that monitored the network
for 58 consecutive days. Besides logging the
users’ normal activities, the dataset has a set of
events for a simulated attack by a Red Team.
The log files with the related event features are
described in the [59]. In our experiments, ex-
cept for the DNS events, only part of the other
sensor events (a quarter of the total) is used for
the evaluation due to the large volume of events
and the computational resource constraints.
The logged events in the LANL dataset are

related to the malicious activities carried out
by the Red Team during the IKC stages of the
APT attack. Based on the activities carried out
in this attack, the attackers initially identified
the target organization’s network to find ex-
ploitable vulnerabilities in the target network’s
assets. The attackers then tried to install mal-
ware on the victim network by sending phish-
ing emails with an infected link to the target
network workstations. After downloading and
installing a malicious payload on a victim ma-
chine, the malware tries to monitor the connec-
tions established with the network servers and
obtain information about the programs installed
on them and the information of its users. In
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addition, by communicating malware with re-
mote C&C servers in the external network, the
attacker tried to expand user privileges on the
infected workstation for lateral movement ac-
tivities. After migrating to the desired systems,
which are generally the vital servers of the orga-
nization, the classified information is extracted
and collected in the form of documents to be
finally sent to the external network.

5.1.2 Evaluation Metrics

Besides the functional tests of the method, the other
aspect of evaluation is related to the performance
tests. According to the literature review, there are
three main evaluation metrics for aggregation analysis
which are as follows:

Event aggregation ratio (EAR): this metric shows
the power of an event aggregation method in reducing
the volume of logged events by the sensors. Based
on Equation 3, this metric is calculated by dividing
the number of aggregated events by the total events
in a specified ATW. The greater the value of this
parameter, the greater the event aggregation rate and
more event reduction. For example, in our provided
example, the EAR is 50% (total events = 12 (Table 6)
and aggregated events = 6 (Table 10)).

EAR =

(
1 −

# of Summarized Events

# of Total Events

)
∗ 100 (3)

Event processing ratio (EPR): The EPR metric
indicates the speed of the event aggregation process
which is sometimes referred to as throughput. Based
on Equation 4, this metric is obtained by dividing the
number of processed events by the processing time
(in seconds). The greater the value of this parameter,
the greater the processing power of the aggregation
component. For example, if the proposed method
process 12 events of our example in 4 seconds, the
EPR equals three events/second.

EPR =

(
1 −

# of Processed Events

Processing Time (in Seconds)

)
(4)

Information loss ratio (ILR): Although in most
related works, only the EPR is used to evaluate the
aggregation process, this is a volume metric and is
not sufficient for quality evaluation of the aggregation
method. The basic idea of the ILR metric is to mea-
sure the amount of security-relevant data loss during
the aggregation and summarization process. As men-
tioned, in the proposed aggregation and summariza-
tion method, two concepts that belong to the same
concept tree are summarized by replacing them with
their least common ancestor (LCA) from the corre-

sponding concept tree. This causes to occur a loss of
security information. In this paper, to measure infor-
mation loss by replacing the parent concept with its
child concept, Equation 5 is used, which is borrowed
from the [26], the nearest work to our method. The
ILR is a value in [0, 1] where 0 means no information
loss and 1 indicates 100% information loss. The ILR
metric is highly dependent on the configuration of the
security administrator.

ILR(C) =

∑
c∈C

(
IC(c) − IC(LCA(C))

)∑
c∈C

IC(c)
(5)

Based on this equation, parameter C is a set of given
concepts. Also, for each of the concepts in an event
type (indicated by the type of sensor), the informa-
tion content (IC) of concept c is calculated by using
Equation 6, which is used to measure the amount of
information served by the c concept.

IC(c) = −log

( |leaves(c)|
|subsumers(c)| + 1

maxleaves + 1

)
(6)

The value of this metric depends directly on the
threshold vector values of the SFS features set. For
example, assume that we want to compute the ILR
rate by aggregating the ICMP Flood’s two sub-classes,
namely, Ping Flood and Smurf Attack (Figure 11).
According to the Equation 6, we have the following
IC values, IC(Ping Flood) = 1.08, IC(Smurf Attack)
= 1.16, and IC(ICMP Flood) = 1.03. As illustrated
in Figure 11, since the LCA of the Ping Flood and
Smurf Attack is ICMP Flood, the ILR rate is equal
to ILR(Ping Flood, Smurf Attack) = 0.08 based on
Equation 5.

