The ISC Int'l Journal of
Information Security

November 2022, Volume 14, Number 3 (pp. 81-92)

http://www.isecure-journal.org

PRESENTED AT THE ISCISC’2022 IN RASHT, IRAN.

Lightweight Identification of Android Malware with Knowledge
Distillation and Deep Learning Approach *

Somayeh Mozafari!, and Amir Jalaly Bidgoly !*

I Department of Electrical and Computer Engineering, University of Qom, Qom, Iran.

ARTICLE INFO.

Keywords:

Android, Deep Learning, Ensemble
Learning, Knowledge Distillation,
Lightning, Malware Detection

Type:

Research Article

doi:
10.22042/isecure.2022.14.3.9

dor:
20.1001.1.20082045.2022.14.3.
9.3

1 Introduction

ABSTRACT

Today, with the advancement of science and technology, the use of smartphones
has become very common, and the Android operating system has been able
to gain lots of popularity in the meantime. However, these devices face many
security challenges, including malware. Malware may cause many problems
in both the security and privacy of users. So far, the state-of-the-art method
in malware detection is based on deep learning, however, this approach
requires a lot of computing resources and leads to high battery usage, which
is unacceptable in smartphone devices. This paper proposes the knowledge
distillation approach for lightening android malware detection. To this end, first,
a heavy model is taught and then with the knowledge distillation approach,
its knowledge is transferred to a light model called student. To simplify the
learning process, soft labels are used here. The resulting model, although
slightly less accurate in identification, has a much smaller size than the heavier
model. Moreover, ensemble learning was proposed to recover the dropped
accuracy. We have tested the proposed approach on CISC datasets including
dynamic and static features, and the results show that the proposed method is
not only able to lighten the model up to 99%, but also maintain the accuracy
of the lightened model to the extent of the heavy model.

(© 2022 ISC. All rights reserved.

lion apps in the official Google Stores. On the other
hand, some issues led to security threats in mobile

he Android operating system has become the first
choice for many smartphone companies. About
86.6% of the phones that were sold in 2019 used the
Android operating system [1]. Research has shown
that by the end of 2020, there were about 2.8 mil-

* Corresponding author.

* The ISCISC’2022 program committee effort is highly ac-
knowledged for reviewing this paper.

Email addresses: s.mozafarih@gmail.com, jalaly@qom.ac.ir
ISSN: 2008-2045 (©) 2022 ISC. All rights reserved.

devices such as open source, request permissions at
the installation time, and the lack of user awareness.
According to published statistics, in 2018, the total
number of known malicious apps was approaching 100
million. By the end of June 2018, the number of all
known malicious apps had totaled 94.2 million and,
on average, mobile malware is detected every 10 sec-
onds. Due to the growing volume of Android malware,
security solutions should be provided to reduce the
damage to mobile phones and maintain user security.

1S¢0ured)

82

Lightweight Identification of Android Malware with KD and DL Approach — Mozafari, and Jalaly

Researchers have proposed many approaches for
Android malware detection. They have used a vari-
ety of features, including static, dynamic, and hybrid
to analyze and detect malware samples. So far, deep
learning methods have shown the best results in this
regard. Deep neural networks (DNNs) are emerging
learning models, trained to approximate nonlinear
functions between inputs and outputs that are used to
distinguish malware from benign applications. With
the help of a huge set of layers and trainable param-
eters, these networks may train any distinguishable
pattern. Different models of deep neural networks are
used to detect Android malware. Recently, converting
application features to images and then use of convo-
lutional networks has been applied [1], which is the
same as the model used in this research. Creating a
graph by the APIs call of an Android application and
using the LSTM network is also one of the malware
detection solutions [2]. The use of various features of
the application using fully connected networks has
also led to high accuracy in detecting Android mal-
ware [3].

In general, deep learning methods on the android
phone requires high computational resources and bat-
tery usage. Due to the limited mobile resources, these
solutions are not practical. In research in 2018 [4], the
authors evaluated the ability of mobile phones to run
deep neural networks. The research shows that mo-
bile phone faces many challenges to run a deep neural
network due to their limited resources (see Table 1).

A practical smartphone malware detection solution
should consider the limited resources of the phones
while keeping detection accuracy as high as possible.
In this paper, we have proposed to use knowledge
distillation techniques for a light DNN-based android
malware detection model. The results show that this
approach can keep the accuracy of the model near
to a heavy model while reducing its size up to 99%
in terms of parameters. Moreover, the paper shows
that ensembling the lightweight models with different
distillation settings leads to a new lightweight model
with accuracy exactly equal to the heavy one.

This paper is organized as follows: In Section 2,
the related works are reviewed. In Section 3, the
required background theories are presented. Section 4
describes the proposed approach. The experimental
study, dataset, and evaluation results are presented
in Section 5. Finally, the paper ends in Section 6 with
the conclusion and future works.

2 Related Work

Regarding android malware detection, many stud-
ies and research have been done. In all studies, fea-
tures of applications are first extracted. To extract

1S¢0ured)

features, there are three different approaches for An-
droid malware detection, static, dynamic, and hy-
brid [5]. In methods that are based on static analysis,
attributes are extracted by analyzing the application
source code, or reverse engineering without running
the program. In methods based on dynamic analysis,
semantic features are used. Features are extracted by
monitoring the application while it is running on a
real device or virtual environment and in a controlled
environment. The hybrid methods use a combination
of both features. After extracting the required fea-
tures and preprocessing, the data set is created, then
malware can be identified using various approaches.
A common approach in this regard is the use of ma-
chine learning methods. This approach is divided into
two categories: traditional machine learning and deep
learning, and each of them is divided into separate
subcategories.

