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A B S T R A C T

Secure multi-party computation (MPC) allows a group of parties to compute a

function on their private inputs securely. Classic MPC protocols for two parties

use Yao’s garbled circuit (GC) or the Goldreich-Micali-Wigderson (GMW)

protocol. In this paper, we propose MISC, a multi-input secure computation

protocol, by combining GC and GMW in a novel way. MISC can evaluate

multi-input AND gates, which can reduce the round complexity. Moreover,

MISC reduces the communication overhead by 1.7× and 2.4× for 2-input

and by 2× and 2.8× for 4-input AND gates compared to the state-of-the-art

GMW-style and GC-style protocols, respectively. In order to use the MISC

efficiently in different applications, we redesign common building blocks with

multi-input AND gates such as Equality checking, Maxpool, Comparison, and

Argmax/Argmin. Results on privacy-preserving applications, e.g., circuit-based

private set intersection (PSI) and private machine learning (CNN inference),

show that compared to GMW, MISC improves the total communication

overhead by 3× and the total run time by 1.5×.
© 2023 ISC. All rights reserved.

1 Introduction

Secure computation allows two or more parties to
securely evaluate a function on their private in-

puts while revealing nothing but the result. During
the past decade, it has received significant improve-
ments and was used in various applications such as
privacy-preserving auctions [1], secure analysis of
genomes [2, 3], post-quantum signature [4], and re-
cently in the domain of privacy-preserving machine
learning (PPML) [5–7]. Secure Two-party computa-
tion (STPC) protocols for Boolean circuits use either:
1) the constant round Yao’s garbled circuits (GC)
protocol [8], or 2) the multi-round Goldreich-Micali-
Wigderson (GMW) protocol [9].

∗ Corresponding author.

Email addresses: farhadtaheri@ce.sharif.edu,
sbayat@sharif.edu

ISSN: 2008-2045 © 2023 ISC. All rights reserved.

In the GC approach, the inputs and outputs of the
circuit’s gates are assigned by randomly chosen κ-bit
labels, where κ is the symmetric security parameter
(e.g., κ = 128). Thereby, parties cannot determine
the intermediate values and input values of the other
party (actual value) during the function evaluation. In
GC, exclusive OR (XOR) gates can be evaluated for
free [10]. However, for each AND gate, a garbled ta-
ble of size 2κ-bit [11] must be sent in the setup phase
using function-dependent preprocessing. Rosulek and
Roy bypass this lower bound with a novel slicing
and dicing technique to 1.5κ+5-bit [12]. Generating
the garbled table requires symmetric encryption in
the form of fixed-key AES operations [13]. GC-based
protocols perform in the online phase symmetric-key
operations for each AND gate and need substantial
memory to store the garbled tables [11]. As a concrete
example, to evaluate the private set intersection (PSI)
circuit of [14] for sets of 16,384 elements consisting of
6,724,062 2-input AND gates, which requires sending
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a GC of size 215 MBytes. The main advantage of the
GC protocol is its constant round complexity, and
most of the communication can be performed in the
setup phase with function-dependent preprocessing.
In GMW, each party secret-shares its private inputs
using an XOR-based sharing scheme. Both parties
then evaluate the function with their secret shares to
obtain the shares of the outputs of the circuit. The
final output is obtained by combining these output
shares. GMW has a cheap online phase that requires
not even symmetric cryptography, but requires sev-
eral communication rounds linear in the multiplicative
depth of the circuit. In order to reduce the round com-
plexity of GMW, previous works [15–17] use circuits
composed of multi-input gates/tables, and lookup ta-
bles (LUTs) instead 2-input gates.

In [15], the authors focus on Beaver triple exten-
sion [18] to achieve round-efficient STPC using a semi-
trusted third party. They assume that a third party can
compute all pre-computations without using expen-
sive cryptographic primitives such as homomorphic
encryption (HE) or oblivious transfer (OT). The main
drawback of [15] is the use of this semi-trusted party
and the assumption that it does not collude with any
of the other parties. In [16], the authors modify the 2-
input Boolean gates in GMW to n-input lookup tables
and propose two efficient protocols to evaluate lookup
tables securely. They have two major bottlenecks in
their work. First, extracting XOR gates from lookup
tables requires post-processing efforts, and extracting
all XOR gates is still challenging for real-world applica-
tions. Second, there is no conversion between the pro-
tocols proposed in [16] and other 2PC protocols, which
make it inflexible in practice. ABY 2.0 [17] is an effi-
cient mixed-protocol STPC framework that improves
over GMW and contains the previously most efficient
construction for multi-input AND gates. However, this
protocol increases the total communication overhead.
Moreover, in previous works [19, 20], the authors pro-
pose a mixed-protocol framework to achieve higher
performance. For instance, they employ an arithmetic
sharing protocol for linear functions and GMW or
GC for non-linear functions for a single application.
In this work, to reduce the communication complex-
ity, we combine ideas of GC and GMW to design an
STPC protocol called MISC. Moreover, this protocol
can evaluate multi-input AND gates to reduce the
round complexity. To improve flexibility, we propose a
conversion protocol between MISC and other STPCs.

1.1 Our Contributions

We propose a multi-input secure two-party computa-
tion protocol called MISC. Our work combines both
STPC protocols, Yao’s GC and GMW similar to [21],
on the gate level, which reduces communication and

round complexity. Moreover, MISC can convert to
other STPC protocols such as arithmetic sharing,
GMW, and GC. Our proposed protocol reduces the
communication overhead for 2-input AND gate by
1.7×. Furthermore, by evaluating one N-input AND
gate instead of (N-1) 2-input AND gates, the proposed
protocol can reduce the number of rounds. We evalu-
ate our protocol on several privacy-preserving appli-
cations, such as private machine learning and private
set intersection. In summary, our main contributions
are as follows:

• We propose MISC, a secure two-party computa-
tion protocol that reduces round complexity and
OT overhead for multi-input AND gates with-
out adding computation complexity in the setup
and online phases. MISC can reduce the com-
munication overhead by 1.7× for each 2-input
AND gate and 2× for each 4-input AND gate
compared to ABY2.0 [17].

• We introduce conversions between MISC, arith-
metic sharing, and GC with low overhead. This
enables using MISC more efficiently in privacy-
preserving applications.

• We redesign standard building blocks such
as Equality Check, Maxpool/Minpool, and
Argmax/Argmin using multi-input AND gates.
• We also improve the total communication over-
head to 3× and the total time up to 1.7× in
these applications.

We explain preliminaries and related works in Sec-
tion 2. In Section 3, our MISC protocol and also the
underlying OT protocol are described. Conversions be-
tween MISC and other STPC protocols are provided
in Section 4. In Section 5 and Section 6, we present
extensive evaluations of MISC. Finally, we conclude
this work in Section 7.

2 Preliminaries and Previous Works

In this section, we provide preliminaries and previous
works for STPC and define our security model.

