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1 Introduction

In today’s highly interconnected networks, security of the entities are often
interdependent. This means security decisions of the agents are not only
influenced by their own costs and constraints, but also are affected by their
neighbors’ decisions. Game theory provides a rich set of tools to analyze such
influence networks. In the game model, players try to maximize their utilities
through security investments considering the network structure, costs and
constraints, which have been set by the network owner. However, decisions
of selfish entities to maximize their utilities do not always lead to a socially
optimum solution. Therefore, motivating players to reach the social optimum
is of high value from the network owner’s point of view. The network owner
wants to maximize the overall network security by designing the game’s
parameters. As far as we know, there is no notable work in the context of linear
influence networks to introduce appropriate game design for this purpose. This
paper presents design methods that make use of the adjustments of players’
costs, interdependencies, and constraints to align players’ incentives with a
network-wide global objective. We present a comprehensive investigation of
existence and uniqueness conditions of Nash Equilibrium in such environments.
Furthermore, numerical results of applying the proposed mechanisms in a
sample real-world example are illustrated.

© 2019 ISC. All rights reserved.

ture of their connections. The impact of neighboring
agents’ actions and similar networking effects on in-

oday’s tightly interconnected systems lead to a
high degree of interdependency in system secu-
rity. This means that security of each part depends
on its own security investment as well as the invest-
ments made by its neighbors along with the struc-
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dividual agent security can be described using the
framework of linear influence networks as a first or-
der approximation [1]. In such interdependent net-
works the amount of security investments of players
are usually constrained by a variety of factors such as
budgeting, depending on the network owner attitude.
These constraints as well as the network structure
play a vital role in how participants eventually decide.
In such environments, the agents’ rational and selfish
decisions may produce non-optimal results from the
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system point of view [2, 3]. Therefore, the design of
such networks for achieving better global outcomes is
an important and interesting research question. This
topic, which also encapsulates different features of
"grid", "utility", and "cloud" computing, has driven
lots of interest in the interdependent security world
[4].

As a real world example we can refer to different
sectors of a company running their applications on
software and hardware resources provided by the
company’s service provider which might be partly
or completely shared between different sectors. In
different sectors, use of shared software/hardware
components can make the entire system susceptible
to security incident by a single vulnerability. In other
words, when different sectors use the same software
infrastructure like a specific operating system (OS),
security investments of one sector (i.e. using anti-
malware or patching the vulnerabilities of its own
application running to make it more secure in case
of an attack) may have a significant impact on the
security of other sectors. This type of impact is known
as the externalities in the literature to refer to the
effects of network nodes’ investments on each other. In
positive externalities, an increase in security level of a
node as a result of its investment, positively affects the
security of other nodes by providing extra protection
via the deployed security of the node. On the other
hand, in case of negative externalities, the increased
security level of a node inversely leads to increase the
risks of others by encouraging the attacker to switch
its target to weaker nodes.

The field of game theory provides a solid mathemat-
ical framework for interactions and decision modeling
of agents on linear influence networks [5]. A primary
research topic is the investigation of Nash Equilib-
rium (NE) outcomes, i.e. equilibrium points at which
all players play their best possible actions known as
their best responses and no player has an incentive
to unilaterally deviate. In recent years there has been
a growing interest in investigation of NE in linear
interdependent networks, which are reviewed in Sec-
tion 3. However, under many conditions, NE points
are not globally optimum. Therefore, the problem of
game design to achieve global objectives has been at-
tracted interests during the last few years [6, 7]. For
instance, in our case, investments of selfish players
does not guarantee to maximize the total utility of
the network. So, the mechanism to reach the global
optimum is an interesting question.

In majority of the cases in classical game theory,
games are designed by introducing a cost to the play-
ers’ utilities to reach the global objective. In other
words, the game designer knows or can compute the
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social optimum and aims to send players a price signal
which makes them play according to the designer’s
desired strategy. This paper presents a similar design
method as a starting point. As a contribution, how-
ever, we show that the game can also be designed by
modifying other network parameters. This modifica-
tion is implemented through the connection strength
or constraints adjustments while keeping the original
global objective, which poses an interesting research
challenge. For example, in our case study, the designer
by modifying the weights of the links in the interde-
pendency graph or putting some budget constraints
on the players can encourage the players to reach
the social optimum. Thus, we propose a new game-
theoretic framework for designing different network-
related parameters to align the players’ incentives to
the system owner’s security objectives in constrained
linear influence networks.

When designing the game and mapping the equilib-
rium point to the socially defined optimum, it is very
useful to have a unique NE solution for the specified
game. There are some basic NE existence and unique-
ness results on the linear influence networks [1, 8, 9].
However, these methods are not complete under the
considered constrained cases in this paper. Therefore,
a strong result on the existence of a unique pure NE
is established in linear influence network games under
some general constraints. Different sufficient condi-
tions for ensuring uniqueness are also presented.