Since, in our proposed aggregation method, clus-
tering analysis based on the NSFS of events plays
a vital role in the method, it is required to measure
the quality of event clusters to find how similar the
events are within a cluster and how dissimilar with
the events in the other event clusters. There are many
internal cluster validity metrics presented in the area
of cluster quality (CQ) to evaluate the event cluster-
ing task [61, 62]. In this paper, two related metrics
are used for evaluating the clustering analysis of the
event aggregation method, which are as follows:

Dunn index (DI): this metric is an internal cluster
validity metric which defines as a ratio of the minimum
distance between clusters to the maximum cluster
diameter [61, 62]. This metric aims to determine the
dense and well-separated cluster designed for non-
overlapping event clusters. This metric for a specific
number of clusters is calculated using Equation 7. The
details of this equation are provided in [61]. According
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to this metric, the larger the DI value (using Euclidian
distance), the better the clustering.

DInc = mini=1,···,nc

{
minj=i+1,···,nc

(
d(ci, cj)

maxk=1,···,ncdiam(ck)

)}
(7)

Davies–Bouldin index (DBI): the other internal
cluster validity metric is DBI that measures the out-
put of a clustering algorithm in terms of minimal
intra-cluster variances and maximal inter-cluster dis-
tances. This metric for a specific number of clusters is
calculated using Equation 8. The details of this equa-
tion are provided in [62]. According to this metric,
the smaller the DBI value (using Euclidian distance),
the better the clustering. In other words, the clusters
should have the minimum possible similarity.

DBInc =
1

nc

nc∑
i=1

maxj ̸=i(DBIij) (8)

5.1.3 Experimental Setup

Using the EPR evaluation metric, the performance
of the proposed aggregation method has also been
measured. In other words, the system’s performance is
in terms of execution times. For this purpose, we must
to present the experimental setup of our evaluations.
The proposed method has been developed in Java, and
the experiments have been executed on a Windows
10-based machine with the Intel Core i7 CPU (4 MB
Cache and 3.2 GHz), 16 GB of RAM, and 2 TB Hard
Disk.

5.1.4 Experimental Results on the Datasets

In this section, we present the experimental evaluation
of the proposed event aggregation method according
to the three chosen datasets, namely, SotM34, Bryant,
and LANL. Regarding our aggregation method, there
is a need for SFS features set threshold vectors of the
used sensors in each dataset for the event summariza-
tion component. Depending on the concept trees re-
lated to the SFS features of each sensor in the dataset,
several vectors can be defined for the threshold values.
In our experiments, different threshold vectors were
manually tuned and used for various sensors, the most
suitable of which was selected. Table 17 in Section 6
shows the threshold vectors of various sensors of each
dataset for the experiments. The SF Numbers in the
last column of Table 17) originates from Table 5. The
used concept tree for the event type feature in the
experiments is depicted in Figure 19 in Section 6.

According to the provided information in Table 17,
the evaluation results for each of the three mentioned
datasets are provided in Table 11. As can be seen in
the table, for each sensor of the datasets, a specified
value is determined for the time window length (TWL)

regarding the suggested time intervals in [63] to focus
on the sensors for detecting and preventing malicious
activities of the attackers. After injection of the low-
level events in the datasets to the proposed method
with a length of 3600 seconds for the ATW parame-
ter, some statistics related to each component of the
method are reported in Table 11. In addition, the re-
sults of the performance mentioned above evaluation
metrics are also provided in this table. In addition, for
filtering noisy event clusters of SotM34, Bryant, and
LANL datasets in the experiments, the α parameter
is set to 90%, 90%, and 80%, respectively, an optimal
value regarding each of the datasets.

