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A B S T R A C T

File fragment’s type classification in the absence of header and file system

information, is a major building block in various solutions devoted to file

carving, memory analysis and network forensics. Over the past decades, a

substantial amount of effort has been put into developing methods to classify

file fragments. Meanwhile, there has been little innovation on the basics of

approaches given into file and fragment type classification. In this research,

by mapping each fragment as an 8-bit grayscale image, a method of texture

analysis has been used in place of a classifier. Essentially, we show how to

construct a vocabulary of visual words with the Bag-of-Visual-Words method.

Using the n-gram technique, the feature vector is comprised of visual words

occurrence. On the classification of 31 file types over 31000 fragments, our

approach reached a maximum overall accuracy of 74.9% in classifying 512 byte

fragments and 87.3% in classifying 4096 byte fragments.

c© 2020 ISC. All rights reserved.

1 Introduction

T
he classification of file fragments from data stor-

age devices when criminals deleted file system

information, is an important issue. Digital forensics

analysts often have to reconstruct trace, log and evi-

dence files which their indexes (e.g., i-nodes in unix

and FAT32, NTFS in windows) are deleted by crimi-

nals. Whenever the storage device/filesystem remains

intact, reconstruction of files can be easily performed

using the metadata on filesystem. But in real sce-

nario crimes, it is more likely that the metadata is

also defected or even deleted entirely. During a pro-

cess called file carving, reconstruction of such files

must be conducted using the only remaining option
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for data source, the content of fragments themselves.

Hence, determining the type of these fragments is con-

sidered as an essential step in file carving. Fragment

type detection is also useful in other use cases. For in-

stance, in network security domain, packets’ payload

data type examination could boost the early identi-

fication of malicious executable codes which would

facilitate malware detection [1]. Moreover, it would

also help with identifying damaged/spoofed headers

in order to avoid true type detection by signature-

based methods [2]. Due to the extremely large search

space of determining whether or not a fragment be-

longs to a specific file type, it is crucial to develop

an automated method for this purpose. Almost all

commercial and off-the-shelf tools, such as TrID [3],

are reliant on file signature and magic numbers. This

makes them ineffective and numb wherever such data

is missing, corrupted, or its location on the file sys-
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tem is unknown. There has been little innovation on

the basis and inner mechanism of most previous ap-

proaches to the file type classification; A review of

past researches shows that most of them are just lim-

ited to use a number of statistical properties and/or

byte frequency analyses. The research carried out by

Pullaperuma et al. [4] made us think of this conjec-

ture that texture analysis could also keep up with

byte frequency and statistical properties analysis in

fragment classification domain as an effective method.

However, unlike Pullaperuma, we are looking for a

method that is neither limited to few number of data

types nor largely-sized fragments. To this goal, in our

proposed approach, a new method for analyzing the

texture of file fragments is provided that can differen-

tiate more file types, even for the 512-byte fragments.

The underlying idea is to find the specific visual words

associated with each file type. A visual word repre-

sents a region of pixels with similar properties. By

using a vocabulary of visual words, we can use the

Bag-Of-Visual-Words (BOVW) technique. This idea

has been used in image processing [5] but its capa-

bility and success in detecting file types is primarily

investigated in this research for the first time. In our

proposed method, the fragments are first handedly

mapped onto images and visual words are extracted.

Then, the number of occurrences of each visual word

is counted as an n-gram in each fragment of the file

and a feature vector is created for each fragment. By

classifying these vectors, a model for predicting the

type of file is fitted. Results on 31000 fragments have

shown the effectiveness of the proposed method.

This paper is organized as follows. Section 2, gives

a brief review of related work in this area. Section 3,

characterizes our approach, which includes how to ex-

tract the vocabulary of visual words using BOVW, as

well as detailed description on construction of feature

vectors and classification model. Through Section 4

and Section 5, we bring along two extensions on top

of our proposed method which tend to reduce false

positives and expand applicability by segregation of

outlier fragments and re-granulation of fragment sizes,

respectively. In Section 6, parameters of the proposed

method are evaluated. Results according to experi-

ments are also represented and discussed. Finally, we

conclude and suggest future work in Section 7 and

Section 8.

2 Related Work

In the last two decades, a plethora of researches have

been dedicated to file and fragment type classifica-

tion. Particularly, recent works in this field explore

the application of statistical analysis combined with

machine learning techniques like artificial neural net-

works. Some of the more prominent solutions are out-

lined here.

2.1 Byte Frequency Distribution Approach

McDaniel and Heydari considered the identification of

file type based on byte frequency distribution (BFD),

byte frequency correlation (BFC) and header/footer

analysis [6]. While the first two yielded unconvincing

27.5% and 45.8% accuracies respectively, the third

one achieved 95.8% accuracy. However, it is not well-

equipped for use cases with damaged files or miss-

ing header/footer information. Li et al. [2] conducted

BFD analysis over the first 20, 200, 500 and 1000

bytes as well as the whole files to classify 8 file types.

They exploited K-means clustering to create centroid

for each file type. Best result is reported on 20 bytes

blocks. Evidently, as the block sizes increased, accu-

racy decreased. This is due to the fact that with just

the first 20 bytes in consideration, the method is lim-

ited to use magic numbers. However, increasing the

number of bytes would decrease the influence of those

factors. Ahmad et al. [7] developed the method used

by Li et al. [2] to classify file types. They clustered

files with similar BFDs, regardless of their type. Co-

sine similarity metric was used to assign an unknown

fragment to a cluster. In each cluster, Linear Discrim-

inant Analysis (LDA) method was used to make the

distinction between file fragments. This method led

to an overall classification accuracy of 77% for 10 file

types. Kattan et al. [8] extracted features from BFD

using Principle Component Analysis (PCA) and gave

feature vectors to a multilayer Artificial Neural net-

work (ANN) to produce fileprints. On classification of

6 file types, 98% average true positive was reported.

Since experiments have been performed on complete

files having header, PCA may have extracted files

header information as the most outstanding compo-

nent [9]. Karresand and Shahmehri [10] introduced

new method named Oscar which used BFD vectors to

classify fragment types. Oscar was later leveraged to

utilize Rate of Change (ROC) for consecutive bytes

[11], which increased the accuracy of 4KB JPG frag-

ments detection up to 99.2%. Unfortunately, ROC

could not help with enhancing the classification of

other file formats. Karampidis et al. [12] proposed a

methodology for file type classification. A three stage

process including feature extraction using BFD vec-

tors, feature selection utilizing genetic algorithm and
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classification by examining multiple machine learn-

ing algorithms was conducted over 3 image file types.