To show the applicability of the proposed design
methods on enhancing security investment decisions
in interdependent networked systems, we perform an
analysis on a sample real world example. For this
purpose, the considered case is modeled as a game
and three different proposed mechanisms are applied
to the game. As the result, we numerically analyze
the movement of the game’s Nash Equilibrium to the
social optimum for each mechanism and compare the
achieved gains together regarding their corresponding
ease, cost and feasibility.

The main contributions of this paper include
the following:

e A game design framework is developed to
achieve the social objective on constrained
linear influence networks by three different
methods:

(1) Modifying players’ costs through price
signals encourages them to approach the social
optimum at the NE solution.

(2) The design objective is achieved by direct
modification of the linear influence graph. In
other words, players can reach the social opti-
mum by modifying the interdependencies.

(3) The system constraint set is modified to
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move the NE to the global optimum solution.
In other words, players can reach the social
optimum by modifying the constraints on the
players’ actions.

e We also find sufficient conditions for existence
and uniqueness of NE in the games with general
constraints on linear influence networks.

The rest of the paper is organized as follows: Sec-
tion 2 presents a motivating example to clarify more
the problem we have solved. Section 3 provides an
overview of the related works. Section 4 presents the
general structure of the game. The game design using
costs modifications is presented in Section 5. In Sec-
tion 6, the new game design using the weight modifi-
cation as well as an illustrative numerical example are
presented. Another new method of designing games
using constraints modification is investigated in Sec-
tion 7. In Section 8 the numerical results of applying
design methods in a case study are presented. The
conclusions are finally drawn in Section 9. Some exis-
tence and uniqueness results for general constraints
and linear influence networks are also presented in
Appendix A.

2 DMotivating Example

As a motivating example in real-world, let us consider
a company with different sectors utilizing the services
and infrastructures provided by the company’s pri-
vate service provider. In these networks users take
advantage of software and hardware resources the
service provider offers. For instance, service provider
usually share some subsets of hardware infrastruc-
tures like HDD and software components like virtual-
ization operating system (OS), OS of hosts, database
applications, and web server apps. Therefore, some
levels of interdependency take place between users
regarding their shared resources. In other words, by
exploiting a vulnerability in a system, not only the
system’s own private information will be lost or af-
fected by the virus or attacker, the shared resources
of other interconnected nodes can also be affected. In
these networks users invest on their security consider-
ing their limited budget and the effects of other users’
security investments. In fact, this investment not only
improves the node’s security, but also promotes the
security of other connected users proportional to their
comIon resources.

On the other hand, the company can define and
modify the level of players’ interdependencies through
the modification of its service provider settings. For
example, the interdependencies of players can be mod-
ified in both directions when the service provider
makes changes to the amount of shared resources.
Moreover, the service provider can change the level of
interdependency between two players in one direction

by increasing or decreasing the recovery considera-
tions (i.e. making back up files from a portion of infor-
mation) for any one of them. In other words, in case a
player is attacked and other player is affected regard-
ing the existence and the amount of shared resources,
if the service provider considers some recovery mech-
anisms for the second player, the interdependency of
the second player is reduced as a result of recovery of
its resources. Therefore, the interdependency of node
7 to node i can be defined as follows:

_IRiNR; |

W, =
7R, UR; |

— RecoveryGuarantee(R;) (1)

In this formula, R; and R represent resources used
by players ¢ and j respectively. The bidirectional in-
terdependency of two players based on their shared re-
sources can be computed as :gggj } , and the portion
of resources of specific player j with recovery guaran-
tee can be represented as RecoveryGuarantee(R;).

Figure 1 presents sectors of a company which are
making use of the company’s private service provider.
The usage of shared memory (the resource in our
case) forms their interdependencies. In this example
network, some levels of interdependency are defined
between nodes regarding the amount of their shared
memory usage, and as a result of the absence of
recovery considerations in their initial configuration,
all connections are defined bidirectional. For example,
the amount 0.5 represented on the edges e4; and eq4
shows that in the initial configuration, the service
provider has shared half of the memory of nodes 1
and 4 without any recovery guarantee.

0.3

0.1 0 0.2

Figure 1. A company with four sectors which are interdepen-
dent with respect to their shared hardware/software resources.