In 2020, Salah et al. [6] first extracted the features
statically and tried to reduce the dimensions of the
features with machine learning algorithms. Then, us-
ing machine learning algorithms (logistic regression
and ADABOOST vector algorithms) on the Drebin
dataset, they reach 99% accuracy in detecting mal-
ware. Compared to other algorithms, the SVM algo-
rithm has the best performance with 349 features.
The feature set includes URLs, API calls, and An-
droid application manifest information.

In 2018, Rana et al. [7] evaluated four tree-based
machine learning algorithms for detecting Android
malware, along with a feature selection method. In
their experiments, 11,120 programs were used from
the Drebin dataset, of which 5,560 contained samples
of malware, and the rest were benign. Random forest
classification has been found to perform better than
the previously reported best result (approximately
94% accuracy obtained by the SVM algorithm) with
97.24% accuracy.

Tao et al. [8] proposed a plan that, by adapting ap-
plication permissions and sensitive APIs, creates a se-
quence of APIs and extracts patterns in Android mal-
ware. It then detects malware using machine learning
algorithms. The detection power is the F1 score, and
0.98% using the random forest algorithm. It should
be noted that the attribute vector has 31 proper-
ties that consist of sensitive APIs. The data include
18,531 benign programs and 33,615 samples. The sec-
ond approach is deep learning, which is one of the
research topics that has been widely studied in the
field of machine learning. Deep learning has become
popular in recent years due to its excellent results in
many research areas, as well as in the field of Android
malware detection.

In 2019, Ma et al. [9] created a program flow con-

November 2022, Volume 14, Number 3 (pp. 81-92)

Table 1. Mobile resource consumption bTests results are in milliseconds [4]

Model SoC RAM Android Testl Test2 Test3 Test4 Testb Test6 Test7 Test8
Huawei P20 Pro HiSilicon Kirin 970 6GB 8.1 144 130 2634 279 241 4390 779 193
OnePlus 6 Snapdragon 845/DSP 8GB 9.0 24 892 1365 928 1999 2885 303 1244
HTC 1312+ Snapdragon 845 6GB 8.0 60 620 1433 1229 2792 3542 329 1485
Samsung Galaxy S9+ Exynos 9810 Octa 6GB 8.0 148 1208 1572 958 1672 2430 612 1230
Samsung Galaxy S8 Exynos 8895 Octa 4GB 8.0 134 731 1512 1197 2519 3039 428 1422
Motorola 22 Force Snapdragon 835 6GB 8.0 85 823 1894 1513 3568 4302 381 1944
OnePlus 3T Snapdragon 821 6GB 8.0 106 776 1937 1707 3624 4427 365 1982
Lenovo ZUK 22 Pro Snapdragon 820 6GB 8.0 115 909 2099 1747 3683 4363 313 2030
Google Pixel 2 Snapdragon 835 4GB 9.0 143 1264 1953 1168 2104 4219 394 1360
Google Pixel Snapdragon 821 4GB 9.0 116 867 1838 1287 2489 4125 365 1568
Nokia 7 plus Snapdragon 660 4GB 9.0 136 944 2132 1320 2519 4641 475 1509
Asus Zenfone 5 Snapdragon 636 4GB 8.0 110 1055 2405 1910 4271 4877 515 2330
Google Pixel C Nvidia Tegra X1 3GB 8.0 105 1064 2585 2104 4546 5036 429 2439
Huawei Honor 8 Pro HiSilicon Kirin 960 6GB 8.0 121 1720 3163 1943 4791 5719 1082 2764
Sony XA2 Ultra Snapdragon 630 4GB 8.0 170 1653 3424 2638 5497 6338 685 3166
Meizu Pro 7 Plus Mediatek Helio X30 6GB 7.0 327 3357 4550 2215 4971 5502 1666 2651
BlacicBerry Keyone Snapdragon 625 4GB 7.1 160 1695 3525 2780 6150 7164 780 3628
Sony X Compact Snapdragon 650 3GB 8.0 111 1804 3566 2469 5789 6846 835 3527
Xiaomi Redmi 5 Snapdragon 450 3GB 7.1 188 1753 3707 3020 6144 7144 751 3580
Huawei Nexus 6P Snapdragon 810 3GB 8.0 106 1962 4113 3389 8155 9805 930 4733
Meizu MX6 Mediatek Helio X20 4GB 7.1 183 2217 4981 3906 9245 10551 936 4870
HTC U Play Mediatek Helio P10 3GB 6.0 239 2061 4303 3563 7537 10116 989 4368
Xiaomi Redmi 4X Snapdragon 435 3GB 7.1 246 2640 5428 4155 8575 9979 1229 5030
Samsung Galaxy .37 Exynos 7870 Octa 3GB 7.0 278 2092 4648 3881 8495 9644 941 4699
LG Nexus 5 Snapdragon 800 2GB 4.4 332 2182 5080 5732 9625 12375 1299 5948
Asus Zenfone 2 Intel Atom 23580 2GB 5.0 1507 2433 6188 4337 12878 15128 1176 6947
Motorola Moth C Mediatek MT6737 1GB 7.0 414 3394 7761 6356 14760 16721 1668 7856
Samsung Galaxy S3 Exynos 4412 Quad 1GB 4.3 553 4640 10321 7587 17187 21904 2059 9291
Fly Nimbus 15 Spreadtrum SC9832 1GB 7.0 538 5103 12618 7594 19174 22758 2094 9935
Huawei Ascend P1 TI OMAP 4460 1GB 4.1 482 7613 25105 12667 30743 35417 4015 18836