They achieved their best results by applying neural

networks which reportedly led to accuracy of 100%,

98.81% and 100% for JPG, PNG and GIF file types

respectively.

2.2 Other Statistical Approach

Veenman [13] proposed statistical method which com-

bined BFD, Shannon entropy and Kolmogorov com-

plexity as the set of features. In order to classify file

types of fragments, 4KB each, Fisher linear discrim-

inant was applied. An overall accuracy of 45% was

reported for 11 file types. Erbacher and Mulholland

[14] used statistical features calculated from BFD vec-

tors over sliding windows of sizes 64, 256, 1024, 4096

and 16384 bytes. They showed window sizes of 256

and 1024 bytes are most effective. They claimed that

only 5 features were sufficient to classify 7 file types.

Moody and Erbacher [15] elaborated on that idea.

They used a sliding window of 256 bytes in size. They

extracted a variety of statistical features (such as av-

erage, kurtosis and standard deviation) from byte

values in each window in order to identify fragments

of 8 file types. They reported an average classification

accuracy of 72%. Calhon and Coles [16] attempted

to classify 4KB fragments of 4 file types. They ex-

tended Veenman’s work [13] by using additional fea-

tures (such as Longest Common Subsequence) and

applying Fisher Linear Discriminant. The main dis-

tinction to their work is that Veenman fit one linear

discriminant function for all files in the sample, while

Calhon and Coles clustered files with similar BFD

and trained the discriminant for each cluster. They

have also chosen pairwise classification over multi-

type classification. Hence, so that there is a lesser

chance of misclassification. Axelsson [17] made use of

K-Nearest-neighbor (KNN) to classify 512-byte frag-

ments from 28 file types. He applied Nearest Com-

pression distance (NCD) as a measure of similarity.

Average classification accuracy reported is about 35%.

Li et al. [18] used a Support Vector Machine (SVM)

to classify 4KB fragments of 4 file types using BFD

vectors. An average classification accuracy of 81.5%

was achieved in their experiments. Conti et al. [19]

used Shannon entropy, mean byte-value, chi square

goodness of fit and Hamming Weight to provide the

statistical coordinate system for a KNN classifier

with Euclidean distance measure in order to classify

1KB binary fragments. They arrived at 98.55% accu-

racy for Random/Compressed/Encrypted fragments,

100% for both Base64 encoded and plain fragments,

96.7% for machine code, 98.7% for Text and 82.5%

for bitmap fragments. Penrose et al. [9] focused on

classifying fragments of high entropy file types, spe-

cially encrypted and compressed files. They proposed

two methods to detect randomness along with a sec-

ond phase classifier as an Artificial Neural Network

(ANN). NIST statistical tests and usage of compress-

ibility as two separate measures of randomness lead to

91%, 82%, 76% and 70% accuracy for encrypted and

compressed 4KB fragments, respectively. Zheng et al.

[20] proposed a method to classify fragments using

data types instead of file types. This way, fragments

of PNG and GZ files are labeled as deflate data type

instead of their corresponding file types. They used

an SVM supported by BFD and Shannon entropy as

input parameters to classify 512-byte data fragments.

The result depicts an 88.58% accuracy over 12 data

types which indicates a 21.2% bump regarding file

type classification accuracy.

2.3 N-gram Approach

Cao et al. [21] presented a file type classification algo-

rithm which distinguishes four file types using 1-gram

and 2-gram analysis. They also proposed a feature

selection evaluation function to select grams with

strongest discrimination power. This approach seems

promising when 256 2-gram features are used, which

reportedly reaches an average F-value of 85%. Gopal

et al. [22] evaluated several commercial off-the-shelf

softwares against some classification methods such

as SVM and KNN using cosine similarity distance

metrics. However, the results are only reported on

the performance of SVM. The proclaimed accuracy,

using the macro-averaged F1 measure, for classifica-

tion of 512 byte file fragments is about 33%. Fitzger-

ald et al. [23] extended on Li et al. [18] work. They

utilized 1-gram and 2-gram as well as some statisti-

cal measures (such as Shannon entropy, Hamming

weight and Kolmogorov complexity) to identify 512

byte fragments of 24 different file types using an SVM

discriminator. An average classification accuracy of

42.5% is reported. Beebe et al. [24] made research

on 38 file and data type classification and developed

a study called Sceadan. They gathered several byte

frequency based measures (such as Hamming weight,

low ASCII frequency, medium ASCII frequency, high

ASCII frequency) as well as 1-gram and 2-gram fea-

tures and planned for comparative examination of
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different input vectors, SVM kernels, and SVM pa-

rameters in their experiments. 73.4% classification

accuracy is reported using a linear function since the

SVM kernel concatenated 1-gram and 2-gram fea-

tures as the input vector. Divakaran et al. [25] car-

ried out an investigation to evaluate different set of

features (such as n-gram frequencies, entropy, mean,

standard deviation and kurtosis) as well as stream

size for classification of 10 file types in network traf-

fic. Multiple scenarios were performed and 89% ac-

curacy was attained for random streams size of 6000

byte, although the classification algorithm applica-

tion and specifications are left unclear and asks for

more clarification. Vulinović et al. [26] applied Feed-

forward Neural Networks (FNNs) which were trained

with 1-grams and 2-grams to classify 512-byte frag-

ments of 18 file types. The classifier achieved the clas-

sifier macro-averaged F1 score of 88%. Bhatt et al.

[27] explored a hierarchical classification approach to

identify 512-byte file fragments of 14 file types. They

evaluate their model applying SVM as base classi-

fier. Their experiment resulted in an average accuracy

of 66% and also F1 measure of 66% using 1-grams

and 2-grams as well as some other statistical features

(such as mean byte-value, Hamming weight and Con-

tiguity). Skračić et al. [28] explored classification of

18 file types using 1-grams as discriminating feature.

They used a dataset of 512-byte blocks to evaluate

their approach. They developed an idea of merging

older MS-Office file formats (doc, ppt, and xls), and

new Office formats (docx, pptx, and xlsx) into two

separate higher-level classes to simply develop a hier-

archical classification approach. Using an ensemble

of classifiers such as FNNs, SVMs, Random Forests

(RFs) and Vector Logic Regression (VLR), an overall

accuracy of 72.66% was obtained.