2.1 Semi-Honest Security Model

In this work, we work in the semi-honest (passive
or honest-but-curious) security model. In this model,
each party follows the protocol but wants to learn
information about the other party’s inputs or inter-
mediate values that cannot be deduced from its in-
puts or the output. Although there is no guarantee
for each party to not deviate from the protocol [22],
it allows constructing of highly efficient protocols [9–
12, 16, 17, 23, 24]. Moreover, such protocols can be
used as stepping towards protocols with stronger se-
curity [25].
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2.2 Oblivious Transfer

Oblivious Transfer (OT) is one of the main building
blocks for secure computation [26]. In OTn

1 the sender
S wants to send a secret to the receiver R. S provides
n inputs (s1, s2, . . . , sn) to OT and R inputs a number
r (1 ≤ r ≤ n). As output, R obliviously receives sr
and does not learn any information about the other
inputs of S, whereas S does not learn which input was
selected by R.

OT is a fundamental building block for STPC and re-
quires expensive public-key cryptography [27]. In [28],
the OT Extension technique was introduced, which
allows to generate many OTs from a small number
(equal to the security parameter) of base OTs using
only fast symmetric-key cryptography.

Concretely, the OT Extension implementation
of [28] generates around 1 million OT2

1 per second
with semi-honest security. Random OT (R-OT) is a
special-purpose OT functionality, tailored for more
efficient secure computation [28]. In an R-OT2

1, the
sender inputs no messages to the OT protocol, but
receives two messages m0,m1 as a random protocol
output. In contrast, the receiver still inputs its se-
lection bit b and obtains the chosen message mb as
output. OT precomputations [29] allows to move all
cryptographic operations of OT to a setup phase,
resulting in a very efficient online phase.

2.3 Related Work on STPC

In this section, we discuss the main secure two-party
computation protocols.

2.3.1 Yao’s Garbled Circuit

Yao introduced a secure two-party computation
protocol in the 1980s [8] called Garbled Circuit
(GC). The GC protocol has a constant number of
rounds and no interaction in the online phase us-
ing function-dependent preprocessing. However, the
input-dependant online phase requires symmetric
encryption. Thereby, the GC protocol is suitable
for WAN networks [19]. Today’s most efficient in-
stantiation of the GC protocol allows free XOR
gates [10], and each AND gate require symmetric
cryptographic operations using fixed-key AES [13]
and sending 2κ-bits [11] which was recently improved
to 1.5κ+5-bits [12].

2.3.2 Secret Sharing (GMW)

The GMW protocol [9] uses secret sharing to compute
the function by both parties interactively. Like GC,
functions in the GMW protocol are represented as the
Boolean circuits. In this protocol, each party has a

share for each wire. For instance, for a wire with value
v, one party has share v1, and the other has share v2
s.t. v = v1 ⊕ v2. Each XOR gate can be computed
without interaction by each party locally XORing its
shares, and thus evaluation of XOR gates is free. Un-
like XOR gates, AND gates need multiplication triples
for evaluation [30], and these can be precomputed ef-
ficiently using OT extension [28]. This makes GMW
a non-constant round in the online phase. Note that
each AND gate of the same layer in the circuit can
be evaluated in parallel. However, the evaluation time
increases with increasing circuit depth. Nevertheless,
the GMW protocol has low online computation and
communication complexity due to the lack of sym-
metric encryption in the online phase, and labels are
only 1-bit. Hence, the GMW protocol is appropriate
for LAN networks [19].

The GMW protocol, despite little communication
and computation overhead, has a multi-round online
phase. This round complexity makes it inefficient in
many real-world applications [15–17, 23]. [15] shows
that 99% of the online time is caused by communica-
tion latency.

Several works improved over the basic GMW proto-
col: [15] efficiently evaluated multi-input AND gates
using a trusted third party. Besides using the trusted
party assumption, this protocol has significant com-
putation overhead for gates with many inputs. [16]
proposed a new protocol to evaluate functions with
Lookup Tables (LUT) rather than Boolean gates to
reduce round complexity. To this end, the authors de-
signed two protocols for the LUT-based circuit called
OP-LUT for optimized online communication, and
SP-LUT for optimized setup/total communication.
ABY 2.0 [17] is an efficient mixed-protocol STPC
protocol. It uses a different perspective on Beaver’s
circuit randomization [30] and considers multi-input
AND gate evaluation.

2.3.3 Combination of GC + GMW for
2-Input Gates

Yalame et al. [21] proposed a new protocol based on
combining GC and GMW to reduce the communica-
tion overhead of 2-input AND gates. In this protocol,
they considered two parties named the garbler and
the evaluator similar to the GC protocol. However,
evaluating a 2-input AND gate, they used OT, simi-
lar to the GMW protocol. The garbler generates the
garbled table with a random 2-bit label without en-
cryption and sends the labels for the circuit’s inputs
to the evaluator, similar to GC. However, for evalu-
ating AND gates, the parties use OT2

1 based on the
gate’s input labels. This protocol reduces the commu-
nication complexity from OT4

1 (or 2× R-OT2
1 [28]) in

ISeCure



166 MISC: Multi-Input Secure Two-Party Computation — Taheri, and Bayat-Sarmadi

W0

W1

Wg

2-bit label

2-bit label

2-bit label
W0

W1

WN-1

Wg
2-bit label2-bit label

2-bit label

2-bit label

(a) N-input AND Gate: (b) 2-input XOR Gate: FreeOT
2
1

N-1

Figure 1. Gates and costs in MISC
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Figure 2. Partitioning XOR gates in a circuit into XOR Con-

nected Components (XCCs) (We highlight the XCC connection
with gray color)

GMW to 1×OT2
1. In our work, we extend the protocol

of [21] from 2-input to multi-input gates and provide
conversion to other secure computation protocols.

3 Our Proposed Scheme: MISC

In this work, we design the multi-input secure two-
party computation protocol MISC. To this end, we pro-
pose a new protocol based on GC and GMW features
similar to [21]. As mentioned earlier, round complex-
ity is one of the primary disadvantages of GMW. Our
protocol reduces the round complexity and the com-
munication cost of GMW-style protocols. In MISC,
XOR gates are evaluated for free, and we use OT for
each AND gate in the circuit, similar to the GMW-
style protocols. Furthermore, the label size in MISC is
2-bit. The online computation cost for MISC is much
less than GC with 128-bit labels. We also need no
symmetric cryptography, such as AES, to evaluate
each AND gate in the online phase. Figure 1 shows
the gates used in MISC.

MISC reduces R-OT4
1 or 2× R-OT2

1 in [16] to R-
OT2

1 for 2-input AND gates. For multi-input AND
gates, MISC reduces the OT overhead in the most re-
cent GMW-style protocol [17]. MISC is an improved
version of the protocol of [21], and we make it compat-
ible with multi-input AND gates to reduce the round
complexity. Also, MISC conversions are designed and
optimized to be used efficiently in applications.

3.1 Notations

We write x⊕ y for bitwise XOR between x and y with
the same length and a|b for concatenation of a and b.

We denote ∈R for uniform random choice, and {0, 1}n
denotes a binary string with length n. κ denotes the
symmetric security parameter. We denote ⟨x⟩t as a
shared variable, and t ∈ {R,A, Y } indicates the type
of sharing, where R denotes the MISC protocol, A
denotes Arithmetic sharing, and Y denotes Yao.

Wα
β denotes the wire label with logical value α on

the wire β. In the STPC, if one party knows the value
Wα

β , he cannot find α. Also, given Wα
β , one cannot

obtain W 1−α
β for 0 and 1 values.