Generally, regarding the various EAR and their cor-
responding ILR values, the experiments have proved
that the proposed aggregation method is a general so-
lution that reduces a significant event set with many
redundant events into a set of summarized events with
the least amount of security information loss. For ex-
ample, the aggregation method is able to reduce signif-
icant amount of events for some Network level sensors,
such as NIDS, Firewall, or Netflow, to nearly 99% in
some circumstances (when most logged events are du-
plicated) with a reasonable level of ILR. Regarding
the low value of the EPR for the Bryant dataset in
Table 11, it should be noted that the proposed system
requires an initial startup time, which is also included
in the Execution Time. Therefore, the time required
for initial setup and, on the other hand, the small
number of events of each sensor in the dataset has
caused the value of the EPR to be reduced. In other
words, the system has not reached a steady state.

As mentioned earlier, the ILR metric is highly de-
pendent on the configuration of the security admin-
istrator. In other words, by adjusting the threshold
vector for SF features of any sensor, the ILR will be
controllable. The security administrator can deter-
mine to what extent the lack of security information
is allowed and does not affect subsequent operations.
We know that the EAR and ILR metrics affect each
other and, changing one causes the other to change
the value. It is clear that when the EAR value in-
creases for a specific dataset sensor, the value of the
ILR becomes constant or decreases. In general, when
a certain amount of changes in EAR is not affected as
much as the ILR, the changes in the ILR are relatively
acceptable. Hence, the results of the event aggrega-
tion will be valid and informative for the next event
processing steps. According to Table 11, the results in-
dicate that this is the case for most sensors of the used
datasets; despite the changes of more than 50% in the
EAR, the ILR has seen significantly fewer changes.

Moreover, according to the main goal of the pa-
per, reducing the volume of logged events during the
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Table 11. Detailed performance analysis of our proposed aggregation method based on the three standard datasets

Aggregation and Summarization Evaluation Metrics

Sensor Type
Total Events TWL (Sec)

Event

Clusters

Filtered

Clusters

Summarized

Events

Execution

Time (Sec)
DI DBI EAR EPR ILR

NIDS (Snort) 69,039 60 2,182 136 26,345 395 0.87 0.12 62% 174.7 0.29

Firewall (IPTables) 179,752 60 9,865 1,120 46,747 1,125 0.79 0.19 73% 159.7 0.32

Host OS (Linux Syslog) 3,925 300 420 95 1,836 22 0.72 0.26 54% 178.4 0.15S
o
tM

3
4

Web Server (Apache) 7,621 300 1,121 49 4,421 49 0.65 0.28 42% 155.5 0.21

NIDS (Snort) 1,589 60 86 16 17 18 0.91 0.11 99% 23.8 0.06

Firewall (pFsense) 425 60 32 11 68 6 0.84 0.15 87% 21.8 0.28

HIPS (McAfee) 267 300 27 13 51 7 0.81 0.24 81% 19.28 0.2

Antivirus (McAfee) 25 300 5 1 5 5 0.78 0.3 80% 20.6 0.17

Host OS 1,488 300 112 31 551 89 0.72 0.35 63% 19.8 0.26

Web Server (IIS) 636 300 19 7 268 3 0.84 0.18 58% 18.6 0.11

Mail Server (Microsoft
Exchange)

344 300 11 3 124 164 0.68 0.38 64% 25.3 0.22

B
r
y
a
n
t

Domain Controller 1,188 60 185 49 437 48 0.75 0.29 61% 21.8 0.25

NetFlow 32,494,353 600 213,607 61,213 7,031,615 259,955 0.99 0.13 79% 124.9 0.42

Host OS (Authentication) 262,857,802 600 12,140,744 842,342 91,363,038 1,932,779 0.68 0.28 66% 135.9 0.33

Audit Log 106,511,274 3600 614,647 152,214 37,137,051 700,733 0.72 0.34 66% 151.9 0.16L
A
N
L

DNS Server 40,821,591 3600 18,145,256 2,312,981 15,752,124 224,295 0.82 0.23 62% 181.9 0.29

IKC stages of APT attacks, another experiment is
performed based on the logged events by the hetero-
geneous sensors during the IKC stage of the attack
scenarios in all the tree used datasets (Section 5.1.1).
The details of the experiment are provided in Table 12.
Based on the results of the table, 1) to intersect each
sensor with an IKC stage, a quadruple is presented,
according to which the upper-left value is equal to the
number of events associated with a specific IKC stage
before performing the event aggregation and summa-
rization processes, the upper-right value is equal to the
number of events associated with the same IKC stage
after the event aggregation and summarization pro-
cesses, the lower-left value indicates the EAR metric,
and the lower-right value represents the ILR metric
and 2) some sensors do not produce an event for some
of the IKC stages, which is indicated by a dash in the
table.