2.4 Novel Approach

Conti et al. [29] argued that multi-type files can be

distinguished when they are depicted as grayscale

images, thus facilitating various manual forensic anal-

ysis tasks. Due to the embedding of multiple data

types within a single file, multi-type files have dif-

ferent regions with categorical and structural dis-

tinctions to each other. Pullaperuma et al. [4], in-

spired by this idea, presented a novel approach to file

fragment classification. They considered a file frag-

ment as a grayscale image from which, features would

be extracted using Gray Level Co-occurrence Matrix

(GLCM). KNN is then applied to classify fragments

of 7 data types which resulted in 86.86% accuracy for

64×64 sized fragments but degraded for smaller frag-

ments. There has been little innovation on the basis

and inner mechanism of most previous approaches to

the file type classification; A review of past researches

shows that most of them are just limited to use a num-

ber of statistical properties and/or byte frequency

analyses. The research carried out by Pullaperuma

et al. [4] made us think of this conjecture that tex-

ture analysis could also keep up with byte frequency

and statistical properties analysis in fragment clas-

sification domain as an effective method. However,

unlike Pullaperuma, we are looking for a method that

is neither limited to few number of data types nor

largely-sized fragments. To this goal, in our proposed

approach, a new method for analyzing the texture

of file fragments is provided that can differentiate

more file types, even for the 512-byte fragments. The

underlying idea is to find the specific visual words as-

sociated with each file type. A visual word represents

a region of pixels with similar properties. By using a

vocabulary of visual words, we can use the BOVW

technique. This idea has been used in image process-

ing [5] but its capability and success in detecting file

types is primarily investigated in this research for the

first time. In our proposed method, the fragments (of

all types) are first mapped onto images and visual

words are extracted. Then, the number of occurrences

of each visual word is counted as an n-gram in each

fragment of the file and a feature vector is created

for each fragment. By learning a classifier using these

feature vectors, a model for predicting the type of file

is fitted.

3 Proposed Method

The architecture of the proposed method presented

in Figure 1, consists of two sections of training and

testing. In the training phase, we try to learn a model

for predicting the file type of fragments. In this case,

after extracting file fragments, they are mapped to

grayscale images (by considering each byte as a pixel),

and then, for each pixel in each image a feature vector

is extracted. By clustering these vectors, the center of

each cluster, or in other words, a region of pixels with

similar properties are selected as visual words. Next, a

vector of visual words occurrences is created in n-gram

terms for each image (in other words, each fragment).

Finally, these vectors are used to learn a model for

predicting the file type of fragments. In the testing

phase, an unknown file fragment is first mapped into

a grayscale image and vectors of its pixels properties

are extracted. By comparing these vectors with the
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Figure 1. Proposed method architecture

cluster centers (visual words) obtained during the

learning phase, each vector is assigned to a visual

word. By calculating visual words occurrences as n-

gram, a vector of visual words distributions is created,

which is given to the learned model to identify the

type of the fragment.

3.1 Training Phase

3.1.1 Fragment Interpretation

Each file fragment is 512-bytes long. Given that each

byte out of a fragment has a value between 0 to 255,

it can be interpreted as an image pixel with a fixation

on the spectrum of 256 possible shades of gray. Hence,

fragments could be considered as an 8-bit grayscale

images. To achieve this, every fragment is organized

into a 2D matrix whose dimensions corresponds to the

final dimensions of the grayscale image and each byte

of fragment represents one matrix element. These di-

mensions are one of the key parameters which have

been studied in this research. Considering the length

of the fragments (512 bytes), every feasible dimension

was brute-forced. To make it clear assume a 9-byte

fragment whose bytes contain values 1 to 9 respec-

tively. Table 1 shows how it could be fit into a 3× 3

matrix.

Table 1. A 9-byte fragment as pixel matrix: each byte of the

fragment is an element in the matrix

1 2 3

4 5 6

7 8 9

3.1.2 Texture Representation

The first step is to create a search space of visual

words in an image I with M×N = 512 pixels and gray

values between 0 and 255. It has been pointed out that

a visual word represents a region of pixels with similar

properties. To determine these regions a radius r is

intended and all possible regions with at most radius r

get extracted. Evidently, pixels within a single region
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are considered neighbors and a connection between

them is expected. Let x = 1, . . . ,M and y = 1, . . . , N

be the cartesian coordinates of the pixel (x, y). Two

pixels p1(x, y) and p2(x′, y′) are connected if their

Euclidean distance is smaller than a radius r.

E =

{
e = (p1, p2) ∈ I× I

∣∣∣√(x− x′)2 + (y − y′)2 ≤ r

}
(1)

For each e ∈ E relation, a weight w(e) is assigned. As

indicated by the Equation 2, this weight is determined

by the square of the Euclidean distance between two

connected pixels and the difference in gray intensity

of the two pixels, normalized by the square of the

radius r [30]. Lpi ∈ [0− 255] indicates the intensity

of light in pixel pi, where its maximum value in the

image is L.

w(e) = (x− x′)2 + (y − y′)2 + r2
|Lp1 − Lp2 |

L
, ∀e ∈ E. (2)

Since the weight function w(e) might contain a wide

range of values, it is convenient to be normalized into

the [0,1] interval. This is delivered by using the maxi-

mum conceivable value of the geometric distance be-

tween the two neighboring pixels, r2, and the normal-

ized maximum feasible difference in shades of gray, r2.

Hence, Equation 3 [30] manifests the final derivation

for calculating the weight of a pixel relation.

w(e) =
(x− x′)2 + (y − y′)2 + r2

|Lp1
−Lp2

|
L

r2 + r2
. (3)

After computing weights on pixel relations, each pixel

can be characterized by a union of its intensity and

a vector of its weights to all its related neighbors

(Equation 4).

ψ(pi) =
{
wei,j

∣∣ ∀ei,j ∈ E}⋃Lpi . (4)

Algorithm 1 simply indicates the process of extracting

pixel feature vectors which is described above. Let X

be a set of file fragments. Each fragment f ∈ X is

converted to a graysclae image. The algorithm iterates

over all pixels of all images. For each pixel in each

Image, a region with radius of r, i.e., a (2r+1)×(2r+

1) window, around the pixel is visited to calculate

the weight of the pixel association to its neighbor

pixels based on Equation 3. After extracting these

weights, each pixel can be represented by a union

of its intensity and a vector of its weights to all its

neighbors. Considering an image I having N pixels, a

(2r+1)×(2r+1) window around each pixel is visited

to calculate the weight of the pixels associations to

their neighbors. Therefore, the complexity of this

algorithm is (2r+1)×(2r+1)×N . Since the parameter

r is small in comparison with N, so it can be stated

that computational complexity of the algorithm is N.