As in [21], we also make use of XOR connected
components (XCCs) in MISC. In an XCC, the XOR
gates are connected without any AND gate. We define
xcc() as a function to identify the XCC of each XOR
gate. nXCC represents the number of XCCs in the
circuit. Figure 2 shows a circuit with three XCCs.
For instance, in this figure, gates 1, 2, and 3 create
the XCC condition. The limitation of protocol in [21]
and MISC is the XCC problem, which means that to
preserve security, the inputs of an AND gate must not
come from one XOR group. In the XCC, the number
of states is reduced, which may lead to a security
problem. More information about the XCC condition
is explained in [21].

3.2 MISC Approach

The main goal of our protocol is to reduce the com-
munication and round complexity of AND gates in
GMW-style protocols. Similar to the GC protocol [8],
MISC uses a garbled table for each gate, and evaluat-
ing XOR gates is free. For the sake of simplicity, we
described the protocol for a 3-input AND gate. The
routine for AND gates with more inputs is similar.

To design our round-efficient protocol, we use a 2-bit
label for each wire. Following the point-and-permute
technique for GC [24], the most significant bit (MSB)
of the wire label is different for the 0 and 1 values.
The relation between the MSB and the actual value
of the wire is random and secret. Table 1 shows a
sample garbled table for a 3-input AND gate. For each
row in the garbled table, we create a 2-bit index, the
concatenation of the MSBs of Wb and Wc (i.e., index
= MSB(Wb)|MSB(Wc)). For instance, as shown in
the first row of Table 1, if the actual value is 0 for wire
b and 0 for wire c, the random labels of these wires are
11 and 01, so the index is 10. The label has another
randomly selected bit, the least significant bit (LSB),
in addition to the MSB.

Each 3-input AND gate has six input labels of 2-bit:
W 0

a , W
1
a , W

0
b , W

1
b , W

0
c , W

1
c . Although these have 12

bits, there are only 212/23 = 512 different possibilities
because the MSBs of the two labels per wire are op-
posite. We construct 26 = 64 different garbling groups
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Table 1. Sample garbling for 3-input AND gate (The first

four columns are the actual values of input and output wires)

Input Output Garbled Input Garbled Output
Index

a b c g Wa Wb Wc Wg

0 0 0 0 01 11 01 W 0
g 10

0 0 1 0 01 11 11 W 0
g 11

0 1 0 0 01 01 01 W 0
g 00

0 1 1 0 01 01 11 W 0
g 01

1 0 0 0 11 11 01 W 0
g 10

1 0 1 0 11 11 11 W 0
g 11

1 1 0 0 11 01 01 W 0
g 00

1 1 1 1 11 01 11 W 1
g 01

based on the six LSBs of the input labels. The 6-bit
number of each group is obtained from the concatena-
tion of the six LSBs of the input labels. Each garbling
group has eight values are determined based on all
possible combinations of the three input labels of the
AND gate. The evaluator who has the input’s labels
computes α = LSB(Wa⊕Wb⊕Wc). Also, the garbler
who knows the garbling group calculates the following
parameters for each garbling group as follows:

αb = LSB(W 0
b ⊕W 1

b ),

αc = LSB(W 0
c ⊕W 1

c ),

αd = LSB(W 1
a ⊕W 1

b ⊕W 1
c ).

(1)

Parameters αb, αc, αd are the same for each garbling
group. For a better explanation, we show the garbling
groups (G0 to G63 ) of a 3-input AND gate in Table 2.
Each AND gate corresponds to one cell in Table 2.
The garbler determines the table’s row and has no
information about the column and the evaluator’s in-
put label. The evaluator only knows the input’s labels
(columns in Table 2) and has no information about
the number of the garbling group (row in Table 2). It
would be ideal if the evaluator could use α as input
for OT 2

1 and receive the output label from the garbler.
However, as shown in Table 2, for example, in the
group G0, α = 0 for all input values. Therefore, two
other parameters, called Cond and M , are used.

The Cond value is 1 for each cell with an asterisk in
Table 2. The evaluator calculates the Cond parameter
by comparing the AND gate index bit with the 2-bit
number ρ that the garbler sends to the evaluator.
The garbler computes ρ by concatenating the MSBs
of W ᾱb

b and W ᾱc
c : ρ = MSB(W ᾱb

b )|MSB(W ᾱc
c ).

If ρ equals the index, the evaluator sets Cond to
1, and 0 otherwise. For instance, in Figure 3, α
and Cond are calculated for eight states of an
AND gate. This gate belongs to the garbling group
G63 (LSB(W 0

a )|LSB(W 1
a )|LSB(W 0

b )|LSB(W 1
b )|LSB(W 0

c )|
LSB(W 1

c ) = (111111)2 = 63) and Cond is 1 when the
inputs are equal to 011 or 111 (cf. Table 2). In the

Wa

Wb

Wc

Wg11

01

01

(a) α = 1, M = 0, Cond = 0

Wa

Wb

Wc

Wg11

11

01

(b) α = 1, M = 0, Cond = 0

Wa

Wb

Wc

Wg01

01

01

(c) α = 1, M = 0, Cond = 0

Wa

Wb

Wc

Wg01

11

01

(d) α = 1, M = 0, Cond = 1

Wa

Wb

Wc

Wg11

01

11

(e) α = 1, M = 1, Cond = 0

Wa

Wb

Wc

Wg11

11

11

(f) α = 1, M = 1, Cond = 0

Wa

Wb

Wc

Wg01

01

11

(g) α = 1, M = 1, Cond = 0

Wa

Wb

Wc

Wg01

11

11

(h) α = 1, M = 1, Cond = 1

Figure 3. Determining α, M, and Cond for eight 3-input AND
gates as an example

2-input AND gate, the evaluator can use α ⊕ Cond
as input for OT2

1 to receive the output label [21].
The result of α⊕ Cond for selecting the output label
between W 0 and W 1 is always different. The relation
between this bit and the output value of the gate
is uniformly random [21]. The highlighted part of
Table 2 indicates the corresponding garbling groups
for a 2-input AND gate. However, for an AND gate
with more than two inputs, we cannot use α⊕ Cond
because the value of this equation is not different for
the 0 and 1 output labels. For example, as shown in
Table 2, the value of α⊕Cond is the same in columns
3 and 7 while we want the value of α ⊕ Cond for
column 7 to be different from the other columns. So
we need one more bit to use in OT4

1 for a 3-input
AND gate. We use this bit to divide the table into
two parts. To this end, we use a bit referred to as M .
This bit is the MSB of the label Wa: M = MSB(Wa).

The evaluator calculates the index bit by concate-
nating the MSB of the labels Wb and Wc; then com-
pares it with ρ to compute Cond. In the next step,
the evaluator concatenates M = MSB(Wa), and
α⊕ Cond; into a 2-bit number as input for OT4

1. On
the other hand, the garbler provides the inputs for
OT4

1 according to the value of (αb, αc, αd). The evalu-
ator then obtains the corresponding AND gate output
label from OT4

1. The details for OT inputs are given
in Section 3.3 and Section 3.4, and the overhead of
the OT is investigated in Section 3.6.