In such networks, not only the players try to im-
prove their security regarding their interdependen-
cies and limited budget, but the total security of the
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network is also of highest importance for the com-
pany. Unfortunately, the players’ selfish security in-
vestments considering their limited budget and inter-
dependencies do not usually guarantee the company
network to reach the highest total security in the
equilibrium point of the game. Therefore, this moti-
vating example raises a research challenge that how
the company can improve the total security of the
whole network by making sectors play accordingly.

e The service provider can charge the sectors with
different amounts to be encouraged to reach the
social optimum with the highest total security
for the network. In this paper we apply this
typical game design method to linear influence
networks in Section 5.

e The service provider can also modify the level
of interdependencies by eliminating the amount
of common resources or applying some recovery
mechanisms on the portion of shared resources
of some sectors. In Section 6 we also present a
new method in which by influence modification
that might have lower side-effects on user satis-
faction than charging them with money, encour-
age players to approach the social optimum.

e The company can also lead the sectors to reach
the social optimum by applying some budgeting
constraints on them. Therefore, the effect of ap-
plying security budgeting constraints on reach-
ing the social optimum is studied in Section 7.

In the following, after proposing and investigating
different mechanisms, in Section 8 we apply them to
solve the problem raised here for the company whose
network is presented in Figure 1.

3 Related Work

Applications of game theory to networked systems
have attracted special attention in the literature
[10, 11]. There are multiple models which consider
several strategic decision-makers that are connected
through the edges of a relational graph. Several stud-
ies have come to be studied that by considering infor-
mation security as a product, utilize new economic
approaches to analyze defensive security methods.
[12-14] Applying new economic approaches to the
information security problems led to study of Thief
and Police two player strategic games between an at-
tacker and a defender [15-18]. In modern networks,
decisions of nodes (players) along with the topology
and structure of the network affect the decisions of
other interdependent nodes [19]. Hence, simple two-
player information security games are replaced with
the new class of games known as interdependent se-
curity games in which there are several selfish but
non-malicious players compete to increase their util-
ity by changing their security investments. In such
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games, the goal of each player is to maximize its
utility which depends on its relevant costs and the
investments made by other players [4].

Many studies in this field have taken symmetry
into account for the participants, their interdependen-
cies or utility functions. Galeotti et al. [20] proposed
an interdependent investment game model in the eco-
nomics literature which assumes nodes with incom-
plete information about the structure and topology of
the network. The nodes then compute their utilities
based on their degree in the network graph. A quasi-
aggregative game was presented in [21], where the
utility of each player depends on a concave function
of player’s own strategy along with some aggregation
functions of its neighbors’ strategies, from which the
cost of the player’s strategy is reduced. However, this
model does not consider the effect of different net-
work interdependencies through the edges weights.
Bramoulle et al. [22] proposed a linear game-theoretic
interdependent model with complete information. In
their model, the player’s utility, similar to the Gale-
otti’s model, is calculated using a linear aggregative
function of the investments made by its neighbors.
However, in the aggregative function of each player,
the neighbors’ investments were affected by the edge
weights of the network graph. They also investigated
uniqueness and stability of NE using the eigenvalue
of the graph (representing the network’s structure).
Based on these results, Perciado et al. [23] presented
some analysis based on the eigenvalue of differently
structured graphs.

Yolken and Miura-Ko [1, 8, 9] developed an inter-
dependent security game based on Bramoulle’s model.
They not only proposed an aggregative linear func-
tion based on players’ investments, but in contrast
to the previous models, they also studied asymmet-
ric and non-identical components, interdependencies,
and utility functions. Utilizing the concept of linear
influence networks, they considered the effect of net-
work externalities within their game model. To inves-
tigate the existence and uniqueness of NE, they took
advantage of the reduction to a Linear Complemen-
tarity Problem (LCP). Finally, they provided some
convergence algorithms to the NE. By the same to-
ken, Ballester et al. [24] developed a similar method
and modeled the game based on Linear Influence
Networks whose NE is expressible through an LCP
reduction. They used Katz centrality metric concept
[25] to investigate the existence and uniqueness of NE
in such networks. There are other different researches
in which existence and uniqueness conditions of Nash
equilibrium are studied [9, 14, 26-28|. However, none
of the mentioned works considered constraints that
limit players’ actions in respective games analyzed. To
the best of our knowledge, previous works have only
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been limited to existence and uniqueness investiga-
tion of NE in interdependent security networks with-
out any or with very simple constraints. This paper
proposes and studies new existence and uniqueness
conditions taking into account the effect of general
constraints on linear influence networks.