Algorithm 1: Extracting pixels eeature vectors

Input: X = f1, f2, , fm, a dataset of fragments

r : radius

E : set of connections of pixels

Output: D = ψ(p1), , ψ(p512×m) : Set of feature vectors

1 Function FeatureVectors(X, radius,E):

2 foreach f ∈ X do
3 Convert f to a 2D matrix I(grayscale image I)

4 foreach pixel pi in I do

5 foreach pixel pj inside a

(2r + 1)× (2r + 1) window do
6 compute w based on equation (3)

7 end

8 ψ(pi) =
{
wei,j

∣∣ ∀ei,j ∈ E}⋃Lpi
9 end

10 end

11 End Function

The length of vector ψ depends on the r value

which determines the maximum number of neighbor-

ing pixels. Considering that the boundary pixels have

fewer neighbors in compare to middle pixels, zeros

must be added to the boundary pixels feature vectors

until all feature vectors have equal length.

3.1.3 Visual Words Identification

Bag of words (BOW) technique is commonly used

in the context of text classification. Its main idea is

based on creating a histogram of words occurrences

in the text. BOVW is in part a derivation of the

BOW along the same general lines. That said, its

only contrast is the adoption of a selective feature

set for the range of pixels in place of text words in

BOW. Therefore, a visual word serves as a range

of pixels with similar characteristics [5]. To identify

these visual words, for all pixels pi in all fragments in

training set, pixel properties are conceptualized and

extracted as the pixel feature vector (512 vector for

each fragment) ψ(pi) from Equation 4. A clustering

method is applied on pixel properties which returns

C = {c1, . . . , ck} centroids each corresponding to a

visual word. Given the centroids, it is trivial to assign

a visual word to each vector ψ(pi) itself, according to

its Euclidean distance to the associated centroid. In

this study, we choose mini-batch K-means clustering

algorithm [31] which is a breed of general K-means

often used to reduce the computational time. This

algorithm selects and processes a subset of the input-

data, mini-batches, in each iteration. Mini-batches

recede the amount of computing needed whenever
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convergence to a localized solution is considered to

be sufficient.

3.1.4 Calculating Visual Words Distribution

The N -gram analysis has been used in various fields.

N -gram is a subsequence of N data items from a

given sequence. It is a type of probabilistic model

for estimating the probability that the next items

replicate the preceding ones [21]. The single item to-

kens are called unigrams, but tokens consisting of any

fixed number of item can also be considered. Two con-

secutive item tokens are called bigrams, and bigram

counts capture more information about the structure

of the data being classified than do unigram counts

alone. In this research, visual words are contemplated

as data items or grams. Therefore, the number of

1-gram and 2-gram occurrences would be accounted

and enumerated. Given that, for each fragment in the

training set, a vector of visual words occurrences is

calculated.

3.1.5 Learning Classifiers

Given that the purpose of this study is to classify

31 file types, we face a multiclass problem. In this

research, one vs. all strategy is used to solve the prob-

lem, in which for each file type a classifier is learned

using the vectors of the visual words occurrences for

fragments of that file type as positive-label data and

the vectors of the visual words occurrences of other

file types fragments as negative data. As a result, for

each file type, a binary classifier separates it from the

others. Thus the multiclass problem is solved. In this

research, support vector machines (SVMs) machine

learning algorithm is used for classification. SVM is

a supervised machine learning algorithm widely used

for the purpose of classification as well as regresseion.

It is based on statistical learning theory and was de-

veloped by Vapnik [32]. SVM creates a discriminant

between classes C1 and C2 that divides the input

space in two. The decision regions R1 for C1 and R2

for C2. Such discriminant, known as hyperplane is

implemented such that it is as distant as possible to

the closest instances from each of the classes. These

closest instances are termed support vectors. Given

a labeled training set X = {xt, rt} where rt = +1 if

xt ∈ C1 and rt = −1 if xt ∈ C2. A hyperplane could

be defined as
wxT + w0 = 0, (5)

where wT is the weight vector and w0 is the threshold.

w0 determines the location of the hyperplane and

wT determines its orientation. wT and w0 would be

found such that

rt(wxT + w0) ≥ 1. (6)

The optimal hyperplane not only separates the in-

stances but also maximizes the total margin 2
||w||2

or minimizes 1
2 ||w||

2 (see Figure 2). Therefore, the

task can be transformed to an optimization problem

defined as

min
1

2
||w||2 subject to rt(wxT + w0) ≥ 1, ∀t. (7)

In addition to performing linear classification, SVM

can efficiently perform a non-linear classification us-

ing a kernel function, implicitly mapping data inputs

into high-dimensional feature spaces. The most pop-

ular, general purpose kernel functions are

• linear:
k(xi, xj) = xixj (8)

• polynomial:

k(xi, xj) = (xixj + 1)q , for q > 1 (9)

• RBF:

k(xi, xj) = exp
[
−γ(||xi − xj ||2)

]
, for γ > 0 (10)

• sigmoidal:

k(xi, xj) = tanh(2xixj + 1) (11)

In this study, different SVM’s kernels have been in-

vestigated and their results are provided in the next

section.

 

Figure 2. Maximum-margin hyperplane and margins for a

SVM trained with samples from two classes [33]

3.2 Testing Phase

3.2.1 Fragment Interpretation

The fragment must be organized into a 2D matrix

with dimensions corresponding to those learned in

the training phase. This will consider each byte of

the fragment as a pixel indicating the gray intensity.
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3.2.2 Texture Representation

The connection between each pixel and its neighbor-

ing pixels in radius r, is weighted by the Equation 3.

The properties of the region around each pixel can

be represented by a vector containing the weight of

the pixel connections. This vector was accounted by

the Equation 4.

3.2.3 Assigning Visual Words to Fragment

After extracting the pixels feature vectors, the simi-

larity of these vectors with the visual words learned

in the training phase (centers of learned clusters) is

measured by the Euclidean distance between the fea-

ture vectors and each center, which results in the

designation of its corresponding visual word.

3.2.4 Calculating Visual Words Distribution

As provided in Section 3.1.4, n-gram is a contiguous

subsequence of n items from a larger sequence. An

n-gram of one item and two items is termed as a

“1-gram” and “2-gram” respectively. The number of

1-gram and 2-gram of visual words occurrence are

obtained for the test sample. This vector indicates

the frequency distribution of visual words in terms

of 1-grams and 2-grams. 1-grams demonstrate the

number of times each visual word appeared in an

image (fragment) and 2-grams, count all different

subsequences of 2 visual words in the image.