A similar approach can be used for an AND gate
with more than three inputs. For example, in a 4-input
AND gate, the garbler sends ρ, the concatenation
of the MSBs of Wc and Wd, to the evaluator. The
evaluator calculates Cond and provides Cond with
two other MSBs of Wa and Wb as the input for OT8

1

till the output label is determined. Thus, this protocol

can evaluate an N-input AND gate with OT2N−1

1 in
two rounds.

The only problem of this scheme is the evaluation
of the AND gates when inputs come from one XCC.
For these gates, we cannot run this protocol and must
use typical STPC protocols such as GMW without
improvement. However, this is a rarely-happening con-
dition in privacy-preserving applications. It never hap-
pens in the building blocks we investigate in Section 5:
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Table 2. All possible Garbling Groups for 3-input AND gates (An asterisk shows the cell when Cond = 1 and the highlighted part

of the table indicates the garbling groups for 2-input AND gates)
Garbled input

LSB(W 0
a )|LSB(W 1

a )|
LSB(W 0

b )|LSB(W 1
b )|

LSB(W 0
c )|LSB(W 1

c )

Garbling
Group

W 0
a

W 0
b

W 0
c

W 0
a

W 0
b

W 1
c

W 0
a

W 1
b

W 0
c

W 0
a

W 1
b

W 1
c

W 1
a

W 0
b

W 0
c

W 1
a

W 0
b

W 1
c

W 1
a

W 1
b

W 0
c

W 1
a

W 1
b

W 1
c

000000 G0 α = 0 α = 0 α = 0 α = 0* α = 0 α = 0 α = 0 α = 0*
000001 G1 α = 0 α = 1* α = 0 α = 1 α = 0 α = 1* α = 0 α = 1
000010 G2 α = 1 α = 0* α = 1 α = 0 α = 1 α = 0* α = 1 α = 0
000011 G3 α = 1 α = 1 α = 1 α = 1* α = 1 α = 1 α = 1 α = 1*
000100 G4 α = 0 α = 0 α = 1* α = 1 α = 0 α = 0 α = 1* α = 1
000101 G5 α = 0* α = 1 α = 1 α = 0 α = 0* α = 1 α = 1 α = 0
000110 G6 α = 1* α = 0 α = 0* α = 1 α = 1* α = 0 α = 0* α = 1
000111 G7 α = 1 α = 1 α = 0* α = 0 α = 1 α = 1 α = 0* α = 0
001000 G8 α = 1 α = 1 α = 0 α = 0 α = 1 α = 1 α = 0 α = 0
001001 G9 α = 1 α = 0 α = 0 α = 1 α = 1 α = 0 α = 0 α = 1
001010 G10 α = 0* α = 1 α = 1 α = 0 α = 0* α = 1 α = 1 α = 0
001011 G11 α = 0* α = 0 α = 1* α = 1 α = 0* α = 0 α = 1* α = 1
001100 G12 α = 1 α = 1 α = 1 α = 1* α = 1 α = 1 α = 1 α = 1*
001101 G13 α = 1 α = 0* α = 1 α = 0 α = 1 α = 0* α = 1 α = 0
001110 G14 α = 0 α = 1* α = 0 α = 1 α = 0 α = 1* α = 0 α = 1
001111 G15 α = 0 α = 0 α = 0 α = 0* α = 0 α = 0 α = 0 α = 0*
010000 G16 α = 0 α = 0 α = 0 α = 0* α = 0 α = 0 α = 0 α = 0*
010001 G17 α = 0 α = 1* α = 0 α = 1 α = 0 α = 1* α = 0 α = 1
010010 G18 α = 1 α = 0* α = 1 α = 0 α = 1 α = 0* α = 1 α = 0
010011 G19 α = 1 α = 1 α = 1 α = 1* α = 1 α = 1 α = 1 α = 1*
010100 G20 α = 0 α = 0 α = 1* α = 1 α = 0 α = 0 α = 1* α = 1
010101 G21 α = 0* α = 1 α = 1 α = 0 α = 0* α = 1 α = 1 α = 0
010110 G22 α = 1* α = 0 α = 0 α = 1 α = 1* α = 0 α = 0 α = 1
010111 G23 α = 1 α = 1 α = 0* α = 0 α = 1 α = 1 α = 0* α = 0
011000 G24 α = 1 α = 1 α = 0* α = 0 α = 1 α = 1 α = 0* α = 0
011001 G25 α = 1* α = 0 α = 0 α = 1 α = 1* α = 0 α = 0 α = 1
011010 G26 α = 0* α = 1 α = 1 α = 0 α = 0* α = 1 α = 1 α = 0
011011 G27 α = 0 α = 0 α = 1* α = 1 α = 0 α = 0 α = 1* α = 1
011100 G28 α = 1 α = 1 α = 1 α = 1* α = 1 α = 1 α = 1 α = 1*
011101 G29 α = 1 α = 0* α = 1 α = 0 α = 1 α = 0* α = 1 α = 0
011110 G30 α = 0 α = 1* α = 0 α = 1 α = 0 α = 1* α = 0 α = 1
011111 G31 α = 0 α = 0 α = 0 α = 0* α = 0 α = 0 α = 0 α = 0*
100000 G32 α = 1 α = 1 α = 1 α = 1* α = 1 α = 1 α = 1 α = 1*
100001 G33 α = 1 α = 0* α = 1 α = 0 α = 1 α = 0* α = 1 α = 0
100010 G34 α = 0 α = 1* α = 0 α = 1 α = 0 α = 1* α = 0 α = 1
100011 G35 α = 0 α = 0 α = 0 α = 0* α = 0 α = 0 α = 0 α = 0*
100100 G36 α = 1 α = 1 α = 0* α = 0 α = 1 α = 1 α = 0* α = 0
100101 G37 α = 1* α = 0 α = 0 α = 1 α = 1* α = 0 α = 0 α = 1
100110 G38 α = 0* α = 1 α = 1 α = 0 α = 0* α = 1 α = 1 α = 0
100111 G39 α = 0 α = 0 α = 1* α = 1 α = 0 α = 0 α = 1* α = 1
101000 G40 α = 0 α = 0 α = 1* α = 1 α = 0 α = 0 α = 1* α = 1
101001 G41 α = 0* α = 1 α = 1 α = 0 α = 0* α = 1 α = 1 α = 0
101010 G42 α = 1* α = 0 α = 0 α = 1 α = 1* α = 0 α = 0 α = 1
101011 G43 α = 1 α = 1 α = 0* α = 0 α = 1 α = 1 α = 0* α = 0
101100 G44 α = 0 α = 0 α = 0 α = 0* α = 0 α = 0 α = 0 α = 0*
101101 G45 α = 0 α = 1* α = 0 α = 1 α = 0 α = 1* α = 0 α = 1
101110 G46 α = 1 α = 0* α = 1 α = 0 α = 1 α = 0* α = 1 α = 0
101111 G47 α = 1 α = 1 α = 1 α = 1* α = 1 α = 1 α = 1 α = 1*
110000 G48 α = 1 α = 1 α = 1 α = 1* α = 1 α = 1 α = 1 α = 1*
110001 G49 α = 1 α = 0* α = 1 α = 0 α = 1 α = 0* α = 1 α = 0
110010 G50 α = 0 α = 1* α = 0 α = 1 α = 0 α = 1* α = 0 α = 1
110011 G51 α = 0 α = 0 α = 0 α = 0* α = 0 α = 0 α = 0 α = 0*
110100 G52 α = 1 α = 1 α = 0* α = 0 α = 1 α = 1 α = 0* α = 0
110101 G53 α = 1* α = 0 α = 0 α = 1 α = 1* α = 0 α = 0 α = 1
110110 G54 α = 0* α = 1 α = 1 α = 0 α = 0* α = 1 α = 1 α = 0
110111 G55 α = 0 α = 0 α = 1* α = 1 α = 0 α = 0 α = 1* α = 1
111000 G56 α = 0 α = 0 α = 1* α = 1 α = 0 α = 0 α = 1* α = 1
111001 G57 α = 0* α = 1 α = 1 α = 0 α = 0* α = 1 α = 1 α = 0
111010 G58 α = 1* α = 0 α = 0 α = 1 α = 1* α = 0 α = 0 α = 1
111011 G59 α = 1 α = 1 α = 0* α = 0 α = 1 α = 1 α = 0* α = 0
111100 G60 α = 0 α = 0 α = 0 α = 0* α = 0 α = 0 α = 0 α = 0*
111101 G61 α = 0 α = 1* α = 0 α = 1 α = 0 α = 1* α = 0 α = 1
111110 G62 α = 1 α = 0* α = 1 α = 0 α = 1 α = 0* α = 1 α = 0
111111 G63 α = 1 α = 1 α = 1 α = 1* α = 1 α = 1 α = 1 α = 1*
actual output 0 0 0 0 0 0 0 1
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Equality check, Maxpool, and Argmin.