The closer the Nash equilibrium point to the glob-
ally optimal strategy profile, which comes from the in-
dependent decision-making of the selfish players, the
more effective the equilibrium point would be. The
social optimum in interdependent security games is
generally defined as the minimum sum of the players’
costs or the maximum sum of their utilities, known as
social welfare. The review of the quality of Nash equi-
librium points in interdependent security games has
shown that in most cases there is considerable differ-
ence to the global optimum. In most models, the level
of investment at the equilibrium point of the game is
less than optimal. For example, in the total effort in-
terdependence model in [13], the equilibrium point is
far below the global optimum of the game. Moreover,
the presented model in [29] leads to a Nash equilib-
rium point where none of the players invests in their
security. In [30] the existence of positive externalities
is introduced as the reason of inefficiency of the equi-
librium point. In other words, positive externalities
are introduced in most of the researches as the main
reason of the inefficiency of equilibrium points [31]. In
the above mentioned articles, to eliminate adverse ef-
fects of externalities on players’ security investments,
it is advised to decrease the externalities. However,
in the models that players possess limited security
budgets and have to invest in their security, positive
externalities will help them make optimal decisions
and make better security investments by taking ad-
vantage of the effects of their neighbours’ security
investments [32]. There are also some other solutions
like information sharing mechanisms, for certain con-
ditions and under strict constraints. For instance, in
[33] considering the behavior of strategic attackers, a
mechanism based on sharing security information is
presented to encourage players to invest at the social
optimum level. However, in these methods, since shar-
ing sensitive information of organizations can have
negative effects on their privacy, the mechanism it-
self needs some incentives to be implemented which
limits the effectiveness of these methods.

Although most of the literature has introduced pos-
itive externalities as the reason of inefficiency of equi-
librium points, [34] showed that the externalities do
not necessarily have adverse results on the optimal-
ity of equilibrium points. Therefore, it is required to
investigate game design methods more carefully to
encourage players to reach the social optimum point
in their Nash equilibrium. In this paper we have pre-

sented an idea of optimizing the global security of the
whole system using the game design method. There-
fore, we have initially designed the game using the
traditional design method of players’ cost modifica-
tions. In the previous works the network has always
been considered as priorly formed and fixed with very
high-priced modifications [35, 36]. Whereas, in many
cases like intra-organizational networks, modification
of the network effects or players’ constraints is possi-
ble. Therefore, in this paper we have presented a new
approach to game design through influence graph and
constraint modification.

4 Game Definition And Model

In order to model the problem we first formal-
ize the underlying game G(P,x,U) in which
P = {1,2,...,N} is the set of N players, x =
[x1,X2,...,xn] is the vector of players’ security in-
vestments and U = [U;y, Uy, ..., Uy] denotes the
vector composed of their utility functions respec-
tively. Players connect through a weighted directed
network graph @ = {P, E}. Each node i € P corre-
sponds to a selfish, non-malicious, intelligent and
autonomous player. The edge set is represented as a
matrix E € {0, 1} >N which indicates interdepen-
dent links between the nodes in the network. The
value 1 for e;; € E demonstrates the existence of a
link between nodes ¢ and j and the value 0 implies
the absence of such link in the graph. Each edge has
got a weight W;; € R representing the effect of the
action of source node i on the destination node j
(externalities) whose value is expressed as follows:

W;; eR ife;j=1andi#j
W, =1 ifi=]j (2)
W;; =0 otherwise

In the proposed model, each player ¢ has a scalar
valued investment x; € R. However, in most of the
actual circumstances investments of players seem to
be bounded. Furthermore, the effect of neighbours’
security investments x_; on node ¢ as well as its
own investment can be presented as (W7z);, which
we denote for notational convenience as (Mx); by
redefining matrix W7 as M. Then, the utility of each
player ¢ is defined as follows which is constrained
regarding the security budget considerations imposed
upon the players:

Ui(Xiyx—i) = V,((Mx)z) — C;X;

Ax<b (3)

subject to
In this formula matrix A € R™" and vector b € R"
are used to determine the budget related constraints
in which r illustrates the number of constraints. There-
fore, for each player we have a concave utility max-
imization problem with a convex set of constraints.
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In this formulation, V;(-) is assumed to satisfy the
following properties.

Assumption 4.1. V;(-) is a twice continuous differ-
entiable, strictly increasing a%Vz() > 0, strictly con-
cave 8%2?‘/1'(') < 0 and twice differentiable function
within the range [0, 00).

In the following for the notation convenience we

denote 8‘(;1'7)((:‘) as V/(-) and % as V, ().

Table 1 represents summary of the notations along
with a short description for each one.

Table 1. Summery of notations. More details can be found in
appropriate sections.

Notation Description

G ={P,x,U} The game with the set P = {1,2,...,N}
of N players, vector x = [x1,X2,...,xn] of
players’ security investments and vector U =
[U1,Us,...,Up] of their utility functions.