3.2.5 File Fragment Type Detection

Finally, the vector of visual words occurrences of

the fragment is given to the model learned in the

training phase. As a result of one vs. all strategy, 31

classifiers are learned in the model. The output of

each classifier is the probability of belonging to the

file type the learner has learned. Hence, the fragment

will be labeled as the class with higher probability.

4 Extending the Proposed Method

to Reduce False Positive Rates

The false positive rate is an important criterion in

determining the type of file fragments. Since the frag-

ment type detection is mainly done for the purpose of

file carving, in the event of type misclassification, the

file reconstruction process would lead to the creation

of a file whose content might be partly corrupted.

Hence, in order to reduce the false positive rate, a

threshold is considered as minimum classification as-

surance for each file type. For each class Ci with false

positive rate of more than one percent, a threshold Ti
is defined for the probability of assigning a sample to

that class. If a test sample, get labeled to a class Ci

with a probability lower than the class threshold Ti,
then the sample is reassigned to unknown class. The

threshold for the class Ci is defined using equation

Equation 12. In this formula, meani is equal to aver-

age probability that a sample from class Ci emerge

as false positive; devi is equal to the average stan-

dard deviation that a sample from class Ci turn out

as false positive. meani and devi are in part given by

Equation 13 and Equation 14, respectively. In these

equations, ‖FPi‖, is the number of all false positive

samples in the class Ci which is simply calculated

using confusion matrix. This matrix is automatically

generated during classification in testing phase. In

the case of K ≥ 2 classes, the class confusion matrix

is a k× k matrix whose entry (j, i) contains the num-

ber of instances that belong to Cj but are assigned

to Ci. prob [FPn] is the probability of the nth false

positive sample from class Ci which is obtained di-

rectly using SVM classifier’s probability estimation

outputs for predicted labels.

Ti = meani − β × devi, (12)

meani =
1

‖FPi‖

∑
n

prob [FPn], (13)

devi =
1

‖FPi‖

∑
n

(meani − prob [FPn])
2. (14)

5 Extending the Proposed Method

for 4096 Byte Fragments

Given that the new hard disks are 4096 bytes long

in sector size, the proposed method is carried over

and evaluated for 4096-byte fragments as well and its

results is presented in the next section.

6 Experiments and Results

In this section, we assess each parameter during the

process of tuning to achieve the best final results. It

should be noted that we use a machine with 16 cores,

2.3 GHz each, 64 GB of RAM and 64-bit Windows 7

operating system to run our experiments. To create

visual words, the implementation of mini-batch K-

means algorithm in python’s Anaconda package [34]

is used. To create SVM classifier, the regularized L2

loss function is applied in linear kernel experiments

using LIBLINEAR [35], while LIBSVM [36] is used

for RBF and Polynomial kernels experiments.
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6.1 Building The Dataset

We used 31 file types for our experiments as shown in

Table 2. We collected our data from Govdocs1 corpus

[37] and also Filetypes1 [38] which is a supplement

for Govdocs1. These collections have been created

for the purpose of applications in computer forensics

education research. To create the dataset, files from

Govdocs1 and Filetypes1 are randomly selected and

used without replacement, while their extensions are

considered as the class labels. TrID [3] was also used

to validate the correspondence between file exten-

sions and signatures. This tool is designed to identify

the type of file using its signature. After completing

Table 2. Data information

Type Total number of fragments Size(MB)

txt 59312 23.4

xml 21269 10.4

xls 26307 12.8

wmv 28764 14

tif 13092 6.4

ps 27168 13.2

ppt 48262 23.5

mp4 21460 10.4

mp3 86211 42.1

m4a 28711 14

log 36120 17.6

json 18026 8.81

js 12729 6.26

jpg 22003 10.8

java 13005 6.57

html 18340 9.15

gif 24123 11.8

flv 41393 20.2

doc 33129 16.2

csv 13794 6.83

css 9906 4.93

bz2 20148 9.85

bmp 58640 28.6

avi 27934 13.6

pdf 173325 84.8

docx 37404 18.3

gz 55180 26.9

png 77300 37.8

pptx 50438 24.6

xlsx 26856 13.1

zip 28074 13.7

file selection and validation steps, each file is disinte-

grated and broke down into 512 byte fragments and

saved as pairs (fragi, fileTypej). The first fragment

of each file is removed to prevent the possibility of

file signatures information involvement in identifica-

tion process. Besides, the last fragment of each file is

omitted to ensure an overall fixed block size of 512-

bytes long. Finally, for everyone of the 31 file types,

from many initially fragmented files, 1000 fragments

are randomly selected to set up a dataset of 31000

fragments total. Table 2 shows information of sample

files.

6.2 Parameter Tuning

Set aside the obvious learning parameters, kernel and

the penalty (c) factor in SVM learner, the proposed

method effectiveness also depends on the values of

a few other parameters. Namely, dimensions of the

image (M and N), the asserted neighborhood radius

around each pixel (r), and the number of clusters (aka.

visual words) (k). As previously mentioned, given that

fragments are 512 bytes long, every feasible dimension

is surveyed. We bound the search space for neighbor-

hood radius to the set R = {1, 2
√

2, 3
√

2, 4
√

2} which

covers square shaped sections of different sizes in the

pixel plane. To avoid exploding the search space and

colluding the impact of each individual parameter,

just one factor is varied at a time while the others

are kept fixed. To conduct the experiment, following

steps are taken:

(1) A specific image dimension (M × N) is fixed

for this iteration.

(2) A neighborhood radius r is also chosen for this

iteration.

(3) For each pixel pi of each image I in the training

set, a pixel feature vector ψ(pi) is created using

r value.

(4) Resulting vectors Ψp are clustered in order to

introduce the visual words.

(5) Assign a visual word to each pixel feature vector

ψ(pi) using the Euclidean distance to clusters’

centroids.

(6) Take account of the frequency distribution of 1-

gram and 2-gram of visual words FBOVWP in each

image I which is obtained by counting every

subsequence of one visual word and two visual

words occurrence in each image.

(7) Learn a SVM classifier with linear kernel to

classify fragments based on resulted frequency

distributions FBOVWP .

Table 3 compares the accuracy of fragment type

detection for different image dimensions. For evaluat-

ing the impact of various dimension configurations,

constant values of r = 1 and k = 100 are considered.