Furthermore, a comparison analysis between the
results of the proposed method and the related works
(Section 2) is provided in Table 13. Regarding the
results in the table, it can be found that:

• The obtained EAR for the events of various
sensors is very close to the values reported in the
literature that indicates combining aggregation
and summarization operations has effectively
reduced the volume of logged events. It should
be noted that the metric EARmax in the table
is reported for the Snort NIDS sensor.

• Regarding the number of event features used
in [18], our method has a relatively better rate
for the EPR. However, in our method, in addi-
tion to the event aggregation and summariza-
tion time, the time for event normalization and

filtration of noise events are also included in the
reported execution time. The maximum EPR
is achieved when all cores of the machine’s pro-
cessors perform only the event aggregation and
summarization tasks (aggregator workers). It
is worth noting that the high performance re-
ported for the SEAS-MR method [25] is because
this method is implemented and evaluated on
a Hadoop big data cluster, which is beyond the
scope of this paper.

• The proposed method can aggregate events with
minimal loss of security information, resulting
in a small number of high-quality cluster events
as output that are of rich use to networks’ ad-
ministrators.

As mentioned, the EAR is one of the most important
criteria for evaluating event aggregation approaches.
Hence a comparative analysis based on this metric is
presented in Table 14. In this analysis, the experiments
are performed based on important sensor events from
the SotM34 dataset. Regarding this table, the results
of the proposed method are presented with similar
methods, the implementation details of which are
available. In addition, we believe that the EAR results
alone do not correspond to the method’s performance.
Therefore other metrics, such as the EPR and the ILR,
are considered for the analysis.

It should be noted that each experiment was re-
peated ten times, and the average value of the metrics
for each method has been reported. Based on the re-
sults in the table, it can be seen that the proposed
method has a relative advantage over the other meth-
ods based on the considered metrics. Except for the
host-level sensors like Host OS, where the rate of the
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Table 12. The effect of aggregation method on the events related to the various IKC stages in the three standard datasets

Sensor Type

IKC Stage REC DEL INS ESC LAT ACT EXF

8536 2018 3635 1235 – – – – –
NIDS (Snort)

76.36% 0.15 66.03% 0.17 – – – – –

11339 3694 9859 2145 – – – – –
Firewall (IPTables)

67.43% 0.11 78.25% 0.2 – – – – –

– – 251 132 1028 624 422 297 734 321 –
Host OS (Linux Syslog)

– – 47.42% 0.15 39.3% 0.21 29.63% 0.27 56.27% 0.14 –

– – – – – – 3216 1745

S
o
tM

3
4

Web Server (Apache)
– – – – – – 45.75% 0.18

245 6 188 3 – – – – –
NIDS (Snort)

97.56% 0.09 98.41% 0.11 – – – – –

132 14 84 12 – – – – –
Firewall (pFsense)

89.4% 0.14 85.72% 0.12 – – – – –

Mail Server – 185 23 – – – – –

(Microsoft Exchange) – 87.57% 0.23 – – – – –

– – 145 69 212 85 89 23 339 146 –
Host OS

– – 52.42% 0.19 59.91% 0.27 74.16% 0.16 56.94% 0.21 –

– – 145 20 84 13 – – –
HIPS (McAfee)

– – 86.21% 0.22 84.53% 0.18 – – –

– – 7 2 11 2 – – –
Antivirus (McAfee)