trol diagram to obtain the API, and then based on
the API information three data sets are created, bi-
nary data set, iteration frequency data set and time
series data set. Based on these three data sets, three
detection models were developed to identify Android
malware regarding API contacts, API frequency, and
API time sequence aspects. Finally, a model for adap-
tation was developed. In the first model, all APIs are
extracted from the graph and generated based on a
reference set of binary vectors. With c4.5 algorithm
detects malware with 96.81% accuracy. In the second
model, which is based on the number of iterations
of APIs, using the breath first search algorithm, the
number of iterations of each API is calculated and
then based on the reference set of the final vector and
these vectors are given to a deep neural network with
a different number of layers. The average accuracy
is 97.70% for malware detection. In the third model,
using the depth-first search algorithm (DFS), all exe-
cutable paths of the program are extracted and then
from each path, the last API, which is a system call,
is extracted and given to the LSTM network as a nu-
merical sequence based on the reference set. Finally,
with about 99% accuracy, it detects Android malware.

Experiments have been performed on 10,010 benign
programs and 10,683 malicious programs. This study
uses the ANDROZOO and AMD datasets to extract
the properties.

In Zaho et al [10], the opcode sequence, from the
Drebin dataset for malware, extracted and one-hot
matrix into a deep neural network with convolutional
layers. Accuracy in this approach is 99%, which is
2-11% higher than surface learning methods with the
same data set. Opcodes extracted from smali files.
The opcode properties are created from the Dalvik
instructions that come from the smali file. A binary
matrix is made up of sequences. This matrix is then
multiplied by a random matrix, which is the embed-
ded space, and a representation of the input matrix
is prepared for the use of convolutional layers. This
model has used pooling layers in the k-max strategy.
This paper also uses traditional learning algorithms
and finally concludes that the use of convolutional
layers has the best efficiency.

Rahali et al. [1] have proposed an image-based deep
neural network method for classifying and identifying
android malware taken from a malware database with

84

Lightweight Identification of Android Malware with KD and DL Approach — Mozafari, and Jalaly

12 categories of malware. Their method, by using
deep learning and converting android applications
to images, has been able to achieve 93% accuracy
in classifying and identifying the android malware
family.

Alzaylaee et al. [11] proposed DLdroid project that
first extracted the features using both static and dy-
namic methods. 178 features dynamically consisting
of API and intent calls and about 300 permissions
that are statically extracted, then create a CSV file
and deliver to a deep neural network. The total num-
ber of applications is 31,125, of which 11,200 are an-
droid malware and the rest are benign. The accuracy
of their method reaches 99.6%.

Pektas et al. [12] in 2020 followed all the execution
paths of a program and drew an API call graph for
all execution paths and performed a preprocessing on
the obtained graphs. Then a numerical vector is con-
sidered as the embedding vector and normalization is
performed. Then a deep neural network (convolution)
was run on the model and detected malware with
98.86% accuracy on AMD, Drebin, and Androzoo
datasets.

In 2019, Kim et al. [13] first extracted permissions
and components and environment information from
raw data, including: manifest, dex file, several sen-
sitive APT calls, smali file and number of calls per
function. For each of them, a binary was created and
finally, based on the similarity of these vectors with
properties extracted from the malware, a single vec-
tor was created and given to the neural model with
dense layers. This method can detect malware with
98% accuracy.

In 2019, Huang and Kao [14] proposed a method
that extracts Dalvik bit codes and converts them to
RGB color as fixed-size color images, then passes them
to the convolutional neural network. The accuracy of
this paper has reached about 99% as well as in terms
of time, this analysis takes 0.4 seconds.

In 2019, Fallah and Bidgoly [15] investigated several
well-known methods of machine learning for smart-
phone malware detection by network traffic. In the
paper, supervised machine learning methods are con-
sidered. They benchmarked the methods using differ-
ent features, such as the required features count, the
network traffic volume, the malware family identifi-
cation, and the new malware family detection. The
results show that using these methods with appropri-
ate features and network traffic volume would achieve
the Fl-measure of malware detection by a percentage
of about 90%.

Giff et al. [16] created two data sets using static
analysis, attribute properties, and data extraction

1S¢0ured)

from the use feature tag, then combine them and train
with a deep neural network. The proposed model
achieves 94.5% accuracy in detecting android malware.
Sample malware has been collected from the genome
database.

In [17], the authors proposed an explainable high-
accuracy Android malware detection, called PAIRED.
PAIRED used 35 static features to produce a predic-
tion of whether an application is malicious or benign.
The results showed that the PAIRED achieved an
accuracy of 0.9802 with an FN rate of 0.0090. The
novelty of this study is summarized by the creation
of a lightweight system (by static features) with high
accuracy, on the Drebin-215 dataset. The model was
also explained using SHAP values to increase trust
and understand the internal operations of the pro-
posed classifier model.

In [18] MSFDroid, a multi-source fast Android mal-
ware detection model was proposed. This model uses
information from the Android app files combining in-
formation entropy, file headers, and manifest files, to
build the base models for ensemble learning. Mean-
while, this study proposed a soft voting method by
adjusting the weights of each base model and thus
improving the performance. The results show that
it achieves a trade-off between performance and effi-
ciency, which enables efficient and accurate detection
of Android malware for static Android malware de-
tection.

In [19] the authors proposed a malware detection
model called SeqNet. This model could be trained
with little memory on the raw binary data. By avoid-
ing contextual confusion and reducing semantic loss,
SeqNet kept the detection accuracy by reducing the
number of parameters to 136K. Compared to exist-
ing models, SeqNet has a smaller size with enough
detection accuracy.