As it can be seen the best outcome is obtained for a

1× 512 pixel image. Particularly, the best accuracy

is achieved by the linear sequencing of bytes. This
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could be understood due to the innate nature of a

binary/text files. Unlike images, actual adjacent pix-

els in such files are the sequenced ones and vertical

vicinity impacts are almost always accidental. How-

ever, the results for other dimension settings are also

significantly close to the best. In the next steps, the

best value of the dimension parameters (M ×N), is

used to tune the other parameters. Table 4 shows the

Table 3. Accuracy rate comparison for k=100, c(SVM penalty

factor)=0.001, SVM linear kernel and r=1 according to different

dimension

dimension Accuracy dimension Accuracy

512× 1 74.9 1× 512 74.9

256× 2 72.03 2× 256 72.38

128× 4 71.29 4× 128 72.13

64× 8 71.26 8× 64 71.86

32× 16 71.48 16× 32 71.5

accuracy for different values of radius parameter r.

The outcomes are pretty close. According to Table 4,

r = 1 is the best radius. With M×N = 1×512 as the

dimensions and r = 1 as the radius, each pixel will

have a maximum of 2 neighbors, which means that

ψ vectors have 3 values. Another parameter to be

Table 4. Accuracy rate comparison for k = 100 and

M ×N = 1× 512, c(SVM penalty factor)=0. and SVM linear

kernel according to different radius

radius Accuracy

1 74.9

2
√
2 72.19

3
√
2 70.3

4
√
2 69.03

tuned is the number of clusters (k) in the mini-batch

K-means clustering algorithm. To this goal, all possi-

ble values of k in the interval [100, 600] are tested. As

shown in the Figure 3, the best result is accomplished

by k = 400. For k = 400 we repeated the dimension

and radius parameter tuning steps and it is confirmed

that dimensions M ×N = 1×512 and r = 1 are opti-

mum values. By considering k = 400, 400 and 160000

features are acquired for 1-gram and 2-gram, which in-

dicate the number of repetitions for single and double

visual words, respectively. A number of features, with

always zero values in the dataset samples were elimi-

nated so that 118424 2-gram features are remained.

Therefore, a total of 118824 features forge our fea-

ture vector. We used 10-fold cross-validation in our

experiments, which means the original sample is ran-

domly partitioned into 10 equal sized subsamples. Of

the 10 subsamples, a single subsample is retained as
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Figure 3. Accuracy rate comparison for M × N = 1 × 512,

c(SVM penalty factor)=0.001, SVM linear kernel and r=1

according to different number of clusters

the testing set, and the remaining 9 subsamples are

used as training set. The cross-validation process is

then repeated 10 times. The training set samples, are

given to a SVM classifier to learn 31 classes on the

one vs. all strategy. It is expected that a SVM clas-

sifier operates more efficiently in the face of sparse

structures, which happens to be the case since the

N -gram technique usually leads to sparse vectors.

The SVM classification method has been tested with

different kernels. Figure 4 shows results for each of

linear, RBF, sigmoidal and polynomial kernels with

their optimum c parameter (gamma is presumed to

be 1/#features). As it can be seen, liner kernel is

superior concerning the accuracy rate. Figure 5 shows

a comparison between different values of c parame-

ter for this kernel. It should be noted that the SVM

results are reported for SVM’s primal form with lin-

ear kernel and the SVM’s dual form with sigmoid,

polynomial and RBF kernels. Table 5 shows the re-
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Figure 4. Accuracy rate comparison for M × N = 1 × 512,

gamma = 1
#features

, r=1 and k=400 according to different

svm kernels

sults for examinations concerning the use of either

1-gram or 2-gram, or both. According to Table 5, the

ISeCure



July 2021, Volume 13, Number 2 (pp. 101–116) 111

 

c=0.0001

c=0.001

c=0.01
c=0.1 c=1

72

72.5

73

73.5

74

74.5

75

75.5

0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

c parameter

Figure 5. Accuracy rate comparison forM×N = 1×512, r=1

and k=400 according to different values of c for linear kernel

best accuracy indicates the use of 1-gram and 2-gram

together.

Table 5. Accuracy rate comparison using 1-gram, 2gram and

both for M × N = 1 × 512, c (SVM penalty factor)=0.001,

SVM linear kernel, r=1 and k=400

n-gram Accuracy

1-gram 69

1-gram 72.3

1-gram + 2-gram 74.9

6.3 Comparison

In order to evaluate the proposed method, it is com-

pared to an earlier study named Sceadan [24] which

was reviewed in Section 2 and its implementation is

available at [39]. From all the related work reviewed

previously, considering the number of file types taken

into account, data set availability and remarkable suc-

cess rate, only Sceadan is conveniently suited to com-

pare our results upon. Sceadan developers collected

most of their sample files (66%) from the Govdocs1

dataset [37] and the remaining from other sources

such as the Internet or personal files. They segmented

the sample files into 512 byte fragments which re-

sulted in 999,147 total fragments of size 512 byte,

across 30 file types and 8 data types. To implement

our proposed method, using the dataset presented

in [24], it is necessary to have raw fragments which

the dataset has been built up from. However, none

of those extra nuggets are available for now, leaving

out only the Sceadan final dataset which because of

its innate differences from ours, makes the implemen-

tation of our method on Sceadan dataset impossi-

ble. In order to make comparison possible, Sceadan

method is also tested using this study dataset. Re-

garding the evaluation criteria in past research, true

positive rate, false positive rate and accuracy rate are

also examined here. They are calculated according to

Equation 15 - Equation 17. tp and tn are the number

of positive and negative samples respectively which

are classified correctly. fp is the number of negative

samples classified as positive. p and n are the number

of positive and negative samples respectively.

tp rate =
tp

p
, (15)

fp rate =
fp

n
, (16)

accuracy =
tp+ tn

p+ n
. (17)

The comparison of the two methods in Table 6 shows

that the proposed method has outperformed Sceadan

in terms of the accuracy rate. Also, the proposed

method has improved the false positive rate as well as

true positive rate of the tif, ps, ppt, m4a, json, js, gif,

flv, doc and xlsx file types. For other file types other

than log and jpg the proposed method is superior in

either false positive rate according to Figure 6 or true

positive rate according to Figure 7. Sceadan method

has also used 1-gram and 2-gram features to learn file

types. Nonetheless, it contemplates the gram concept

as merely the byte value of pixel. Considering this

is a pretty common tradition among a lot of previ-

ous research, Sceadan method innovation is arguably

limited to a good choice of parameters for the SVM

classifier. However, in this study, visual words or re-

gions of fragments with similar properties are consid-

ered as grams. As shown in Figure 6 a number of file

types have relatively high false positive rates though.