– – 71.43% 0.25 81.82% 0.2 – – –

– – – 235 111 182 73 341 128 –
Domain Controller

– – – 52.77% 0.27 59.9% 0.28 62.47% 0.31 –

– – – – – – 269 102

B
r
y
a
n
t

Web Server (IIS)
– – – – – – 62.09% 0.25

12635842 3698521 8235691 5865210 – – – – –
NetFlow

70.73% 0.16 28.79% 0.09 – – – – –

Host OS – – 18365987 10256980 6985255 4586250 2156890 1365897 1458797 569876 –

(Authentication) – – 44.16% 0.12 34.35% 0.1 36.68% 0.12 60.94% 0.15 –

– – 4236587 1968532 2659872 897562 1035682 236584 3608569 2896532 –
Audit Log

– – 53.54% 0.15 66.26% 0.18 77.16% 0.26 19.74% 0.06 –

– – – – – – 7985620 1968533

L
A
N
L

DNS Server
– – – – – – 75.35% 0.29

Table 13. Comparison performance of our method and the related works to the event aggregation

Ref.

Metric # of Distinct
Sensors

# of Distinct
Features

EARmax Other Evaluated Metrics
Heterogenous
Aggregation

Scalable
Architecture

Stream
Processing

[16] 1 1 0.999 – ✕ ✕ ✓

[17] 1 5 0.85 – ✕ ✕ ✕

[18] 1 1 N/A* EPRmax = 11700, CQmax = 0.949 ✕ ✕ ✕

[19] 1 4 0.95 – ✕ ✕ ✕

[20] 1 3 0.986 – ✕ ✕ ✓

[21] 1 6 0.997 CQmax = 0.989 ✕ ✕ ✓

[22] 1 8 0.98 – ✕ ✕ ✓

[23] 1 5 0.98 – ✕ ✕ ✕

[24] 1 4 1.0 – ✕ ✕ ✕

[25] 1 3 0.4 EPRmax = 178571 ✕ ✓ ✕

[26] 1 2 0.993 ILRmax = 0 ✕ ✕ ✕

[27] 1 5 0.999 – ✕ ✕ ✕

[7] 8 5 N/A – ✓ ✕ ✕

[28] 2 6 0.841 – ✓ ✓ ✕

[29] 2 8 0.999 – ✓ ✓ ✓

Our Method 20 48 0.997
EPRmax = 15930, ILRmax = 0.06,

CQmax = 0.994
✓ ✓ ✓

* N/A: Not Available.

EAR is slightly lower than the superior method due
to the many features of this type of log, the proposed
method performs better for other sensors. Regarding
EPR, the proposed method also has a higher value
due to the scalable nature of the architecture.

Based on the results of evaluations performed on
the proposed aggregation method and comparing it
with other similar methods, it can be inferred that
the performance of our method can be influenced by
several factors such as event generation rate by the

sensor, the TWL, the number of event features, the
number of NSFS and SFS of a sensor, and also the
threshold values for each of the system parameters, i.e.,
SF threshold vectors. The effects of some mentioned
factors are analyzed and discussed in the following
sub-section.

5.2 Analysis and Discussion

After evaluating the proposed event aggregation
method, in this section, we examine the results of
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Table 14. The efficiency of our method against similar methods in terms of the most important evaluation metrics

Sensor Type Ref. # of Total Events # of Summarized Events EARavg (%) ILR EPRavg

[7]

69,039

18,778 72.9 0.45 118.5

[16] 7,801 88.8 0.38 65.6

[21] 3,797 94.6 0.41 81.3

[22] 5,937 91.5 0.31 75.6

[29] 8,008 88.5 0.39 66.2

NIDS (Snort)

Our Method 759 99 0.29 174.7

[7]

3,925

1,679 57.3 0.43 72.6

[16] 2,362 39.9 0.36 65.9

[21] 1,307 66.8 0.35 60.8

[22] 1,978 49.7 0.19 62.3

(Linux Syslog) [29] 2,382 39.4 0.35 76.3

Host OS

Our Method 1,456 63 0.15 178.4

[7]

7,621

3,406 55.4 0.41 81.3

[16] 4,709 38.3 0.25 75.9

[21] 3,284 57 0.31 69.3

[22] 3,680 51.8 0.23 72.5

(Apache) [29] 4,938 35.3 0.28 76.8

Web Server

Our Method 3,216 57.9 0.21 155.5

several analytical reviews on the datasets and the rela-
tionship of different parameters. Based on these anal-
yses, we show how the proposed aggregation method
helps to develop event preprocessing analyses such as
event aggregation to design a SIEM or SOC solution.