In [20], the authors presented an Android mal-
ware detection system based on deep learning that
uses static features to distinguish between malicious
and benign applications. To reduce the feature di-
mensions, they have used the feature engineering ap-
proach, which utilizes a multilevel feature reduction
and elimination process to create a detection model
lightweight. The proposed detection system achieves
accuracy and precision of about 98% and reduces the
size of the feature from 3,73,458 to 105 features. Their
evaluation dataset contains malware and benign ap-
plications with the same number of samples of both.

In all research that has tried to detect Android
malware by deep learning, they have been able to de-
tect android malware with high accuracy. In general,
deep learning methods on the android phone requires

November 2022, Volume 14, Number 3 (pp. 81-92)

high computational resources and a lot of use of the
mobile phone battery. In a study conducted in [4],
the authors evaluated the ability of mobile phones
to run deep neural networks. In this paper, 4 types
of mobile processor platforms (Qualcomm, HiSilicon,
MediaTek, and Samsung) and about 200 types of
mobile phones have been used. Also, 8 different cat-
egories of Al-Benchmark criteria that are designed
for deep neural networks, have been used for the test.
The authors concluded that although mobile phone
resources (CPU, GPU) are sufficient for everyday use,
they can still be some challenges to running a deep
neural network. Also, battery consumption has been
significant in performing these tests. Table 1 shows
the detailed result.

3 Background Theories

3.1 Deep Neural Network

Today there is a huge amount of data, and deep learn-
ing has become more popular than any other machine
learning algorithm. Fully connected neural networks,
convolutional neural networks (CNN), recurrent neu-
ral networks (RNN), and long short-term memory
(LSTM) networks are examples of deep neural net-
works. Most of them are trained by an algorithm
called backpropagation [21].

The DNNs contain several neurons in each layer.
There are connections or edges between the nodes of
each layer and adjacent layers. All of these connec-
tions are weighted. The neural network consists of
three parts, the input layer, the hidden layers, and
the output layer. and each layer has an activation
function. It is trained by giving inputs and comparing
the result with the expected output. The two values
should be close to each other. The whole part can be
seen as a trainable parametrized function that tries
to reach the optimal point of a problem using the
gradient descent approach. Among of DNNs, convo-
lutional networks have had significant success in the
field of image processing and language processing [22].
These networks include important components such
as convolutional layers and pooling layers.

Convolutional layers extract important features
of the image. In this layer, feature mapping is per-
formed. To this end, a filter is applied to all parts
of the image, internal multiplication is done between
the two, and each of the pixels of this filter is inter-
nally conjunction by the image pixels, and the sum of
the multiplication of all pixels with their correspond-
ing pixels creates a new matrix. This way, a matrix
with smaller dimensions is created. CNN has shown
significant results in detecting malware [14, 23]. The
current work also uses these networks.

3.2 Ensemble Learning

The combined machine learning model or ensemble
model is one of the machine learning methods that
help achieve a more accurate model. It is shown that
when weaker models are properly combined, they
can produce more accurate or stable models [24].
This technique, which is called ensemble learning,
may help to get results that are more efficient. In
machine learning models, the choice of algorithm is
very important in obtaining good results. The model
selection depends on many variables in the problem
such as the amount of data, the dimensions of the
data and the distribution. In hybrid machine learning
methods, basic models are combined as components to
create more complex models. Most of the time, these
models do not perform well results by themselves,
because they have a high bias or variance [25].

To create a hybrid machine learning method, we
should first select the basic models. In many cases,
especially the bagging method, a single basic learning
algorithm is used, so we have several identical basic
models that are learning in different ways, which
are called homogeneous hybrid models. In another
method, different types of basic learning algorithms
are used, which are called the heterogeneous hybrid
model.

There are three general ways to combine basic
models: Bagging method: In this method, homoge-
neous basic models are used, they are trained inde-
pendently of each other in parallel, and then com-
bined with the deterministic averaging process [26].
Boosting method: This method also uses homoge-
neous basic models that are trained sequentially and
with an adaptive method (so that a basic model de-
pends on its previous model) and combined with a
definite strategy [27]. Stacking method: This method
uses heterogeneous base models that are trained in
parallel and combined with training a meta-model of
the predicted output method of base models [28].

Overall, bagging methods are more focused on cre-
ating a hybrid model with less variance than its base
models. While boosting and stacking methods try to
create a stronger model with less bias than their base
models (variance may even be reduced) [24].

When we teach a model, whether it is a matter of
classification or regression, we obtain a function that
takes an input and returns an output according to
the instruction set. The idea of the bagging method
is simple, several independent models are trained and
combined with their prediction to obtain a model
with less variance.

There are several methods for combining basic mod-
els that have been learned in parallel. For regression

1S¢0ured)

problems, the output of these models is averaged to
obtain the output of the hybrid model. For classifi-
cation issues, the output class of each base model is
considered as one vote, and the class that wins the
majority of votes will be the output of the composite
model. This method is called hard selection. For clas-
sification problems, we can consider the probability
for each of the classes returned by the models and
average these probabilities and keep the class with
the highest average probability. This method is called
soft selection. The methods of averaging or voting
can be simple or weighted.

3.3 Knowledge Distillation Model

Deep neural networks in recent years will be successful
in almost field. Even, though these models are huge
and have many parameters, so they cannot be used on
devices with limited resources. Knowledge distillation
is referring to the idea of model compression to teach
a lighter network than a heavy network. As shown in
Figure 1, the ability to generalize the heavy model to
a small model can be used by the heavy model as a
soft label to teach the small model using the softmax
function along with the temperature. To transfer
knowledge, the same training data set is used that
was used to teach the heavy model. In transferring
knowledge, the heavier model or the teacher model
is pre-trained, then a light model is created. The
loss function of the student model is the difference
between the prediction of the student model and the
hard labels.