If the circuit face with the XCC condition, which
means the input of the AND gate comes from one
XCC (cf. Figure 2), our proposed scheme uses GMW:
The garbler uses OT 8

1 to send the output label to the
evaluator for a 3-input AND gate.

3.3 MISC Garbling

The MISC garbling is given in Algorithm 1 and sum-
marized as follows:

• Step 1: The scheme needs a random bit for each
XCC to work. The algorithm starts by gener-
ating an nXCC-bit random number, namely S.
Each bit in S corresponds to one XCC in the
circuit.

• Step 2: Labels of all wires connected to XOR
gates are assigned as follows:

• Step 2.1: XOR gates are processed in topologi-
cal order, and their XCC are determined.

• Step 2.2: For each XOR gate, if its input wires
are unlabeled, label values are assigned. For an
input wire, the label value W 0 (corresponding
to the actual value zero) is a random number. Its
labelW 1 (corresponding to one) is calculated by
XORing W 0 and R, where R is a 2-bit number
with its MSB equal to one and its LSB equal to
the corresponding bit of the current XCC. The
label of the output wire is obtained by XORing
the corresponding input garbled values (this is
similar to the free XOR technique in GC [10]).

• Step 3: Labels are assigned to the remaining
unlabeled wires (AND gates without XCCs).

• Step 4: As in Yao’s GC, the garbler sends the
input labels to evaluator using OT2

1.
• Step 5: AND gates are evaluated interactively
in this step.

• Step 5.1: αb, αc, and αd are computed for the
current AND gate.

• Step 5.2: A 2-bit value ρ is calculated according
to the input labels of the current AND gate and
its values αb and αc. The parameter ρ is then
sent to the evaluator.

• Step 5.3: The garbler acts as the sender of OT4
1

with inputs according to (αb, αc, αd).
• Step 6: In this step, the garbler provides the
evaluator with the required information to de-
crypt the output wires by sending the MSB of
the zero output labels (this is similar to Yao’s
GC [12]).

3.4 MISC Evaluation

The MISC evaluation is given in Algorithm 2 and
summarized as follows:

Algorithm 1 MISC Garbling

Procedure GARBLE
1: S ∈R {0, 1}nXCC

2: for each XOR gate g with input a, b (in topological
order)
2.1: R← 1|S[xcc(g)]
2.2: if (label value of a has not been assigned)

W 0
a ∈R {0, 1}2, W 1

a ←W 0
a ⊕R

if (label value of b has not been assigned)
W 0

b ∈R {0, 1}2, W 1
b ←W 0

b ⊕R
W 0

g ←W 0
a ⊕W 0

b , W
1
g ←W 0

g ⊕R
end for

3: for each wire i that label values have not been
assigned
W 0

i ∈R {0, 1}2, tmp ∈R {0, 1}
W 1

i ←MSB(W 0
i )|tmp

end for
4: for each input wire i of the circuit

Send corresponding label Wi to
evaluator (using OT2

1)
5: for each AND gate g with inputs a, b, c

5.1: αb ← LSB(W 1
b ⊕W 0

b )
αc ← LSB(W 1

c ⊕W 1
c )

αd ← LSB(W 1
a ⊕W 1

b ⊕W 1
c )

5.2: ρ←MSB(W ᾱb

b )|MSB(W ᾱc
c )

send ρ to the evaluator
5.3: provide the inputs of OT4

1:

W
[LSB(W 0

a )⊕αd⊕(αb+αc)]·MSB(W 1
a )

g ·
W

[LSB(W 0
a )⊕αd⊕(αb+αc)]·MSB(W 1

a )
g ·

W
[LSB(W 0

a )⊕αd⊕(αb+αc)]·MSB(W 1
a )

g ·
W

[LSB(W 0
a )⊕αd⊕(αb+αc)]·MSB(W 1

a )
g

end for
6: for each output wire i of the circuit

di ←MSB(W 0
i )

send di to the evaluator
end for

• Step 1: As in Yao’s GC, the evaluator obtains
the labels corresponding to all input wires of the
circuit. The ones corresponding to the garbler’s
inputs are sent directly, and the ones correspond-
ing to the evaluator’s input wires are obtained
via OT2

1.
• Step 2: In this step, the evaluator processes all

gates in topological order.
• Step 2.1: If the corresponding gate is an XOR,

he simply XORs both labels of the inputs of the
gate (similar to free XOR in GC [10]).

• Step 2.2: If the corresponding gate is an AND,
he XORs the LSBs of the input labels to obtain
α. Now, the evaluator performs the following
actions:

• Step 3: Receives ρg from garbler.
• Step 3.1: It compares the concatenation of Wb
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Algorithm 2 MISC evaluation

Procedure EVALUATE
1: for each input wire i of the circuit

Receive corresponding label Wi from
garbler (using OT2

1 for ealuator’s inputs)
2: for each gate g (in topological order)

2.1: if (g == XOR with inputs a, b)
Wg ←Wa ⊕Wb

2.2: if (g == AND with inputs a, b, c)
α← LSB(Wa ⊕Wb ⊕Wc)
M ←MSB(Wa)

3: Receive ρg from garbler
3.1: if (MSB(Wb)|MSB(Wc) == ρg)

OT in ←M |ᾱ
else

OT in ←M |α
3.2: provide OTin as select input of OT4

1

and receive its output Wg.
end for

4: for each circuit output wire i
Receive di from garbler
yi ← di ⊕MSB(Wi)

end for

and Wc against ρg received from the garbler.
Based on these comparisons and MSB(Wa), the
evaluator determines OTin, the selection input
to OT4

1.
• Step 3.2: The garbler and the evaluator execute
OT4

1, where the evaluator acts as the receiver
with input OT in and the garbler acts as the
sender. As output, the evaluator obtains the
label value Wg of the AND gate output.