5.2.1 The Relationship between EAR and
TWL

During the execution of the proposed event aggrega-
tion method, one of the most influential parameters
for the aggregation performance is the value of TWL
parameter for the aggregation and summarization
analysis. According to the results of the experiments
in Figure 13, it can be inferred that the value of this
parameter has a direct impact on the EAR metric. Re-
garding the results, the longer the TWL is, the higher
the EAR will be. This analysis applies to all event
types of different detection levels, as shown in the
figure. It should be noted that Network-level sensors
have a higher EAR value than the sensors of the other
detection levels because of their higher event genera-
tion rates with less time for similar logged events.

5.2.2 The Relationship between EPR and
TWL

The second analysis investigates the effect of the TWL
on the execution time of the event aggregation algo-
rithms and thus examines the rate of EPR. Figure 14
shows the results of algorithm execution on the LANL
dataset’s events with different values for the TWL pa-
rameter. The results of the experiments show that for
all types of events, if the TWL is set to a smaller value,
the event aggregation, filtration, and event summa-
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Figure 13. The effect of TWL on the EAR metric

rization tasks (as core activities of the method) are
faster due to fewer comparisons and computations. In
addition, the number of features in NSFS and SFS for
an event type affects overall performance. For exam-
ple, based on Figure 14, DNS Server events are faster
processed than NetFlow due to having fewer features.

Another test concerning the EPR metric is the sys-
tem’s scalability in the face of a different range of
events received by the proposed aggregation system.
Each specific sensor generates events at a certain rate,
called the sensor’s event per second (EPS ), usually
between 1 and 50. For the sensors deployed in a mon-
itored network, an average EPS ratio is measurable
regarding a specified time interval. According to the
SANS report, [64], this ratio will reach more than
8000 EPS for an enterprise network, which in practice,
leads to generating a massive amount of alerts/events
in the network.
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Figure 14. The effect of TWL on the EPR metric

In our proposed event aggregation method, the al-
gorithms are designed to provide the highest level
of parallelism in event aggregation and summariza-
tion processes. More precisely, according to the Al-
gorithm 1, the logged events after being received are
divided into two levels: sensor type (Line 3) and event
type (Line 12), so that the relevant processes can be
performed on them. In the proposed system, different
event-processing tasks are done by different workers,
each bound to a CPU core. According to the use of
the ELK stack in the designing and implementation
of the proposed system, we have four different types
of workers, which are: 1) collector for receiving logged
events and ingesting them into the system, 2) parser
for event normalizing and transforming, 3) indexing
for normalizing events and searching on them, and 4)
aggregator for aggregating and summarizing indexed
events. To evaluate the scalability of the proposed
method and with the help of the different types of
workers defined above, an experiment was performed
using the LANL dataset with different EPS sizes, the
results of which are shown in Figure 15. As can be seen
in the figure, with increasing the number of workers
based on the EPS rate, the EPR ratio has remained
constant and has not changed significantly. Therefore,
it can be concluded that by increasing the processing
resources, the proposed method can handle different
input rates without decreasing performance and not
suffer from efficiency loss.

5.2.3 Aggregation Performance Curve (APC)

The other principal analysis in intrusion event aggre-
gation is drawing the aggregation performance curve
(APC) [26]. The APC presents the relationships be-
tween the EAR and ILR metrics when threshold vec-
tors of the SF set vary. In this experiment, the NIDS
events from the SotM34 dataset and the NIDS and
Firewall events from the Bryant dataset are used for
evaluated due to having similar event features. Ac-

cording to the experiment, the aggregation method
is repeated eight times based on the eight different
threshold vectors for the SF set of the events (Ta-
ble 15). The EAR and ILR metrics are computed for
each identical threshold vector in each algorithm iter-
ation. The result of the experiment is shown in Fig-
ure 16 for all the three mentioned sensor events (for
each curve, the leftmost point is for V1, and the right-
most point is for V8). Definable threshold vectors in
the event summarization component allow the secu-
rity administrator to adjust the threshold values of
each feature of different sensors based on the amount
of summary required. In other words, applying thresh-
old vector allows events to be summarized flexibly.