Such high misclassification between some file types

can be explained by invoking two general arguments:

first, using the same compression algorithms (such

as Deflate) in various file types produces the same

patterns that classifier could not tell them apart. Sec-

ond, whenever multi-type files with several embedded

data types get involved, the classifier is incapable of

determining the correct baseline file type.

6.4 Evaluating the Extended Proposed

Method to Reduce False Positive Rates

To evaluate this extension, a validation set of 3100

samples (100 samples per each file type) has been

created and then is given to the learned classifier. Ta-

ble 7 presents results, assuming β = 1 for both our

method and Sceadan. 16% of validation set samples

were assigned to unknown labeled class where, some

of them could be classified correctly if the probability

threshold was not applied. This explains the decre-

ment of accuracy rate in both Sceadan and proposed
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Figure 6. Comparison of fp rate between the proposed method and Sceadan method
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Figure 7. Comparison of tp rate between the proposed method and Sceadan method

method. As the results demonstrates, considering an

unknown labeled class has dominated the extended

proposed method over Sceadan in terms of accuracy.

The extended proposed method is better in false posi-

tive rate as well as true positive rate than Sceadan for

the txt, xls, tif, mp4, mp3, flv, pdf, png, xlsx and zip

file types. Also, for 7 file types it is superior in false

positive rate according to Figure 8, for 6 file types in

true positive rate according to Figure 9 and for 4 file

types has equal results with Sceadan method.

6.5 Evaluating the Extended Proposed

Method for 4096 Byte Fragments

The proposed method is carried over 4096-byte frag-

ments as well. Table 8 indicates the results. The accu-

racy of 87.3% indicates that the proposed method out-

shines its own efficiency for even larger fragments. For

4096-byte fragments, the difference between the ac-

curacy of the proposed method and Sceadan method

is improved from 0.6% to 3.72%. Table 8 depicts the

false positive and the true positive rates for each file

type. By comparing Table 6 and Table 8, it could be

summarized that the larger the file size, the easier

it would get to identify common patterns between

fragments of a file type.

7 Conclusion

In this study we explored a new approach to file

fragment classification using the file types texture

analysis. The main innovation of this study is to

utilize a texture-derived dictionary of visual words

with BOVW in order to train an abundance measure

for the likelihood of fragment-file-type association.

In this technique, the occurrences rate of every vi-

sual word is accounted as n-grams for all fragments,

which yields a bunch of distribution vectors of vi-
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Figure 9. Comparison of tp rate between the proposed method and Sceadan method by considering a class labeled unknown

sual words for that texture. Classifying these vectors

helps with file type discernment. For 512-byte long

fragments, the proposed method records a 74.9% av-

erage accuracy rate which significantly trumps the

random labeling method with an accuracy rate of

3.2% (1/31). Furthermore, about 67.5% of inspected

file types have an average accuracy rate of at least

70%. Experiments iterated for 4KB long fragments,

shows that the proposed method enjoys an average

boost of at least 10% in accuracy rates over all file

types so that 77.4% of them have an average accu-

racy rate of at least 70%. This exhibits an efficiency

advantage, leaning toward modern hard drives which

4KB sectors are considered a de-facto specification.

Overall, our method’s type identification rate has im-

proved on previous works. While most of related stud-

ies with better benchmarks have used intact whole

files [2][21], fragments with meta and header infor-

mation [2][7, 8][10, 11, 13, 14][22], or smaller set of

file types [2][4][6–11, 13–16][21, 22], our approach en-

hances on all these three fronts.

8 Future Work

In this research, texture analysis is considered to seg-

regate file fragments. Many studies have been con-

ducted to extract textural properties in image process-

ing. We can mention the use of complex networks the-

ory among them. As future work, we intend to model

file fragments using complex networks and extracting

their structural elements. It can provide much infor-

mation about the content of fragments, which can be

utilized in order to identify file fragments type.
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Table 6. Comparison of the proposed method and Sceadan

method

file type
proposed method Sceadan method[24]

tp fp tp fp

txt 99.60 0.06 99.7 0.077

xml 98.90 0.003 98.7 0

xls 89.90 0.037 99.3 0.073

wmv 76.20 1.31 76.3 1.75

tif 86.70 0.32 83.2 0.34

ps 99.4 0.01 99.3 0.01

ppt 27.90 0.48 27.7 0.63

mp4 98.10 0.37 96 0.40

mp3 90.80 0.45 91.3 0.69

m4a 88.70 0.39 88.1 0.65

log 98.40 0.027 98.6 0.02

json 99.10 0.02 99 0.043

js 98.70 0.023 98.6 0.023

jpg 80.80 2.58 82.9 2.80

java 99.90 0.047 99.6 0.033

html 95 0.16 95.2 0.16

gif 85.20 0.92 84.3 0.99

flv 56.20 0.62 54.8 0.76

doc 70 0.90 69.8 0.92

csv 99.80 0.017 99.7 0.013

css 99.80 0.033 99.6 0.023

bz2 72.10 2.34 77.2 2.86

bmp 99 0.26 97.9 0.19

avi 22.10 2.46 15.9 1.86

pdf 47.30 0.44 48.7 0.92

docx 45.50 1.26 47 1.62

gz 27.80 2.86 26.5 2.36

png 63.70 2.20 59.3 2.037

pptx 21.40 1.70 19 1.30

xlsx 56.30 0.19 55.1 0.30

zip 27 3.48 25.8 2.64

accuracy 74.9 74.3

Table 7. Comparison of the proposed method and Sceadan

method by considering a class labeled unknown

file type
proposed method Sceadan method[24]

tp fp tp fp

txt 100 0.03 98.56 0.10

xml 98.82 0 100 0

xls 84 0.03 83 0.07

wmv 66.33 0.3 60.20 0.3

tif 86.14 0.2 85.15 0.30

ps 99.11 0 99.11 0

ppt 27.17 0.2 30.43 0.80

mp4 99.14 0.27 97.41 0.37

mp3 91.75 0.37 88.66 0.47

m4a 87.5 0.63 86.37 0.60

log 96.19 0.03 96.19 0.07

json 98.95 0 98.95 0

js 99.06 0.03 99.06 0.03

jpg 42.69 0.96 54.88 1.52

java 100 0.03 100 0.07

html 93.11 0.24 93.97 0.27

gif 79.41 0.48 76.47 0.43

flv 59.34 0.73 53.85 0.90

doc 74.16 0.86 74.16 0.1

csv 100 0.03 100 0.033

css 99.12 0 99.12 0

bz2 55.37 1.04 59.55 1.04

bmp 100 0.3 98.52 0.23

avi 13.27 1.4 6.12 0.87

pdf 41.24 0.29 39.17 0.93

docx 30.39 0.2 41.18 0.33

gz 21.11 1.43 23.33 0.1

png 42.71 0.57 38.54 0.60

pptx 20.59 0.73 18.63 0.63

xlsx 54.37 0.13 51.46 0.27

zip 12.84 1.8 10.09 1.81

accuracy 70.13 69.7

Table 8. Comparison of the proposed method and Sceadan

method for 4096 byte fragments

file type
proposed method Sceadan method[24]