A loss function for distiller with a temperature
that calculates the difference between soft labels of
the light model and soft labels of the heavy model.
The back-propagation operation is repeated and the
model is learned in such a way that this difference is
minimized and the knowledge of the student model is
completely transferred to the student model without
losing any information. When the heavier model is a
large set of simpler models, the arithmetic mean or
geometric mean of their separate predictive distribu-
tions can be used as a soft label. Soft goals provide
more information in each training case than hard la-
bels. The activation function in a "neural network” is
used to normalize the output of the network and con-
vert it to a probability distribution. Normalization is
performed relative to the predicted output classes. As
shown in Equation 1, the softmax function takes the
input of a vector, consisting of k, of real numbers, and
converts it to a probability distribution consisting of
k probabilities commensurate with the representation
of the input numbers. This means that some compo-
nents of the vector (z) may be negative or more than
one before using softmax. But after using the func-
tion, each component is in the range (0, 1) so that

1S¢0ured)

Lightweight Identification of Android Malware with KD and DL Approach — Mozafari, and Jalaly

the sum of them is equal to 1 and input with larger
values will be more likely.
e?
7 1)
= (
Zj:l €j

fori=1,...,kand z = (z1,...,2;) € R,

I(zi) =

When using distillation, the softmax function
changes as shown in Equation 2. Here T is used as
the temperature. Increasing the temperature allows
us to soften the output layers and thus allows us to
extract possible outputs. When T' = 1 the softmax
function is standard. As T grows, the probability
distribution that generated by the softmax function
becomes smoother by providing more information
about which model class is more similar to the
predicted class. This is called ”dark knowledge” em-
bedded in the model. The heavy model has a softmax
function with temperature in the output layer and
the student model has two softmax outputs with
temperature and another output with the standard
softmax function in the output layer [29].

cap(3

)
> exp(F)
4 Proposed Methodology

(2)

In this section, the proposed framework has been
introduced, including the soft label construction as
well as the bagging strategy for assembling.

4.1 The Overview of the Proposed
Framework

Since the anatomy analysis of malware needs to take
a deep look at the relationships between the features
to reveal the malicious behavior and identify its pat-
terns using fewer computing resources, we tried to
achieve these by implementing feature selection, deep
learning, distillation and finally bagging ensemble.
Figure 3 shows the architecture of our methodology,
first, a tree classifier is applied to the features to se-
lect the most important ones. Part two is the deep
learning model, where the input is 2D images that
are created using features to be fitted in the convo-
lutional layers. Then distillation (teacher-student) is
used to lightweight the processing and finally we used
a bagging ensemble that can achieve an accuracy as
high as the teacher model. Figure 3 shows the pro-
posed framework.

4.2 Feature Selection

Carefully selecting features to teach the learning algo-
rithm is important because data sets, combined with
a set of wrong features, can lead to unreliable results.

November 2022, Volume 14, Number 3 (pp. 81-92)

Softmax(T=t) — softlabels -
R

distillation
loss

" soft |
Softmax (T=t) —— E!!!.l.:im /

Loss Fn

= N hard
Satsmes F = 2) " prediction

student
loss

hard
label y

(ground truth)

Loss Fn

Figure 1. The knowledge distillation model

Training Teacher model

Convert to Feature Matrix

Feature
Selecttion

Teacher Model

u Jehe

n students with different temperatures

Training Students model

4ok |
il

3 s0he

i

=
=

Malware family

Xewyos
$/2qe] Jos

_’"‘wl

ut S‘mmatmn

Classify APK

Outp!

6’7‘,
J

e
05

Benign app

3 49Ai
Xeuny

1%
S
>
[
o>
&

J

Figure 2. The proposed framework

That is why we applied feature extraction to the data
to increase the performance of the proposed model.
We used by Extremely Randomized Trees Classifier
(Extra Trees Classifier) to select features. This algo-
rithm is a group learning technique that aggregates
the results of multiple uncorrelated decisions. Trees
collected in a ”forest” are classified to achieve the
desired output. During forest construction, for each
feature, a normalized value called the Gini coefficient
is calculated. The features are sorted in descending
order based on this parameter, and we keep the k im-
portant of them and delete the rest. The Gini index
is a metric for the distribution of a parameter across
a set of numbers. A higher Gini index shows greater
inequality.

4.3 Base Classifier Learning

This section describes the CNN model layers. The
model proposed in [1] is used as the heavy model. The
input layer on CNN contains the two-dimensional
matrix of features. We have used the feature selec-
tion method described in the previous step. These
features are in the form of a one-dimensional vector
that we have transformed into a two-dimensional ma-
trix. Intuitively, all application features are converted
to 2D gray images. After that, there are three convo-
lutional layers with pooling as the feature extraction
layers. As shown in 77, the first convolution layer
consists of 32 filters with a size of 3 x 3. The second
layer contains 64 filters with a size of 3 x 3 and the
next convolution layer includes 128 filters with a size

ISeﬂur@

oo
-~

Depth = 32

Conv2d «— |7
k

Dropout «

v
=
H
=
5
e |
|
a
k

- ol =
¥ o 2
E £ §
o 2 f=3

-9

=

a

Maxpooling2d

Convid <

Max-pooling2d +— l

Lightweight Identification of Android Malware with KD and DL Approach — Mozafari, and Jalaly

Depth = 256
Depth = 128
Pl Depth - 12
- =
Depth = 512 52
P
~4
‘{; J ‘L"'
D
)
L _}' ;
v v v v l
3 . 5 o 5
3 £ £ o -4 -1
£ [] 5 3 -
s = a -
= - oy
= = =

Figure 3. The CNN model [1]

of 3 x 3. The layers are followed by a dropout layer
to prevent overfitting. Finally, the last layers of the
model are two dense layers that are responsible for
decision-making.