Q={PE} Weighted directed network graph with the set
of P ={1,2,...,N} nodes and edge set E €

{07 1}N><N.
A% Variable showing the weight matrix in which

W;; € [0, 1] shows the effect of the source node
1 on its connection with the destination node j.

M An intermediate variable representing W7
R; A variable representing resources used by node ¢

A Parameter A € R"*V is used to determine the
budget related constraints.

b Parameter b € R" is used to determine the
budget related constraints in which r illustrates
the number of constraints.

r Parameter illustrates the number of constraints.

X Variable x € ]R]>VO shows a vector of investments
of players in which z; € R>( shows the invest-
ment of player 7

c A vector of players’ costs. ¢; shows cost of player
i choosing investment x;.

Ui (xi,%x—3) Total utility of player 7 based on its own invest-

ment and investments of all other players.

Vi(.) The non-linear valuation function of player ¢
based on its cumulative investments, containing
its own investments and the effects of other
players’ investments.

The Lagrangian of the social optimum problem.

A The Lagrangian of the Nash Equilibrium prob-
lem.

5 Game Design Using Cost
Modification

In this section we consider a truthful complete infor-
mation strategic security investment game in which
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players tend to optimize their utility functions as
presented in (3). In such systems, the system owner
usually looks for maximizing the total utility of dif-
ferent parts of the system regarding their security
investments. However, generally there may exist dif-
ferences between NE and the optimum point of the
system from the system owner’s point of view. So,
the system owners look for methods to design sys-
tem parameters and consequently encourage selfish
players to reach a preferred point corresponding to a
global social optimum. Therefore, in this section the
goal is to approach the socially optimum point from a
NE point using a market mechanism which modifies
the cost functions of players through “pricing” signals.
In other words, we propose an efficient mechanism
in which the specific equilibrium point would be the
same as the social optimum of the system.

Definition 5.1 (Efficiency). A mechanism or
strategic game is said to be efficient if its outcome or
the NE, x*, satisfies

x* = arg)r(nax (i_v: Vz((MX)z)) 4)

where the maximization of the sum of players valua-
tions Zf\il V;((Mx);) regardless of their costs is the
objective of the designer.

In the presented model in Section 4 there are three
main parameters that can be modified for our game
design purposes. Figure 2 depicts these and other rel-
evant interdependent security parameters along with
their relationships. NE points are affected by inter-
dependencies which are shown as the network graph
(matrix M), players’ prices ¢ and their budgeting con-
straints (matrix A). Furthermore, the social optimum
also has a direct relationship with interdependencies
as well as players’ constraints. In this section, our fo-
cus is on approaching the social optimum using cost
design or pricing signals, which is the classical ap-
proach prevalent in the literature. By extracting the
indirect relationship between social optimum and NE
points, a design method that brings the NE to the
social optimum can be derived.

At first let us consider the social welfare opti-
mization problem as a function of the aggregation
of all user valuation functions:

N
max Z Vi ((Mx);)
i—1

subject to Ax<Db

()

We next write the Lagrangian for computing the
social optimum,
N

£=3"Vi((Mx);) —u"(Ax—b).  (6)

i=1
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Possible NE Points of the Game

Optimum

Figure 2. Effective parameters on the efficiency in an interde-
pendent security game which can be used to move the NE to
the social optimum.

and the following KKT conditions:

(ATw); = 301, MV (Mx);) =0, Vie P
Ax<b
nw=0
(7)
Since V; : R — R is concave and non-decreasing and
g(x) = (Mx); as a function with dom g = R¥ is also
a concave function over its domain, then V;(g(x)) or
Vi((Mx);) is also a concave function. Therefore, the
positive sum of these functions as the social welfare
maximization (5) is a concave maximization problem
over a convex set and hence the social optimum is a
unique solution (X, fi).
Next, the relationship between the unique social opti-
mum solution and the NE of the game is established.
In other words, the social optimum and NE meet only
when each player’s best response corresponds to the
social optimum point. Considering the players’ utility
functions as (3) the best response of each player
i € P is as follows:
arg max U;(x) = Vi((Mx);) — ¢;x; .
subject to Ax <b ®)
To compute the NE we should solve:

max VZ((Mx)l) —c;ix; — \'(Ax —b) (9)
leading to the following KKT conditions:
V/((Mx);) —¢; — (ATA); =0
Ax<b
A>0

(10)

It is worth mentioning that the game might have dif-
ferent NE. If there are multiple equilibrium points it
is difficult and ambiguous to define an efficient mech-
anism. Therefore, to design an efficient mechanism

some NE uniqueness sufficient conditions can be im-
posed. These conditions are presented in Appendix A.
For the rest of the paper, in order to simplify the
notation the Matrix o is defined as:

S MV (MX);)

N v %)
Zj;ﬁQM]Q.‘/]((M )J) (11)

N / N
Ej;éN M;nV; (Mx);)
Theorem 1 (Cost Design). Assume x and [ as
the solution of social optimization problem presented
in (5). If A is invertible and M and V satisfy the
uniqueness conditions of NE, any modification of

costs ¢ to € which belongs to the set defined by S. =
{e e RY :s.t. (12) holds }

A=i—-AT "6 - AT ¢
A(A%) —b) =0 (12)
A>0

leads to an efficient mechanism.