• Step 4: In this step, similar to Yao’s GC [12],
the evaluator decodes his circuit output wires yi.

3.5 Security Proof

As described in Section 2.1 we work in the semi-honest
adversary model in which the adversary is not allowed
to deviate from the protocol. The structure of our
scheme is based on the GC and GMW protocols [9, 31].
The proposed scheme follows these protocols with
some additional steps. On the garbler side, all the
performed actions can be summarized as follows.

(1) The garbler sets a random label for each wire in
the circuit. Then, for each AND gate, based on
the garbling group in Table 2 computes αb, αc,
αd, and ρ. The garbler sends ρ to the evaluator.

(2) The garbler sends the evaluator’s input labels
with OT. Also, it sends its input labels to the
evaluator as in GC [12].

(3) The garbler sends the output label with OT 4
1 for

each 3-input AND gate in the online phase. Due
to the security of OT, the garbler learns nothing

about the output label selected by the evaluator,
who learns nothing about the other output label.

(4) The garbler provides the evaluator with the
required information to decrypt the output wires
by sending the MSB of the zero output labels
as in GC [12].

The actions performed on the evaluator side are as
follows.

(1) Receives the input label from the garbler as in
GC [12].

(2) Calculates the garbled output of XOR gates by
XORing its garbled inputs same as the freeXOR
technique in GC [10].

(3) Receives ρ for each AND gate.
(4) Receives the AND gate output label with OT

as in GMW [9]. In this step, the evaluator cal-
culates α, M and, cond parameters and deter-
mines the selection input of OT4

1. The evaluator
has no information about the garbling group
(which corresponds to the rows in Table 2), and
the garbling table is symmetric and leaks no
information to the evaluator.

(5) Calculates and sends the circuit’s output value
as in GC [12].

The actions mentioned above are similar to previous
work on GC and GMW [9, 31]. The garbler in MISC
builds garbling groups for each AND gate. Then sends
the input labels of the circuit to the evaluator as in GC.
Unlike GC, the evaluator uses OT based on the input
labels to determine the output label. The evaluator
receives only the output label but nothing about the
other output labels. So he cannot learn anything from
guessing the other input labels to reach the other
output labels. The evaluator knows nothing about the
garbling group, so it can not reproduce the values on
the garbler side. The ρ parameter used to determine
Cond on the evaluator side leaks no information to the
evaluator because the Cond is uniformly random in
the garbling groups (cf. Table 2). In MISC, similar to
GC, the garbler learns nothing about the evaluator’s
input and output label selected by the evaluator.

3.6 Using Random OT

We use Random-OT (R-OT) [16, 28] for evaluating
AND gates in the setup phase. In anR-OT, both sender
and receiver obtain their input as a random output

of the protocol. In MISC we need R-OT2N−1

1 instead
of (N-1) R-OT4

1 for an N -input AND gate [16]. To
improve communication, we use the R-OTn

1 protocol

to reduce
(
n
1

)
OT1

logm n to
(
m
1

)
OT

logm n
1 as in [16]. We

vary possible choices for n and m and observe that
the highest improvement is obtained when we choose
n = 16 for m = 2 and m = 4, and n = 64 for m = 8.

ISeCure



July 2023, Volume 15, Number 2 (pp. 163–177) 171

Table 3. Evaluation of an N-input AND gate with MISC in

comparison to previous works (Best results are marked in bold)

N-Input AND
Setup
[bits]

Online
[bits]

Total
[bits]

Online
Rounds

2-input AND GC [12] 197 - 197 -
2-input AND [16] 134 4 138 1

2-input AND gate [21] 77 5 82 1

2-input AND [28] 256 4 300 1

2-input

AND

2-input AND (MISC) 77 5 82 2

2 × 2-input AND GC [12] 394 - 394 -
2 × 2-input AND [16] 268 8 276 2
2 × 2-input AND gate [21] 154 10 164 2
2 × 2-input AND (MISC) 154 10 164 2

3-input

AND

3-input AND (MISC) 136 10 146 2
3 × 2-input AND GC [12] 591 - 591 -
3 × 2-input AND [16] 402 12 414 2
3 × 2-input AND [21] 231 15 246 2
3 × 2-input AND (MISC) 231 15 246 2

4-input

AND

4-input AND (MISC) 189 19 208 2
4 × 2-input AND GC [12] 788 - 788 -
4× 2-input AND [16] 536 16 552 3
4 × 2-input AND [21] 308 20 328 3
4× 2-input AND (MISC) 308 20 328 3

5-input

AND

5-input AND (MISC) 238 36 274 2

By doing so, we have 75 bits of communication for R-
OT2

1, 134 bits for R-OT4
1, 187 bits for R-OT8

1, and 236
bits R-OT16

1 . The online communication per N -Input
AND gate is (N − 1) + 2N , which is the same as in
the SP-LUT protocol in [16].

Recently, [32] proposed a very efficient silent OT
protocol named Silent OT which claims to outperform
state-of-the-art solutions for performing R-OT. Also,
a semi-honest OT protocol with sublinear communi-
cation and linear computation was proposed in [33].
Since MISC makes black-box calls to R-OT, it can
directly benefit from the performance improvements
in [32] and [33].

3.7 Complexity of Multi-Input ANDs

We evaluate the complexity of N-input AND gates in
our MISC protocol. In Table 3, we show the communi-
cation and round complexity for an N-input AND gate
and compare MISC with GMW in [16], GMW in [28],
and 2-input GC+GMW [21]. We also compare MISC
with the state-of-the-art GC construction of [12]. We
setN = {2, . . . , 5} in our evaluation. As MISC employ
the OT in the online phase, it requires two round in
the online phase for each AND gate. However, it can
reduce the round complexity for more than 4-input
AND gates, compared to GMW.

Table 3 shows: (1) MISC reduces the overall com-
munication, by 1.99× compared to the best GMW,
by 1.18× compared to [21] for 4-input AND gates;
(2) MISC reduces the round complexity by 1.5× com-
pared to GMW and [21] in 5-input AND gates; (3) Our
protocol needs a few more bits of online communica-
tion; however, this has a negligible effect on the total
time; (4) MISC has 2.84× lower communication than

Table 4. Conversions complexity between MISC, Arithmetic,

and Yao sharing (The values are reported for l-bit values and

symmetric security parameter κ)

Conv
Setup Online

[bits] [bits] Rounds

M2Y 2lκ lκ+ l 2

Y2M 0 2 0

A2M 4lκ 2lκ+ l + 2 2

M2A 2lκ (l2 + 3l)/2 2

the state-of-the-art GC of [12] for 4-input AND gates.

4 Mixed Protocol Conversions

This section describes the conversion method between
our MISC protocol and Yao and Arithmetic sharing in
ABY [19]. With these conversions, we can use our pro-
tocol efficiently in various application. For instance, in
private ML applications such as convolutional neural
networks (CNN), Arithmetic sharing is very efficient
for convolutional and fully connected layers [37, 38].
MISC is the best candidate to use in pooling layers.
The round and communication complexity for con-
verting between MISC, Yao, and Arithmetic sharing
are summarized in Table 4.