tp fp tp fp

txt 100 0.03 100 0.01

xml 99.90 0 99.20 0

xls 99.60 0 94 0.03

wmv 99.70 0.10 97.70 0.937

tif 97.50 0.13 95.90 0.18

ps 99.90 0.003 99.90 0.007

ppt 34.50 0.36 26.70 0.28

mp4 99.60 0.02 99 0.057

mp3 98.60 0.01 97.50 0.17

m4a 97.70 0.0017 94.70 0.25

log 99.50 0.003 99.30 0.013

json 100 0 100 0.003

js 99.70 0 99.60 0.003

jpg 95.50 1.45 93.70 1.90

java 100 0.003 100 1.003

html 99.40 0.017 98.50 0.043

gif 95.10 0.34 94.60 0.447

flv 92.50 0.03 91.90 0.347

doc 75.20 0.19 70.40 0.363

csv 99.80 0.003 99.80 0

css 99.90 0.003 100 0.013

bz2 99.70 0.27 96 1.053

bmp 98.90 0.06 98 0.047

avi 57.40 2.12 35.90 1.31

pdf 68.70 0.11 65.60 0.30

docx 64.50 0.51 53.20 0.82

gz 62.70 2.21 50.40 2.47

png 93.10 1.01 84.70 1.47

pptx 43.30 0.67 32.70 1.04

xlsx 70.40 0.017 60.50 0.13

zip 65.30 3.42 61.60 3.27

accuracy 87.3 83.58
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Poli, and Michael ONeill. Gp-fileprints: file types

detection using genetic programming. In Pro-

ceedings of the European Conference on Genetic

Programming, pages 134–145, 2010.

[9] Philip Penrose, Richard Macfarlane, and

William J Buchanan. Approaches to the classi-

fication of high entropy file fragments. Digital

Investigation, 10(4):372–384, 2013.

[10] Martin Karresand and Nahid Shahmehri. Os-

carfile type identification of binary data in disk

clusters and ram pages. In Proceedings of the

IFIP International Information Security Confer-

ence, pages 413–424, 2006.

[11] Martin Karresand and Nahid Shahmehri. File

type identification of data fragments by their

binary structure. In Proceedings of the IEEE In-

formation Assurance Workshop, pages 140–147,

2006.

[12] Konstantinos Karampidis, Ergina Kavallieratou,

and Giorgos Papadourakis. Comparison of clas-

sification algorithms for file type detection a dig-

ital forensics perspective. Polytech. Open Libr.

Int. Bull. Inf. Technol. Sci., 56:15–20, 2017.

[13] Cor J Veenman. Statistical disk cluster classi-

fication for file carving. In Proceedings of the

Third International Symposium on Information

Assurance and Security, pages 393–398, 2007.

[14] Robert F Erbacher and John Mulholland. Iden-

tification and localization of data types within

large-scale file systems. In Proceedings of the Sec-

ond International Workshop on Systematic Ap-

proaches to Digital Forensic Engineering, pages

55–70, 2007.

[15] Sarah J Moody and Robert F Erbacher. Sádi-

statistical analysis for data type identification. In

Proceedings of the Third International Workshop

on Systematic Approaches to Digital Forensic

Engineering, pages 41–54, 2008.

[16] William C Calhoun and Drue Coles. Predicting

the types of file fragments. digital investigation,

5:S14–S20, 2008.

[17] Stefan Axelsson. The normalised compression

distance as a file fragment classifier. digital in-

vestigation, 7:S24–S31, 2010.

[18] Qiming Li, A Ong, P Suganthan, and V Thing.

A novel support vector machine approach to

high entropy data fragment classification. In

Proceedings of the South African Information

Security Multi-Conference (SAISMC), pages 236–

247, 2011.

[19] Gregory Conti, Sergey Bratus, Anna Shubina,

Benjamin Sangster, Roy Ragsdale, Matthew Su-

pan, Andrew Lichtenberg, and Robert Perez-

Alemany. Automated mapping of large binary

objects using primitive fragment type classifica-

tion. digital investigation, 7:S3–S12, 2010.

[20] Ning Zheng, Jinlong Wang, Ting Wu, and Ming

Xu. A fragment classification method depending

on data type. In Proceedings of 2015 IEEE In-

ternational Conference on Computer and Infor-

mation Technology; Ubiquitous Computing and

Communications; Dependable, Autonomic and

Secure Computing; Pervasive Intelligence and

Computing (CIT/IUCC/DASC/PICOM), pages

1948–1953, 2015.

ISeCure

http://mark0.net/soft-trid-e.html
http://mark0.net/soft-trid-e.html


116 File Fragment Type Classification by Bag-Of-Visual-Words — Erfan and Jalili

[21] Ding Cao, Junyong Luo, Meijuan Yin, and Hui-

jie Yang. Feature selection based file type identi-

fication algorithm. In Proceedings of 2010 IEEE

International Conference on Intelligent Comput-

ing and Intelligent Systems (ICIS), volume 3,

pages 58–62, 2010.

[22] Siddharth Gopal, Yiming Yang, Konstantin Sa-

lomatin, and Jaime Carbonell. Statistical learn-

ing for file-type identification. In Proceedings of

the 10th International Conference on Machine

Learning and Applications(ICMLA), volume 1,

pages 68–73, 2011.

[23] Simran Fitzgerald, George Mathews, Colin Mor-

ris, and Oles Zhulyn. Using nlp techniques for

file fragment classification. Digital Investigation,

9:S44–S49, 2012.

[24] Nicole L Beebe, Laurence A Maddox, Lishu Liu,

and Minghe Sun. Sceadan: using concatenated n-

gram vectors for improved file and data type clas-

sification. IEEE Transactions on Information

Forensics and Security, 8(9):1519–1530, 2013.

[25] Dinil Mon Divakaran, Yung Siang Liau, and Vri-

zlynn LL Thing. Accurate in-network file-type

classification. In SG-CRC, pages 139–146, 2016.

[26] Kristijan Vulinović, Lucija Ivković, Juraj
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