Proof. As depicted in Figure 2, costs of players’ ac-
tions c is the only parameter which just affects the
NE of the game (without changing the global opti-
mum). Therefore, let us assume matrix A and M
as fixed input parameters. Consequently, following
(5) the social optimum can be computed as X and /i
which is expected to be the same as the NE of play-
ers. Afterwards, by replacing V/((Mx);) in (10) with
(ATQ); — Z]]\;ez M;;V/((Mx);) as a result of social
optimization problem (7), € can be computed as:

N
& = (AT0)i — (ATA); = Y MV, (Mx);) (13)
J#i
In this formula A is an open variable and since chang-
ing € could affect \, we are limited to choose € in a
way that makes \ non-negative. Therefore, by refor-
mulating (13) and multiplying it by AT™' X can be
computed as follows:

N
;\i = [; — (AT_lé)i — JAT_1 (ZMWV}/((MX)J)>
J#i
(14)
Finally the non-negativity check of X leads us to (12)
which is a set of linear equality (in non-boundary
social optimum solutions where A\ = 0) and inequality
(in boundary social optimum solutions where A > 0)
of costs ¢. Therefore, we can formally define the set
of costs ensuring an efficient mechanism as follows:

S.={c € R :s.t. (12) holds } (15)
O
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Note that, any player’s cost vector belonging to
the set S; can move the Nash Equilibrium point to
the social optimum point.

Proposition 5.1 (Convexity Conditions). The
set S. in (15) is convex with at least a member.

Proof. Since (12) is a set of affine inequalities (in
case Ax = b) and equalities (in case Ax # b) of ¢,
the set S. is a convex set. Furthermore, as ¢ is an
unconstrained variable, in worst case which for all
player i, \; = fi; = 0, (13) leads to a single result
& = — Y0 iL MV (M%);). O

In many cases the set S. may have more than one
members. Consequently, game design involves making
a choice of costs from S.. This selection process can
be formulated as a convex optimization problem. As
an example, we present the following optimization
problem which aims to minimize the total costs of

players:
Z (c))?

i

min

c€S. (16)

5.1 Illustrative Numerical Example

As an illustrative numerical example, for the sake of
simplicity and clarity and without loss of generaliza-
tion, let us simply consider a 2 node fully connected
network with

M = A= and b =

04 1 11 5

(17)

The valuation function is assumed to be V(-) =
log(+). Therefore, the players utility function (3) is
max log(M;;x; + X;) — €;X;

Xi (18)
subject to Ax<Db

By solving social optimum problem (5) we obtain

. 0.3467
and 1 =
5 0.0533

[ in (12) the set S, is as follows:

X = . Then, replacing x and

0.4667

—0.2667

(19)
It is obvious that the set S. is a convex set and
applying the objective function (16) produces ¢; =
0.0536 and co = —0.1065 as the result. Therefore, if
we replace ¢; and ¢y in (18) for each player, their
best response leads them to select x; =0 and X5 =5
which concurrently maximizes their aggregate utilities
or social welfare.

1S¢0ured)
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6 Game Design Using
Interdependencies

In this section, we propose a method in which by
modifying the externalities (software diversity in our
example) players will be encouraged to reach the
social optimum. In other words, we design the game by
proposing a modification to matrix M while assuming
that matrix A and costs c are fixed input parameters.
However, since the weight matrix directly affects the
social optimum, any modification of M might change
the social optimum as well as the NE point. Therefore,
we design the matrix M in such a way that ensures
the original social optimum remains stable, whereas,
the equilibrium of the game approaches to the original
social optimum. We follow these three steps as part
of the design process:

(1) Finding the social optimum of the game based
on current structure of the graph.

(2) Modifying the externalities to ensure players
best responses will reach the social optimum.

(3) Making sure that this modification does not
affect the social optimum itself.

)

Theorem 2 (Connection Design). Assume X as
the solution of optimization problem presented in
(5) based on an initial weight matrix M and the
corresponding game admits a unique NE. If V' satisfies
conditions in Assumption 4.1, any modification of
matrix M to M which satisfies:
V/(Mx);) = (ATA); +¢;

N 1o _
S, ML V/(M5);) = (A7),
Ai((A%); — b;)
i ((A%); — by)
A >0
i >0

=0
0 ,Vie N (20)

leads to an efficient game, i.e. NE coincides with the
social optimum.