The first dense layer contains 256 neurons. The
output of the model is a dense layer with 13 classes
(12 classes of malware and 1 class of benign). Assigns
a probability value to each of the outputs so, the
highest probability is the predicted class.

4.4 Distillation

By distilling knowledge and creating the student-
teacher model, the knowledge of the heavy model (so-
called teacher model) is transferred to the light models
(named students) without losing the information of
the teacher model. The student model is similar to
the teacher model, except that the number of filters
in all convolution layers is equal to 8. The first layer
of dense also has 8 neurons.

4.5 Bagging

Group learning involves methods that combine the
predictions of several models. These predictions can
work better than a single case. In this study, distilla-
tion was performed at different temperatures. At each
temperature, the output is an array with 13 entries.
After distillation with different temperatures, peer-to-
peer array entries are summed and then the arg-max
array of each program sample is returned as output.
Algorithm 1 shows the pseudo-code of bagging.

5 Experiment and Results

5.1 Datasets

Experiments have been performed on two datasets:
1) static and 2) dynamic feature datasets.

e Static dataset: The static features dataset
that is used in our experiment is CCCS-CIC-

ISeﬂure@

Algorithm 1 The pseudo-code of students bagging

Input:
1: Data: Matrix of App features
2: Model: Teacher Model
3: x: Suspicious app features
Output:
4: Predicted Class of = (Y:Set of All Classes)

5. Students + ()

6: for k € [0..100] do

7 studenty, < train student on Model with tem-
perature k

8: Students+ = studenty,

9: end for

10:

11:

12:

13:

14:

> Generate Bagging Model
for student; € Students do
out; <+ student;(x)

end for
len(Students)
p(

return argmazrycy X,_; y = out;)

AndMal-2020, [1]. It includes families of mal-
ware in addition to benign android applications
which includes 400K android apps. The dataset
has 12 malware categories including Adware,
Backdoor, FileInfector, Potentially Unwanted
Apps (PUA), Ransomware, Riskware, Scare-
ware, Trojan, Trojan-Banker, Trojan-Dropper,
TrojanSMS, Trojan-Spy. The dataset has al-
ready been used in machine learning-based
malware detection research.

e Dynamic dataset We used the CCCS-CIC-
AndMal-2020 [30] for the dynamic dataset.
The features of this dataset are extracted from
programs that run in simulated environments.
Using a data set containing 24,175 applications
containing 13 families of malware. The number
of features extracted for each program is equal
to 142. By creating a convolutional network
and creating a teacher or complex model.

November 2022, Volume 14, Number 3 (pp. 81-92)

COMPUTATION COMPARISON

Hstudent M Teacher

Table 2. Static data set results

o model parameters# accuracy
wn
(=)}
oM
by BaseLight Model 8806 89%
Teacher Model 8139534 93%
§ DistilledM odel 8806 92%
(o2} — o
o ~ o
I 8

Table 3. Dynamic data set results

DYNAMIC DATASET STATIC DATASET

model parameters# accuracy

Figure 4. Computation comparison in two datasets

1309 64%
471565 75%
1309 1%

Accuracy BaseLight M odel
& Teacher M odel

74 - - 7“ 77777777777777777777777777
72 ‘ v

70 e

68

66

64

62

60

Teacher

Distilled M odel

parameters are configured to perform the experi-
ments: Activation (Hidden layers): RELU, Optimizer:
Adam, Epoch: 50, Batch Size: 16 The first experi-
ment is malware detection using the static feature
dataset, which includes 13 families of malware. In this
experiment, about 900 features were selected as the
best features from 2200 features using the decision
tree. Then, using the convolutional layer and dense
layers and using knowledge distillation operation to
reduce the model calculations, the accuracy reached
92% accuracy. As can be seen in Table 2, Knowledge
distillation was able to close the accuracy of the light
model to nearly the same as the heavy model. The
light model, without knowledge distillation, has an
accuracy of about 89%, while using distillation its
accuracy increased up to 92%. The accuracy of the
‘ heavier model is 93%, but it has 100 times more
parameters. The results clearly show the effectiveness
of knowledge distillation of the lightning deep model
while maintaining their performance.

Student

Model size
500000 471565

450000 - f ,,,,,,,,,,,,,,,,,,,
400000 E
350000 i
300000 T
250000 g
200000 g
150000 E
100000 .i
50000 _—
o — v

Student

99% size reduction

Teacher

Figure 5. Computation vs. Accuracy reduction (dynamic
dataset)

Ensemble Students Another data set in our experiment is the dynamic

0741 ¢ ?:sgelfnble feature dataset. The result of the mentioned dataset
072 | can be seen in Table 3. The Android malware family
can be detected with 75% accuracy with the heavier

> 070 - model. Then, by distilling and transferring knowledge
s Y from the teacher model to the student model, 71%
% 0681 accuracy is achieved. The lightweight model without
l * % L, . o knowledge distillation detects Android malware with

08871 o . . just 64% of accuracy. Figure 4 shows the Compu-
064] * . tation comparison of two datasets. Figure 5 shows

° 20 0 P 80 100 the reduction in model size along with the reduction

Temperature in accuracy. As can be seen, distillation was able to

reduce the model size by 99%, while the accuracy
just dropped by 4%. Using ensemble learning, we can
increase the accuracy of student models for Android
malware identification. To this end, the student mod-
els were trained with different temperatures between

