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1 Introduction

One of the most challenging aspects of crypto-
graphic algorithm implementation is protecting

ABSTRACT

Masking techniques are used to protect the hardware implementation of
cryptographic algorithms against side-channel attacks. Reconfigurable hardware,
such as FPGA is an ideal target for the secure implementation of cryptographic
algorithms. Due to the restricted resources available to the reconfigurable
hardware, efficient secure implementation is crucial in an FPGA. In this paper,
a two-share threshold technique for the implementation of AES is proposed. In
continuation of the work presented by Shahmirzadi et al. at CHES 2021, we
employ built-in Block RAMs (BRAMsS) to store component functions. Storing
several component functions in a single BRAM may jeopardize the security
of the implementation. In this paper, we describe a sophisticated method for
storing two separate component functions on a single BRAM to reduce area
complexity while retaining security. Out design is well suited for FPGAs, which
support both encryption and decryption. Our synthesis results demonstrate
that the number of BRAMs used is reduced by 50% without affecting the time
or area complexities.
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sis is one of the most effective side-channel attacks
[1]. Several software and hardware techniques have
been proposed to defend against this type of attack

them from side-channel attacks. The attacker exploits
information leaked from the hardware on which the
cryptographic primitive is running to extract the se-
cret value (the secret key) via a side-channel attack.
Data leakage can occur in a variety of ways, including
increased power consumption, processing time, and
electromagnetic radiation. Differential power analy-
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[2, 3]. Masking techniques are one of the most popular
countermeasures against side-channel attacks. Provid-
ing secure and efficient masking techniques are more
subtle for hardware implementation due to the pres-
ence of glitch and their effect on information leakage
[4]. Various solutions have been proposed to mitigate
these challenges. Threshold Implementation (TT) is
one of the secure and efficient masking methods for
the hardware implementation of cryptography algo-
rithms, which can provide provable security against
power analysis attacks [5].

Suitable hardware masking against power analysis
attacks with the desired level of security and perfor-
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mance is indispensable. There is usually a trade-off be-
tween different parameters like “area”, “latency”, and
“random bits”. Numerous masking techniques have
been devised to enable the masked implementation of
various cryptographic primitives, including AES [6—
10]. The majority of proposed masking approaches for
AES implementation use either Application-Specific
Integrated Circuits (ASICs) or microcontrollers as
the platform for implementation. While the proposed
ASIC-based techniques can also be implemented on
FPGA as well, the FPGA resources are not always
efficiently utilized. To fill this gap, the use of BRAM
units on the FPGA chip has been introduced recently
as an effective method for decreasing the area in [11].
Shahmirzadi et. al. proposed a two-share threshold
technique for the implementation of AES which is
secure in the Glitch Extended attack model. The
proposed method in the [11] has the minimum com-
ponent functions for a secure implementation of the
AES algorithm. In this paper, we aim to revisit the
previous technique proposed in [11], to minimize the
number of BRAMs as much as possible. Our tech-
nique does not increase the latency or the number
of random bits. More precisely, the properties of our
technique are as follow:

e Choosing separate component functions that
are stored on a single BRAM maintains the
security of the implementation.

e Individual component operations can be imple-
mented on a single BRAM without adding ad-
ditional area or time complexity.

In comparison to the previous work, our method leads
to a 50% reduction in the utilization of the number
of BRAMs.

The rest of this paper is organized as follows. Sec-
tion 2 gives a short introduction to threshold imple-
mentation and the attack model. The threshold imple-
mentation of the AES S-box is presented in Section 3.
Section 4 discusses a method for reducing the imple-
mentation area. Section 5 presents the experimental
results. Finally, we conclude the paper in Section 6.

2 Preliminaries

A sensitive value z is divided to d + 1 shares
(zo,...,24) in the masking schemes. This sharing
must be done in such a way that the value x can be
recovered only when all d + 1 shares are available.
Such masking provides d-order security against side-
channel attacks. In Boolean masking, x is split into
different shares such that z = @y, x;.

2.1 Threshold Implementation

As previously stated, "glitch” acts as an undesirable
event in electronic circuits. The threshold implemen-
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tation [5] is the initial solution proposed for glitch
handling. Correctness, non-completeness, and unifor-
mity are three properties of a threshold implementa-
tion that can maintain the security of hardware imple-
mentation. Assume we seek to implement a function
y = f(x) in such a way that the input and output are
calculated using the d + 1 shares. In other words, the
function f accepts the values xg, ..., x4 and returns
the values yo, - .., Y4

e Correctness indicates that the masking func-
tion is correct for all input shares and produces
the expected output as it is demonstrated in
Equation 1.