According to the experiment results, it can be in-
ferred that the EAR and ILR metrics directly impact
each other. In other words, when the value of the EAR
metric increases, the value of ILR increases too. In
addition, changes in the values of the threshold vec-
tor are also influential on the EAR and ILR values.
It means that changing from one threshold vector to
another one may cause a notable change in EAR and
ILR behavior or not. For example, changes in the val-
ues of the threshold vector, despite the increase in
EAR metric for the Firewall events, it does not have
much influence on the ILR metric due to the nature
of event feature values. Therefore, the efficiency of
the aggregation method cannot be judged from the
EAR alone. However, its impact on the ILR, which is
very important, must also be considered by security
analysts.

5.2.4 The Effect of the TWL on Storage
Space Reduction

The third analysis relates to the study of the effect
of TWL parameter on required storage space in real
applications, i.e., SIEM and SOC, which is essential
for security practitioners. In the mentioned systems,
the storage space is always one of the main challenges
in storing the low-level events for the rest analysis, i.e.,
attack strategy mining and forensics investigations.
Regarding the proposed aggregationmethod, the effect
of different TWL values on the needed storage is
illustrated in Figure 17 by using the SotM34 dataset
events. Based on the results, the longer the TWL
are adjusted, the less storage space is required to
store output summarized events. For example, for the
Firewall sensor, if the TWL is set to 18000 seconds (5
hours), the storage capacity is reduced by about six
times when the TWL is set to 30 seconds. Generally,
it is recommended to set a higher TWL where the rate
of event generation per second is high by the sensor
and the storage capacity is low.
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Figure 15. The effect of sensor’s average EPS on the EPR metric

Table 15. The threshold vectors for the SFS of the NIDS and Firewall sensors in our experiments

Vector#

SFS Name Source IP

Address
Source Port

Destination

Port

Event Type

(ID)
TTL Protocol

V1 4 1 1 3 1 2

V2 4 1 1 3 1 2

V3 3 1 1 3 1 2

V4 3 1 1 2 1 2

V5 2 1 1 2 1 2

V6 2 1 1 2 1 1

V7 2 1 1 1 1 1

V8 1 1 1 1 1 1
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6 Conclusion and FutureWork

One of the main promising approaches to track the
attacker’s behaviors and detect malicious activities
during targeted multi-stage attacks like APTs is us-
ing various heterogeneous security and non-security
sensors in different lines of defense in a monitored
network (Network, Host, and Application). One of
the main challenges of this approach is the massive
amount of logged events raised by heterogeneous sen-
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Figure 17. The effect of the TWL on storage space reduction

sors for tracking the malicious attackers behind APT
attacks. The main objective of this paper is to propose
an event aggregation method to reduce the volume
of logged events by heterogeneous sensors. These low-
level events are generated during the different attack
stages of an IKC model of complex targeted cybersecu-
rity attacks, e.g., APTs. Such event aggregation analy-
sis is a critical necessity to ease the management of the
events for later usage, i.e., event correlation analysis
for timely detection of APT attack scenarios. The in-
put of the proposed method is a set of events logged by
a set of heterogeneous sensors, which can be deployed
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in the three primary detection levels of a target net-
work (Network, Host, and Application). The proposed
aggregation method has three main components as
follows: 1) the event aggregation component for clus-
tering similar logged events of each sensor based on an
attribute-based similarity matching regarding some
non-summarizable features of the sensor type (NSF
set), 2) the event filtration component for eliminating
the noisy events from the output event clusters by us-
ing a clustering-based local outlier factor, and 3) the
event summarization component for fusing remaining
events and improving their quality by leveraging an
attribute-oriented induction method regarding some
summarizable features (SF feature set) of each sensor
type. Our implementation and experimental results
have proved that the proposed method makes it possi-
ble to summarize heterogeneous events by eliminating
redundant and false information with an acceptable
level for the performance metrics.