4.1 M2Y

Converting aMISC sharing ⟨x⟩R to a Yao sharing ⟨x⟩Y
is similar to converting a GMW sharing to Yao [19].
To do so Pi locally sets xi = MSB(⟨x⟩Ri ). Then, P0

samples ⟨x⟩Y0 = k0 ∈R {0, 1}κ and acts as sender in
OT2

1 with inputs (k0 ⊕ x0 · δ; k0 ⊕ (1− x0) · δ) where
δ is the key offset of the free XOR technique [10].
P1 inputs x1 to OT and receives the label ⟨x⟩Y1 =
k0 ⊕ (x0 ⊕ x1) · δ as output.

4.2 Y2M

Converting a Yao share ⟨x⟩Y to a MISC share ⟨x⟩R is
the easiest conversion and is almost for free. Note that
the LSB of the Yao share is the permutation bit of
the point-and-permute technique [24]. Therefore, the
labels ⟨x⟩Y0 and ⟨x⟩Y1 already form a valid MISC share
of κ-bits. Thus, P0 locally sets ⟨x⟩R0 [1|0] = ⟨x⟩Y0 [0|1]
and ⟨x⟩R1 [1|0] = ⟨x⟩Y1 [0|1] in the setup phase. P1 lo-
cally sets ⟨x⟩Rx [1|0] = ⟨x⟩Yx [0|1] in the online phase.
P0 sends to P1 the 2-bit ρ according to Table 2.

4.3 A2M

Converting an Arithmetic share ⟨x⟩A to a MISC share
⟨x⟩R can be done by securely evaluating a Boolean
addition circuit as for the A2Y conversion in [19].
As the Y2M conversion comes for free, we simply
have ⟨x⟩R = A2M(⟨x⟩A) = Y 2M(A2Y (⟨x⟩A)). More
precisely, the parties secret share their Arithmetic
shares x0 = ⟨x⟩A0 and x1 = ⟨x⟩A1 as ⟨x⟩Y0 and ⟨x⟩Y1 , as
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Figure 5. The new 1-bit 8×1 Multiplexer is compatible with multi-input AND gates
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described in [19], and compute ⟨x⟩Y = ⟨x⟩Y0 + ⟨x⟩Y1 .
As Yao’s protocol has constant round complexity, we
use a size-optimized Ripple-Carry l-bit adder with l
AND gates [34].

4.4 M2A

To convert from a MISC sharing ⟨x⟩R to Arithmetic
sharing ⟨x⟩A, one simple solution is to follow steps
similar to the A2M conversion. Here, the parties eval-
uate a Boolean subtraction circuit with ⟨x⟩R and ⟨r⟩R
as the inputs, where r is a random value chosen by
P0. In addition, P0 generates ⟨r⟩A. After the evalua-
tion, the value (x− r) is reconstructed to P1, which
further generates ⟨x − r⟩A. The parties then locally
compute ⟨x⟩A = ⟨x+ r⟩A - ⟨r⟩A. In this solution, the
subtraction circuit would either have size O(l) and
depth O(l) [34] or size O(l · log2 l) and depth O(log2 l)
which results in a non-constant round protocol in the
online phase [23]. Instead, we use a novel round effi-
cient variant inspired by [19].

The general idea for converting a MISC share ⟨x⟩R
to an Arithmetic share ⟨x⟩A is to use one OT for
each bit. Pi locally sets xi = MSB(⟨x⟩Ri ). P0 chooses
ri ∈R {0, 1}l and obtains si,0 = (1 − x0[i]) · 2i − ri
and si,1 = x0[i] · 2i − ri as inputs of the i-th OT,
whereas P1 inputs choice bit x1[i] and receives sx1[i] =
(x0[i]⊕x1[i]) ·2i− ri. After that, P0 computes ⟨x⟩A0 =
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i=1 ri and P1 computes ⟨x⟩A1 =

∑l
i=1(x0[i]⊕x1[i]) ·

2i −
∑l

i=1 ri =
∑l

i=1 x[i] · 2i −
∑l

i=1 ri = x − ⟨x⟩A0 .
Security and correctness are the same as in [19, 39].

5 Circuit Building Blocks

This section redesigns common building blocks used in
several applications such as machine learning, and PSI.
As our MISC protocol is very efficient for multi-input
AND gates, we use circuits with such gates instead of
the 2-input AND gates.

5.1 Maxpool

Maxpool is used in almost all Convolutional Neural
Networks (CNN) as a pooling layer. Pooling layers
are used to reduce complexity and extract low-level
features from the neighborhood in neural networks.
Maxpool selects the maximum number of M numbers.
As described in [34] and shown in Figure 4a, theM-to-1
Maxpool circuit can be built from a binary tree of
(M − 1) 2-to-1 (2-MAX) circuits that each consists
of a Grater Than (2-GT) and a 2 × 1 multiplexer
(MUX). We redesign the M-to-1 Maxpool circuit as
shown in Figure 4b which uses ⌊M/2⌋ 3-to-1 max
circuits (3-MAX). Each of the 3-MAX circuits consists
of three 2-GT and one 8× 1 multiplexer (MUX). We

can use multi-input AND gates instead of 2-input
AND gates in our protocol. Figure 5 shows our 8× 1
multiplexer and Figure 6 shows our 8-bit comparator
(8-GT) circuit with multi-input AND gates based
on [36]. Usage of a 2-MAX or 3-MAX circuit is a trade-
off between the round and communication overhead.
The Maxpool that uses the 3-MAX components have
lower depth, and the Maxpool that uses the 2-MAX
components have lower communication.

Table 5 compares the round and communication
complexity of MISC (this work), and GMW [16]. MISC
has an 8 log2 M round complexity in the proposed
Maxpool circuit due to the using multi-input AND
gates, while in the regular Maxpool circuit, it has a
16 log2 M round complexity. For 2-MAX and 3-MAX,
our MISC protocol has up to 1.41× less communica-
tion than GMW [16].

5.2 Argmax

The Argmax circuit, similar to the Maxpool circuit
in Section 5.1, finds the maximum of its input values.
However, the output of this circuit also determines the
index of the largest input. This circuit is similar to the
Maxpool in Figure 4. The only difference is, in each
2-to-1 and 3-to-1 ArgAmax (2-AMAX, 3-AMAX), two
multiplexers are used instead of 1: one for choosing the
max value, and one multiplexer for choosing the index
of the max input. Figure 7 shows such a 2-AMAX
circuit as proposed in [34]. The Argmax circuit has
the same depth as the Maxpool circuit and needs to
compute one more multiplexer in each 2-AMAX or
3-AMAX. The resulting complexity is given in Table 5.
The Argmin circuit has a similar structure to Argmax.