Proof. As mentioned above the convex social problem
in (5) for each weight matrix M has a unique result.
So, in the first step the game designer computes the
social optimum X based on current weight matrix M.
Then finding some M which ensures that the given %
is also a unique NE of the game is needed. Therefore,
% is applied in KKT conditions in (10) which leads
to the set My = {M € RV*¥ :st. (21) holds}:

V/(Mx);) = (ATN); + ¢

Ai((A%); —b;) =0

% > 0

Ax<b

WVie N (21)

>

Since x is the result of social optimum based on A and
b, Ax < b always holds and can be eliminated. It is
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worth mentioning that although changing the weight
matrix could affect the open variables A and i, the
social objective X must remain the same. Therefore,
we need to guarantee that the new M satisfies the
conditions of social optimum problem and keep X;
whereas, the value of Lagrangian coefficients of social
optimum problem g might change. Hence, the pair
of M and % should satisfy the KKT conditions of
social optimum presented in (7) which leads to the
set My = {M € RV*N :5t. (22) holds}:

oin MV (%)) = (AT i)
M, =  Fil(AR)i =bi) =0 Vie N
i >0
Ax <b
(22)
In this formula Ax < b can be eliminated by the
same reason as above. Combining these two sets of
constraints presented in (21) and (22) leads to Sy in
(20). In other words, first group of constraints finds
some matrix set M; which guarantees x to be the
NE of players and the second group of constraints
finds some set My ensuring the social optimum re-
mains fixed. Consequently, if there exists an intersec-
tion between these sets, Syy = M C M; N M, the
result/results will lead to an efficient equilibrium as:

Sy = {M € RV*N .5t (20) holds} (23)
O

6.1 Illustrative Numerical Example

In this section we consider an example network similar
to the one presented in Section 5.1 with two nodes.
We also assume similar initialization with

2
and b = . (24)
-1 2 2

co=cy=0 A=

The valuation function is also assumed as V(:) =
log(-) with the same player’s utility functions as in
(18).

If we initially suppose My; = 0.2 and M5 = 0.1
the social result will be x = [6 4]7. By replacing %
in (20) and since (Ax); — b; = 0 the constraints will
change to:

i\l - 6+421\7112 + 61\7[211+4 =0
Az = 6:1‘411\7[12 + 61\:/[211+4 20
pa = 61\;:41121)\;[_122 21,\1\41211411 =0 (25)
ﬂ 2 Gl\féllﬁé + 61\1\%211114 Z 0

)‘175\23[1*13/_1'2 >0

Therefore, we have Spr = {M € ngT)N st
It is evident that S); is a convex set with infinitely

many different solutions. However, if the constraints

. (25) holds }.

matrix changes to A = and c¢; to 10, then x =

22
0.5698 . o
. Subsequently, checking the first line of
0.4302
. 1 .
(20) for i = 1 leads to —xr— — 10 > 0 which

makes Sy to be an empty set and as a consequence,
the problem will not admit any solutions. Hence,
more accurate existence and convexity analysis of
the set Sy, is required.

6.2 Existence and Convexity Analysis

Proposition 6.1 (Convexity and Existence
Conditions). If matrix A7 is invertible, v(Mx%) >
¢ > 0 and a) matrix AT and M are positive or
b) matrix A7 " and AT "M are positive definite,
then the set Sy in (23) is a convex set and if r < N2
this set has at least a member.

Proof. Function v(Mx) is defined as the pseudo-
gradient of function V:

Vy (Mx)y)

To prove a). As stated earlier, both A and fi are free
variables. So, we define the set of expected results
S as the intersection of the set S satisfying non-
negativity of A and a similar set S, satisfying non-
negativity of u. If AT is invertible, then from the first
row of (20) we obtain:

A=AT" (v(M&) —c) >0 (27)

Since AT " > 0, both sides of the inequality can
be multiplied by AT to simplify the inequality to
v(MX) > c such that:

Sy ={MecRY :V,(Mx); >c;,Vic N}  (28)

To show that the set Sy is convex, let assume
M;,M, € Sy. Therefore, V;((M;x);) > ¢,
Vi ((M2x);) > ¢; and (M;X); S (Msx);. So, for any
a € 0,1], M3 = aM; + (1 — a)M;, satisfies:

(M:%); s (M3x); s (MaX); (29)

Considering that V is a strictly increasing concave
function based on Assumption 4.1, it is obvious that
V' is a strictly decreasing function, so from (29) we
have V;/((ng)i) > ¢; and the set S is convex.