Vi, f(@viri) = Oviyi (1)

e Non-completeness ensures that the calcula-
tion of each output share reveals no informa-
tion about the secret value. For example, if the
function f is a collection of functions f; (also
known as component functions), each of these
fi will calculate the appropriate y; value by pro-
cessing a set of input shares that lack the i;h
input share (zg,21,...,Zi—1,Tit1,-.-,Td). As
a reason, each output share is independent of at
least one input share, and processing it reveals
no information about x.

e Uniformity implies that if the input x is uni-
formly distributed, the function’s output must
be uniformly distributed as well. Otherwise, the
function in the next phase will be given inputs
with a non-uniform distribution. Re-masking
at the output is one of the most well-known
strategies for persuading this characteristic [6].

2.2 Attack Model

A glitch is a transient state created at the output of a
logic circuit as a result of a delay discrepancy in the
logic circuit’s inputs or internal wires and gates. Due
to the nature of glitches, forecasting their accurate
effect is a challenging task. Glitch Extended Probing
[12] is an attack model that has been developed to
investigate and consider the impact of glitches on the
security of the cryptographic primitive’s hardware
implementation. The model assumes that by probing
any point of the circuit, the attacker will have com-
plete knowledge of not only that specific point but
also all the values involved in the path of the logic cir-
cuit from that point back to the last synchronization
point. The number of points probed by the attacker
concurrently defines the attack’s order (or security
order).

2.3 Number of Shares

The required number of input shares can be computed
using Equation 2 in the threshold implementation:
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td+1 2)

where t is the degree of the function, and d represents
the implementation security order. This number can
be lowered without compromising the security of the
implementation by adding extra random bits [7, 13].
The required number of shares, in this case, is shown
in Equation 2.

d+1 (3)
Equation 4 illustrates a secure implementation of an
AND gate (y = f(a,b) = ab) proposed in [7] for the
security order d = 1.

folao, bo) = aobo — ¥y
fi(ao,by,7) = agbs +7 >y Yo+ 1 = vo
folar,bo,r) =atbo +7 =Yy Yo +ys =m
falar, bi) = aiby - yy

(4)

where ag, aq, bg, and by represent the input shares,
yo and y; represent the output shares, r represents a
random bit for re-masking to preserve uniformity, and
fi represents the component functions of the function
f. The outcomes of the component functions (i.e. y;)
must be stored in a register and then compressed
into two shares before proceeding to the next level
function.

3 Threshold Implementation of AES
with Two Shares

This section describes the threshold implementation
of AES presented in [11]. To compute the S-box of
AES, an inversion over GF(2%) is first performed,
followed by an Affine transform over GF(2). To pro-
vide first-order security (d = 1), the inputs are split
into two shares. To minimize the amount of compo-
nent functions assigned to the S-box, the following
process is suggested in [11]: A matrix of component
functions is defined as f;;, where the i, row con-
tains the indices that should be given as input to the
i1y, component function. As an illustration, (0,1,1)
means the i-th component function is f;(ag,b1,c1).
Besides, the indices associated with the j;; input bit
are represented in the j;; column of the matrix. As
an illustration, consider the following example:

0 bo
11—-1b
0 bo

In other words, columns correspond to the input bits,
whereas rows correspond to the component functions.
As a result, we can construct a sharing table in this
manner. Equation 5 demonstrates how to implement
the function y = ab + ¢ by utilizing four component
functions.

000 fo(ao,bo,C()) = agpbg + ¢
010 f1(a0,b1,60) = a0b1
101 fa(ai, bo, c1) = aibo
111) fs(ar,br,e1) = arbi + 1
The objective is to reduce the size of the S-
box implementation by reducing the number of
component functions required to realize a 2-share
masked form of 8-to-1 cubic functions. Each shar-
ing table has a maximum of eight rows and eight
columns (number of input bits). For example, the
elements (0,1,1,0,0,1,1,0) in the 4y, row indicate
that the component function f;, receives values
(ag, b1, c1,do, €0, f1,91,h0), and may contain terms

such as agbidy. According to [11], AES S-box con-
tains 12 component functions, as illustrated below:

00001100\ folao,bo,co,do,e1, f1,90, o)
00011011| fiao,bo,co,di,e1, fo,91,h1)
0010000 1| faao,bo,c1,do, €0, fo, go, P1
00110010 f3(ao,bo,c1,d1, €0, fo, 91, ho
01010101 falao,b1,co,d1,e0, f1,90, 1
01101010/ fs(ao,b,c1,do,e1, fo, 91, ho
10000010 felar,bo,co,do, €0, fo, 91, ho
10111101 fr(a1,bo,c1,d1,e1, f1,90, 1
11001111 fsf
11011000 | folar,bs,co,d,er, fo, 90, ho
11100100/ fiolas, b1, e, do, e, f1, 90, ho)

1 1 1 1 001 1 fll(a17blycl7d17607f07glvhl)
(6)
The authors of [11] proposed the following tech-
nique for designing a masked variant of AES S-box
that has low latency (fewer register stages are re-
quired) and reduced fresh randomness. The inversion
over GF(2%) can be represented as X 1 = 324, X254
can be computed by decomposition into cubic permu-
tations, as illustrated in Equation 7 [14].

f8a blac()adanhflagh 1

)
)
)
)
)
)
)
)

X254 (Xn)m — (mez
’ 7
HW((n)=HW(m)=3 @
where HW (a) denotes the Hamming Weight of a.