5.3 Equality Check

The equality circuit is a common building block used
in circuit-based PSI [40–42]. As shown in Figure 8, this
circuit can be built from XNOR and AND gates [23,
34]. For N -bit inputs, we need N XNOR and a tree
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Table 5. Communication and round complexity of our MISC protocol in comparison with [16] for different building blocks (M is

the number of inputs of bitlength 16 bit. Best values marked in bold)

Building
Blocks

MISC (This protocol) GMW [16]

Setup
[bits]

Online
[bits]

# Online
Rounds

Setup
[bits]

Online
[bits]

# Online
Rounds

Equality (Section 5.3) 945 95 4 2 010 60 4

Maxpool use
2-MAX (Section 5.1)

5 510(M-1) 392(M-1) 8 · log2 M 7 772(M-1) 232(M-1) 6 · log2 M

Maxpool use

3-MAX (Section 5.1)
26 466(M/2) 1 896(M/2) 8 · log3 M 32 844(M/2) 238(M/2) 8 · log3 M

Argmax/Argmin

use 2-AMAX (Section 5.2)
6 126(M-1) 432(M-1) 8 · log2 M 9 108(M-1) 66(M-1) 6 · log2 M

Argmax/Argmin

use 3-AMAX (Section 5.2)
31 914(M/2) 2 558(M/2) 8 · log3 M 37 536(M/2) 272(M/2) 8 · log3 M

Table 6. Total communication, rounds and time for CNN

inference on MNIST dataset using MISC, GMW [16], and
ABY2.0 [17] (Best results are marked in bold)

Machine Learning
Total
[MB]

Online
Rounds

Total
LAN [s]

2-MAX in GMW [16] 209.13 67 3.82

2-MAX in ABY2.0 [17] 211.49 51 3.82

2-MAX in MISC 204.24 83 3.80

3-MAX in GMW [16] 218.64 51 3.88

3-MAX in ABY2.0 [17] 227.41 35 3.94

3-MAX in MISC 213.46 51 3.84

of (N-1) two-input AND gates of depth ⌈log2 N⌉. We
can replace three 2-input AND gates with a 4-input
AND gate. As shown in Table 5, for a 16-bit equality
circuit, this improves communication over GMW [16]
by 2.13× with the same round complexity.

6 Applications and Benchmarking

We evaluate our MISC protocol on three privacy-
preserving applications: machine learning, and circuit-
based private set intersection.We perform experiments
on servers with an Intel Xeon E5-2690 CPU with
64 cores and 64GB RAM. Computation time was
measured by the [43] tool. We simulate a network
with 1 Gbit/s bandwidth and 1 ms RTT for The LAN
setting and 100 Mbit/s bandwidth and 100 ms RTT
for the WAN setting. We ran our simulations ten times
and got the average.

6.1 Machine Learning

We evaluate our MISC protocol on Convolutional Neu-
ral Networks (CNN) for handwriting recognition on
the MNIST dataset used in previous works [5, 46].
This CNN has two Convolutional (Conv) layers using
ReLU as an activation function and a Maxpool layer.
Also, this CNN has two Fully Connected (FC) layers
with the ReLU activation function. We use Arithmetic
sharing for the Conv and FC layers, and then we use
our conversion from Section 4 to convert to MISC
sharing and then use MISC for the ReLU and Max-
pool layers. We use a 2×1 Multiplexer from Section 5

for ReLU and 9-to-1 Maxpool from Section 5.1 for
the pooling layers. In Table 6, we compare the perfor-
mance of CNN inference using the 2-MAX or 3-MAX
circuit evaluated by MISC, and GMW [16]. We used
building blocks shown in Section 5 to evaluate the non-
linear CNN layers. However, for GMW [16] we have
used a 2-input AND gate. Compared to GMW [16],
we improve total communication by 1.02× (non-linear
communication by 1.4×) and total time by 1.01× in
LAN. When using 3-MAX, we improve communica-
tion by 1.02× (non-linear communication by 1.2×),
and total time in the LAN setting by 1.01×. Also,
compared to ABY2.0 [17], MISC improves communi-
cation by 1.06× (non-linear communication by 1.7×),
and total time in the LAN by 1.01×.

GALA [47] shows that evaluating the convolutional
layers and fully connecting in CNN using arithmetic
sharing takes about 98% of the computation time.
Therefore, the improvement of MISC is reduced in
Table 6. The recent Delphi framework [37] spends
52% of the computation time on the linear layers [47,
Table 7]. MISC improves the non-linear layers over
other GMW-style protocols [16], which can be used
in new PPML frameworks to boost the efficiency of
non-linear layers further.

6.2 Circuit-Based-PSI

Circuit-based PSI [14, 40–42, 44] allows two parties
to privately compute a function on the intersection
of their private input sets. This has several applica-
tions, like measuring ad conversion rates, data mining,
and social networks. Today’s PSI protocols [14, 40–42]
first use hash functions to achieve sub-quadratic over-
head and then securely evaluate equality circuits for
checking the equality of many bit strings in parallel.
Most of the computation and communication is spent
on this private equality checks [17, 42]. To be precise,
when computing the intersection between two sets,
96% of the overall communication (cf. [42, Table 3])
and 34%− 63% of the overall runtime (cf. [42, Table
5]) is spent on Equality Checking. Using our efficient
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Table 7. Total communication, round and time for circuit-based PSI protocols on sets with N elements of length 32-bit (Best

results are marked in bold)

PSI Protocols

N = 212 N = 216 N = 220

Total
[MB]

Online
Rounds

Total
WAN [ms]

Total
[MB]

Online
Rounds

Total
WAN [ms]

Total
[MB]

Online
Rounds

Total
WAN [ms]

SCS [44] 104 60 - 2174 80 - 42976 100 -

Circuit-Phasing [14] 130 5 37380 1683 5 327976 21004 5 4850571

Hashing+SCS [45] - - - 1537 42 - 21207 36 -
2D CH [41] 51 5 22796 612 5 129436 6582 5 1512505

Stash-Less [42] 9 6 5910 149 6 22134 2540 6 261481

Stash-Less [42] with GMW [16] 6 6 5727 112 6 19106 1924 6 209877
Stash-Less [42] with ABY2.0 [17] 5 4 - 94 4 - 1608 4 -

Stash-Less [42] with GC [11] 9 2 - 149 2 - 2540 2 -

Stash-Less [42] with MISC 2 6 4917 48 4 15186 829 4 168647

Equality Check circuit (Section 5.3) in today’s best
efficient circuit-based PSI protocol using STPC [42]
results in an improvement of 3 × in overall communi-
cation, and 1.5× in total time. Moreover, compared
to GC [11], MISC improves communication by 3.69×.

Table 7 shows the resulting round, communication,
and total time of the circuit-PSI of [42] using MISC
and our efficient Equality Check compared to previous
works [14, 41, 42]. In this table, the communication is
shown on three sets of elements of length 32 bit. The
numbers for previous works are taken from [41, 42].
For better comparison we evaluate [42] with GC [11],
GMW [16], and ABY2.0 [17] protocols.

7 Conclusion and FutureWork

Nowadays, privacy-preserving computing has gained
vast attention due to the growth of using machine
learning and PSI. Several protocols can be used for se-
cure computation on private data, e.g., Yao’s Garbled
Circuits [31] and Secret Sharing (GMW [9]). We pro-
pose a new protocol MISC that reduces communica-
tion overhead with multi-input AND gate evaluation.
For better efficiency, we designed conversions between
MISC and other STPC protocols. Finally, we showed
three examples for applications that benefit from the
improvements of our MISC protocol. Our results show
that MISC reduces communication complexity, and
total time in these applications in the LAN setting.
It would be interesting to extend MISC to stronger
adversary models and more than two parties in future
work.
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