1 and 100.
7))
1SeCure

Figure 6. Bagging students with different temperatures

5.2 Knowledge Distillation Results

The models have been implemented in Python
using Keras and TensorFlow. The following hyper-

Lightweight Identification of Android Malware with KD and DL Approach — Mozafari, and Jalaly

Accuracy
76 without accuracy drop
#w N
72
70
68
66
64
62
60
Bagging Teacher
Meodel size
500000 471565

-

450000
400000
350000
300000
250000
200000
150000
100000

50000

80% size reduction
Ml Lo

@
=

o

Bagging Teacher

Figure 7. Computation vs. Accuracy reduction (bagging)

Finally, these 100 models are combined with the
bagging method. The achieved model shows an accu-
racy of 75%, which is the same as the heavy model.
Figure 6 shows the accuracy of a different number of
ensemble models in comparison to the single student
models. Each blue point is the accuracy of a single
student with a temperature indicated on the X-axis.
As can be seen in this figure, while none of the stu-
dents have accuracy above 71%, the combination of
up to 70 student models can increase the accuracy
of the model up to 75% which is the accuracy of the
heavier model. The size of this model is compared
with the heavy model in Figure 7. As can be seen,
the model size is still reduced by 80%, while there is
no drop in the accuracy.

6 Conclusion

In this paper, we proposed a method for lightweight
deep malware detection models on mobile phones. In
the proposed method, first, a heavy model is taught
and then with the knowledge distillation approach,
its knowledge is transferred to a light model called
student. In this approach, soft labels are used to
simplify the learning process.

The resulting model, although slightly less accu-
rate in identification, has a much smaller size than
the heavier model. To continue, ensemble learning
was used to recover the dropped accuracy. The results
show that combining 70 students with different set-
tings can lead to a model with accuracy exactly equal
to the heavy model and at the same time a much

ISeﬂur@

smaller size. The proposed method is examined on
two different datasets including dynamic and static
features, and the results show that in both datasets
the proposed method can maintain accuracy and at
the same time significantly reduce the model size.
However, the results showed that this method has
a greater impact on more complex features such as
dynamic features.

References

[1] Abir Rahali, Arash Habibi Lashkari, Gurdip
Kaur, Laya Taheri, Francois Gagnon, and
Frédéric Massicotte. DIDroid: Android malware
classification and characterization using deep im-
age learning. ACM International Conference
Proceeding Series, pages 70-82, 2020.

[2] Xi Xiao, Shaofeng Zhang, Francesco Mercaldo,
Guangwu Hu, and Arun Kumar Sangaiah. An-
droid malware detection based on system call
sequences and LSTM. Multimedia Tools and Ap-
plications, 78(4):3979-3999, feb 2019.

[3] Arvind Mahindru and Paramvir Singh. Dy-
namic Permissions based Android Malware De-
tection using Machine Learning Techniques
Smartphones Security View project Android mal-
ware detection View project Dynamic Permis-
sions based Android Malware Detection using
Machine Learning Techniques. dl.acm.org, pages
202-210, feb 2017.

[4] Andrey Ignatov, Radu Timofte, William Chou,
Ke Wang, Max Wu, Tim Hartley, and Luc Van
Gool. AI Benchmark: Running deep neural net-
works on android smartphones. In Lecture Notes
in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 11133 LNCS,
2019.

[5] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar,
Rosli Salleh, and Lorenzo Cavallaro. The evo-
lution of android malware and android analysis
techniques. ACM Computing Surveys, 49(4), jan
2017.

[6) Ahmad Salah, Eman Shalabi, and Walid Khedr.
A lightweight android malware classifier using
novel feature selection methods. Symmetry,
12(5):858, may 2020.

[7] Md Shohel Rana, Sheikh Shah Mohammad
Motiur Rahman, and Andrew H Sung. Evalu-
ation of Tree Based Machine Learning Classi-
fiers for Android Malware An Optimized Perona-
Malik Anisotropic Diffusion Function for Denois-
ing Medical Image View project Phishing URLs
Detection View project Evaluation of Tree Based
Machine Learning Classifiers for Android Mal-
ware Detection. Proceedings, 11056 LNAIL:377—
385, 2018.

[10]

[14]

[15]

[19]

[20]

November 2022, Volume 14, Number 3 (pp. 81-92)

Guanhong Tao, Zibin Zheng, Ziying Guo, and
Michael R. Lyu. MalPat: Mining Patterns of Ma-
licious and Benign Android Apps via Permission-
Related APIs. IEEE Transactions on Reliability,
67(1):355-369, mar 2018.

Zhuo Ma, Haoran Ge, Yang Liu, Meng Zhao,
and Jianfeng Ma. A Combination Method for
Android Malware Detection Based on Control
Flow Graphs and Machine Learning Algorithms.
IEEE Access, 7, 2019.

L Zhao, D Li, G Zheng, W Shi 2018 IEEE 18th
International, and undefined 2018. Deep Neu-
ral Network Based on Android Mobile Malware
Detection System Using Opcode Sequences. iee-
explore.ieece.org, 2018.

MK Alzaylaee, SY Yerima, S Sezer Computers
Security, and undefined. DL-Droid: Deep learn-
ing based android malware detection using real
devices. Elsevier, 2020.

Abdurrahman Pektag and Tankut Acarman.
Learning to detect Android malware via opcode
sequences. Neurocomputing, 396:599-608, jul
2020.