The authors of [11] chose the parameters as m =
49, n = 26 due to the lack of preference for any pair
of m and n over the other. Based on the decomposi-
tion demonstrated in Equation 7, the cubic functions
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Figure 1. The structure of the two-share S-box in [11]

F(X)=X"and H(X) = X™ can be utilized for the
implementation of AES S-box and its inverse can be
computed as demonstrated in Equation 8 and Equa-
tion 9, respectively.

S(X)=AoHoF(X)=GoF(X) (8)
STUX)=FoHoA ' (X)=FoW(X) (9)

Each of the F', G, and W functions in Equation 8
and Equation 9 can be implemented as 12 component
functions, each of which is implemented in a BRAM.
Figure 1 demonstrates the overall architecture, where
r; signifies random bits.

Each BRAM contains nine input bits (eight main
bits and one random mask bit), which are located on
the BRAM address port and eight output bits. The
indices selection layer allocates the shares among the
component functions, and the compression layer is
required to maintain the uniformity property in the
subsequent step.

To implement both encryption and decryption in
the same circuit, an additional bit is added to the lo-
cation of the address port’s most important bit that
determines the operation. Since BRAMs have two
separate ports, the relevant encryption and decryp-
tion component functions can be written on a single
BRAM. Figure 2 illustrates the final implementation
approach. 24 BRAMSs are used for the AES S-box
and its inverse. In the presented scheme in [11], 8
S-boxes are used for encryption, 8 S-boxes for decryp-
tion, and 4 S-boxes for the key expansion operations.
As a result, 240 BRAMSs are employed throughout
the implementation.

4 Proposed Secure and Low-Area
Implementation of the AES

In this section, we propose a secure and low-area im-
plementation of AES leveraging threshold implemen-
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Figure 2. The structure of the S-box and its inverse in [11]

tation with two shares. The component functions are
implemented based on the look-up table implemen-
tation and are stored in BRAMs. The proposed ap-
proach and its security against glitch-extended prob-
ing attacks are explained further below.

4.1 Overview of Our Approach

In the threshold implementation of AES proposed
n [11], the F and G functions (used for encryption)
and the W and F' functions (used for decryption) are
implemented utilizing up to 24 BRAMs. Furthermore,
the information stored on each BRAM is accessed
using just 10 bits of the address, implying that only
210 = 1024 = 1Kbit of each BRAM is used.

Our goal is to limit the amount of required BRAMs
to reduce the area. We want to utilize this approach by
storing more component functions in a single BRAM
unit. Two factors must be taken into account:

e The modified implementation should be secure
in the glitch-extended probing attack. Simple
use of this approach can weaken the implemen-
tation’s security.

e We should consider the trade-off between area,
delay, and the number of new random bits. In
most applications, decreasing the area by in-
creasing the amount of new randomness or de-
lay is undesirable.

In summary, increasing the number of component
functions in a single BRAM should be done in such
a way that the implementation’s security is not com-
promised and the delay and quantity of fresh random
bits are not increased.

4.2 The Proposed Architecture

BRAM’s address port is ten bits in length, where the
most valuable bit (MSB) determines the encryption
and decryption operations. We adopt the architecture
proposed in [11]. The uniformity condition of thresh-
old implementation must be applied to the address
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port due to the BRAM design. The random mask r
is utilized to achieve uniformity. r is allocated in the
9-th bit of the address port. The remaining eight bits
represent a combination of input shares. Additionally,
BRAMSs contain two ports, A and B, that are fully in-
dependent of one another and simply share the data
they carry. Port A is used to implement the compo-
nent operations of the encryption operation, whereas
port B is used to execute the component functions of
the decryption process.

To reduce the implementation area, we will imple-
ment the functions of the corresponding F; and G;
using a single BRAM unit. To make the best use
of the remaining BRAM capacity in this way, the
length of the data on the BRAM address port should
be modified. More precisely, we increase the address
length by one bit. As a result, the BRAM address is
increased to 11 bits. In our design, we consider twelve
BRAMs each of which contains the component func-
tions G; and F; which will be used for encryption and
decryption, respectively. Similarly, we consider twelve
BRAMSs each of which contains the component func-
tions F; and W; which will be used for encryption
and decryption, respectively. In the encryption (res.
decryption) process, first, F; (res. W;) should be ac-
cessed and then G; (res. F;) should be accessed. We
refer to these two steps as the first step and second
step, respectively. To perform the first step of the
encryption (res. decryption), the data of F; (res. W;)
will be read from the corresponding BRAM when the
MSB of the address is 0. To perform the second step
of the encryption (res. decryption), the data of the
G; function from the encryption operation and the F;
function from the decryption operation will be read
from the BRAM, when the most valued bit of the
address is 1.