In the future, some improvements can be made
to the proposed aggregation method as follows: 1)
The aggregation component of the proposed method
works based on a fixed TWL for each of the sensors,
which may not be adequately efficient for environ-
ments where the attacker’s behavior changes dynami-
cally during attacks. To solve this problem, setting a
dynamic time window length for the sensors based on
predicting how long an attacker will stay in a unique
IKC stage of an APT attack will be a good solution.
Another improvement that can be made to the event
aggregation process is the ability to cluster the events
hierarchically. It seems that by using this type of clus-
tering analysis, the aggregation component can cluster
events based on different levels of granularity, which
makes it easier to analyze the clustering output for
the network security administrator, and 3) Using new
attack frameworks such as the MITRE ATT&CK, the
impact of event aggregation analysis can be exam-
ined in addition to the level of IKC stages (Tactic in
MITRE ATT&CK ), at the level of attack steps (Tech-
nique in MITRE ATT&CK ). The other main future
work is proposing a general event correlation frame-
work to detect APT attack scenarios based on the
IKC models by analyzing aggregated events produced
by the proposed aggregation method.
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Appendix
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Figure 18. Candidate NSFS and SFS of each heterogeneous

security and non-security sensor in different detection levels
(Network, Host, and Application)
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Table 16. Details of the existing publicly available datasets in the intrusion detection field
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Bryant 2017 2 Days 38 MB Exfiltration Windows 48 ✓ ✓ ✓ ✓ ✓

LANL 2015 58 Days ∼ 12 GB N/A* Windows 256 ✓ ✓ ✓ ✓ ✓

Defcon 2015 4 Days 24.5 GB N/A N/A 20 ✕ ✕ ✓ ✓ ✕

ICTF 2015 1 Day 10 GB N/A Linux 36 ✕ ✓ ✓ ✓ ✕

ISCX 2012 7 Days 86 GB
Island

Hopping
Windows
and Linux

24 ✓ ✓ ✓ ✕ ✓

CDX 2011 4 Days 12 GB N/A Linux 42 ✓ ✓ ✓ ✕ ✓

The Internet
Traffic Archive

2010 NA 5 GB N/A Linux N/A ✕ ✓ ✓ ✓ ✕

SotM34 2009 ∼ 4 Weeks 52.7 MB Data Theft Linux N/A ✓ ✓ ✓ ✓ ✓

LBNL 2008 ∼ 5 Days 11 GB N/A N/A
A few

Thousand
✕ ✓ ✕ ✕ ✕

DARPA 2000 7 Weeks 4 GB
DoS, R2L,
U2R, Probe

Unix 51 ✓ ✕ ✓ ✕ ✓

D
a
ta

se
t

KDD 1999 7 Weeks 743 GB
DoS, R2L,

U2R
Unix 51 ✓ ✕ ✓ ✕ ✓

* N/A: Not Available.

Table 17. The threshold vectors for SF features of the sensors in our experiments

Sensor Type {SF Number (Threshold Value)}

NIDS (Snort) {1(2), 2(3), 3(1), 5(2), 7(1)}

Firewall (IPTables) {1(2), 2(3), 3(1), 4(2), 5(2), 7(1)}

Host OS (Linux Syslog) {1(2), 4(4), 8(3), 9(1), 11(2), 12(1)}S
o
tM

3
4

Web Server (Apache) {17(2), 19(2)}

NIDS (Snort) {1(2), 2(3), 3(1), 5(2), 7(1)}

Firewall (pFsense) {1(2), 2(3), 3(1), 4(2), 5(2), 7(1)}

HIPS (McAfee) {8(3), 17(2), 24(2), 25(1), 34(3), 35(2)}

Antivirus (McAfee) {17(2), 24(2), 25(1), 34(3), 35(2)}

Host OS {1(2), 4(4), 8(3), 9(1), 11(2), 12(1)}

Web Server (IIS) {2(3), 3(1), 5(2), 7(1), 17(2), 19(2)}

B
r
y
a
n
t

Mail Server (Microsoft Exchange) {1(2), 2(3), 27(1), 39(2)}

NetFlow {1(2), 2(3), 3(1), 4(2), 5(2), 7(1)}

Host OS (Authentication) {8(3), 17(2), 24(2), 25(1), 34(3), 35(2)}

Audit Log {1(2), 4(4), 9(1), 11(2), 12(1)}L
A
N
L

DNS Server {32(2), 34(2)}
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Figure 19. The used concept tree for the event type feature in our experiments
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