Taeguen Kim, Boojoong Kang, Mina Rho, Sakir
Sezer, and Eul Gyu Im. A multimodal deep
learning method for android malware detection
using various features. IEEE Transactions on
Information Forensics and Security, 14(3), 2019.
Tonton Hsien De Huang and Hung Yu Kao. R2-
D2: ColoR-inspired Convolutional NeuRal Net-
work (CNN)-based AndroiD Malware Detections.
In Proceedings - 2018 IEEE International Con-
ference on Big Data, Big Data 2018, pages 2633—
2642. Institute of Electrical and Electronics En-
gineers Inc., jan 2019.

Somayyeh Fallah and Amir Jalaly Bidgoly.
Benchmarking machine learning algorithms for
android malware detection. Jordanian Jour-
nal of Computers and Information Technology,
5(3):216-230, 2019.

J McGiff, WG Hatcher, and J Nguyen. Towards
multimodal learning for android malware detec-
tion. ieeexplore.ieee.ory.

Mohammed M Alani and Senior Member.
PAIRED : An Explainable Lightweight An-
droid Malware Detection System. IEEE Access,
10(June):73214-73228, 2022.

Tao Peng, Bochao Hu, Junping Liu, Junjie
Huang, Zili Zhang, Ruhan He, and Xinrong
Hu. A Lightweight Multi-Source Fast Android
Malware Detection Model. Applied Sciences,
12(11):5394, 2022.

Jiawei Xu and Lingyun Ying. SeqNet: An Ef-
ficient Neural Network for Automatic Malware
Detection. 2022.

Kavita Jain and Mayank Dave. Machine

[21]

Learning-Based Lightweight Android Malware
Detection System with Static Features. Lec-
ture Notes in Electrical Engineering, 694:345—
359, 2021.

Li Deng, Geoffrey Hinton, and Brian Kingsbury.
New types of deep neural network learning for
speech recognition and related applications: an
overview. In 2018 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing,
pages 8599-8603. IEEE, may 2013.

Joan Bruna and Stephane Mallat. Invariant scat-
tering convolution networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
35(8):1872-1886, 2013.

Niall McLaughlin, Jesus Martinez Del Rincon,
Boo Joong Kang, Suleiman Yerima, Paul Miller,
Sakir Sezer, Yeganeh Safaei, Erik Trickel, Ziming
Zhao, Adam Doupe, and Gail Joon Ahn. Deep
android malware detection. In CODASPY 2017 -
Proceedings of the 7th ACM Conference on Data
and Application Security and Privacy, pages 301—
308, New York, NY, USA, mar 2017. Association
for Computing Machinery, Inc.

Xibin Dong, Zhiwen Yu, Wenming Cao, Yifan
Shi, and Qianli Ma. A survey on ensemble learn-
ing. Frontiers of Computer Science, 14(2):241—
258, 2020.

Tianchong Gao, Wei Peng, Devkishen Sisodia,
Tanay Kumar Saha, Feng Li, and Mohammad Al
Hasan. Android Malware Detection via Graphlet
Sampling. IEEE Transactions on Mobile Com-
puting, 18(12):2754-2767, dec 2019.

Quan Sun and Bernhard Pfahringer. Bagging
Ensemble Selection. Lecture Notes in Computer
Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioin-
formatics), 7106 LNAI:251-260, 2011.

Jafar Tanha, Yousef Abdi, Negin Samadi, Nazila
Razzaghi, and Mohammad Asadpour. Boosting
methods for multi-class imbalanced data classifi-
cation: an experimental review. 2020.
Mohammad Amini, Jalal Rezaeenoor, and Es-
maeil Hadavandi. Effective Intrusion Detection
with a Neural Network Ensemble Using Fuzzy
Clustering and Stacking Combination Method.
Journal of Computing and Security, 1(4):293—
305, 2014.

Matilda Rhode, Pete Burnap, and Kevin Jones.
Distillation for run-time malware process detec-
tion and automated process killing. feb 2019.
David Sean Keyes, Beiqi Li, Gurdip Kaur,
Arash Habibi Lashkari, Francois Gagnon, and
Frederic Massicotte. EntropLyzer: Android Mal-
ware Classification and Characterization Using
Entropy Analysis of Dynamic Characteristics. In
2021 Reconciling Data Analytics, Automation,

1S¢0ured)

Lightweight Identification of Android Malware with KD and DL Approach — Mozafari, and Jalaly

Amir Jalaly Bidgoly received his
M.Sc. degree in Software Engineer-
ing from the Iran University of Sci-
ence and Technology (IUST) in 2009,
and Ph.D. in Software Engineering
from the University of Isfahan (Isfa-
han, Iran) in 2015. He is currently an
Associate Professor with the Depart-
ment of Computer Engineering at the University of
Qom. His research interests include computer security
and machine learning.

Privacy, and Security: A Big Data Challenge
(RDAAPS), pages 1-12. IEEE, may 2021.

Somayeh Mozafari received her
B.Sc. degree in computer engineering
from Shiraz Azad University, Iran, in
2010. She received her M.Sc. degree
in Information Technology from Qom
University in 2022. Her research in-
terests include artificial intelligence
and android malware detection.

ISeﬂur@

	1 Introduction
	2 Related Work
	3 Background Theories
	3.1 Deep Neural Network
	3.2 Ensemble Learning
	3.3 Knowledge Distillation Model

	4 Proposed Methodology
	4.1 The Overview of the Proposed Framework
	4.2 Feature Selection
	4.3 Base Classifier Learning
	4.4 Distillation
	4.5 Bagging

	5 Experiment and Results
	5.1 Datasets
	5.2 Knowledge Distillation Results

	6 Conclusion