Now we need to control the input address depen-
dent on whether the data is for the first or second
step of the computation. We add a multiplexer to the
input of the indices selector layer for this purpose.

It’s worth noting that the multiplexer’s selector bit
is the same as the bit we added to the MSB of the
address bit. Because when this bit is 0, it indicates
that we want to perform the first step operation
and will obtain the corresponding address from the
multiplexer; and when it is 1, it indicates that we want
to perform the second step operation and will obtain
its address from the multiplexer using the output of
the first step operation. As a result, we do not require
a separate circuit to control this multiplexer. The
new implementation is illustrated in Figure 3.

Figure 4 provides too much detail about each of
the blocks depicted in Figure 3.

— Block0 —

Mux

Input for second step — Block1 —

Input for first step

Index Selector
Compression

Block 11

selector

Figure 3. New structure

Input Data F;

n ] Mus

Mux

E/D

G
Ty I Mu
— F
E/DH

Figure 4. Detailed structure of each block

Selector

4.3 Evaluation of Proposed Design

In our design, we selected the component functions
that are located in each BRAM wisely. Each BRAM
includes only F;, W; and G;. In other words, the
BRAM does not include two different component func-
tions with different indices. For instance, we could
have considered F;j and F; in one BRAM where i # j.
However, this strategy was not suitable as it could
lead to violating the non-completeness property. Since
the component functions Fy to F1; (as well as the func-
tions G to G11) are allocated in different BRAMS,
in our design, the security maintains in the Glitch Ex-
tended Probing. Even if we assume that the attacker
knows all the values involved in the BRAM, he is
not able to retrieve any information about processed
data.

A BRAM unit reads the address, determines its
data, and places it in the output register in around
two cycles; that is, the process of reading the data
takes one clock pulse, and the operation of setting
it on the output register takes one clock pulse. The
output register is an internal register of this block
that can also be disabled, but it is required in this
implementation technique to maintain uniformity in
the output of BRAMsS.

Because the compression layers and the index se-
lector do not require a clock pulse, the result of the
first step operation is instantly sent to input, and the
BRAM begins reading the data of the second step op-
eration at this moment. This two-stage register (two
clock pulses of processing time) allows us to reduce
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the area while maintaining the same implementation
latency. It’s worth mentioning that the quantity of
fresh random bits has remained constant throughout
this process. Because the structure [11] uses 8 ran-
dom bits for each S-box and its inverse, for a total of
160 random bits, there is no change in the number of
S-boxes and thus the number of fresh random bits in
our proposed method.

5 Results

In this section, the FPGA implementation results of
the proposed (Threshold Implementation of) AES
architecture are presented. The target hardware plat-
form for implementations is mainly Spartan-6 of the
Xilinx family.

We choose a number of Threshold Implementation
of AES published in [11, 15, 16] for comparison. To
the best of our knowledge, they appear to be the most
efficient in comparison to the other previous work.
Furthermore, we chose the area, time and throughput
metrics as comparison points.

The architecture has been implemented on spartan-
6 and the results of this experiment have been pre-
sented in Table 1. The BRAM of the proposed archi-
tecture implemented on Spartan-6 is 50% lower than
the best previous work [11]. Since our architecture
supports both encryption and decryption mode, we
have compared our experimental with the E/D archi-
tecture presented in [11]. Moreover, the required time
for these implementations is, respectively, 10.8% and
2.9% less than the reported in [11, 16]. Furthermore,
the throughput of the proposed architecture is 3%
higher than the best previous work [11]. It is worth
noting that, as compared to the best recent work, the
exploited BRAM is half while all other parameters
remain the same. Furthermore, as compared to de-
signs that do not use BRAM, the number of required
registers is reduced.

6 Conclusion

A method for first-order secure implementation of
the AES encryption algorithm on an FPGA chip is
provided in this work, as well as a way for decreasing
its implementation area and hence the utilization of
FPGA chip resources. This area optimization was
accomplished without affecting the implementation
latency.

So even though higher-level secure implementations
necessitate the use of significantly more resources
from the FPGA chip (e.g., order 2 security, where the
attacker can probe two gate outputs simultaneously,
increasing the number of required component func-
tions to establish security), this method of reducing
the area will enable even more secure implementa-
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tions on most FPGA chips.
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