By the same token, the non-negativity of i should
be investigated in the set S,. To this aim, using the
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invertability of AT the second row of (20) will change
to the following:

fi=AT "MTy(Mx) >0 (30)
We know that v(Mx%) > 0 and since ATfli and M7T
are positive, (30) always holds and S, = {M e RY}.
Consequently, if the intersection of two sets S and
Sy is non-empty, the set Sy is a convex set with at
least a member.

To prove b). If v(MxX) > ¢ and both sides of
inequality in (27) are multiplied with v(Mx) — c,
Since AT " is positive definite, the inequality:

(v(M&) —c) AT (s(M&) —¢c) >0 (31)

always holds. Therefore, Sy is the same as (28) which
as stated before is a convex set.

Moreover, since v(MX) is always non-negative in
(30), both sides of inequality can be multiplied with
it as:

o(M%)TAT 'MTy(Mx) > 0 (32)

So, because AT "M is positive definite, the inequal-
ity always holds under the assumptions made. S, is
convex since for any « € [0, 1], we have

mN&V(AT“mﬂT+AT*u—aﬂP)mNﬁ)>0

(33)
Therefore, conditions b of Proposition 6.1 also sup-
port the convexity of the set Sy,.

In both conditions a and b since A7 " is invertible
and positive or positive definite, the non-negativity
check of \ leads to v(Mx%) > c. Because the number
of variables N2 is greater than or equal to the number
of constraints, the set Sj; is a non-empty set. O

When the set Sjp; has more than one members,
game design involves choosing a specific weight ma-
trix from this convex set. This selection process can
be formulated as a constrained convex optimization
problem. As an example, consider the objective of
maximizing the effect of players’ actions on the social
objective over the convex set of constraints Sp;. This
is a concave maximization problem over a convex set
which leads to a unique weight matrix:

N

max Vi ((Mx); 34
MES ; (( ) ) ( )

1 0.1 050
If we have M = A = ,b =

02 1 01

1
and ¢ = | ° |, social optimum leads to X =
2 : 2

S

_ 1 0.5
Solving (34) based on X, results in M =
0.75 1

which guaranties the equality of NE and social opti-
mum with maximum possible amount.

7 Game Design Using Budgeting
Constraints

In this section, we introduce an innovative method in
which by modifying the budgeting constraints play-
ers will be encouraged to reach the social optimum.
Firstly, we take the matrix M and costs ¢ as fixed in-
put parameters. The model works for weight matrices
which are defined in a way that supports one of the
sufficient conditions for uniqueness of NE presented
in Appendix A. Therefore, as stated before the so-
cial optimum is also unique. Then, the game will be
designed purely by modifying constraints A to new
constraints A. Similar to designing interdependencies,
this modification not only affects NE but it could
also change social optimum as well. The objective is
to design matrix A to guarantee the equivalency of
NE and the original social optimum by performing
the following steps:

(1) Computing the social optimum regarding the
current constraints.

(2) Modifying constraints to encourage the players’
best responses to approach the specified point
(social optimum point).

(3) Performing above actions as well as keeping the
social optimum point stable.

Theorem 3 (Constraint Design). Assume x as
the solution of optimization problem presented in (5)
based on initial constraints A and the corresponding
game admits a unique NE. If V is invertible and
also satisfies the conditions in Assumption 4.1, any
modification of matrix A to A which:

ATX), = V(M) — <
Ty, = Z;\le MV} ((MX);)

Vie N (35)

leads to an efficient game, i.e. NE coincides with the
social optimum.

Proof. First the game designer solves (5) to compute
the unique X based on initial constraints A. After-
wards, these constraints are required to be modified
to guarantee that NE will reach the specified point
while social optimum remains the same. Therefore, x
is applied in KKT conditions of NE in (10) as follows:
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Furthermore, similar to the previous section, other
constraints are needed to guarantee that the new A
satisfies the conditions of the social optimum problem
and does not change it. In other words, by applying x
in KKT conditions of social optimum (7), we intend to
keep the result stable while we adjust open variables
X and [i as follows:

(ATR); = Yoo My V) (Mx);)
i ((A%); —b;) =0

i >0

Ax<b

Vie N (37)

If we define the sets A; = {A € R™ :s.t. (36) holds}
and Ay = {A € R™*Y : s.t. (37) holds}, the set S
is the result of A; N A5 and can be represented as:

Sa={A cR™N :st. (35) holds}  (38)

In this formula, r represents the number of constraints
(rows of matrix A) as defined in Section 4. O

7.1 TIllustrative Numerical Example

Here to illustrate the influence of budgeting con-
straints on designing the game, we consider a similar
network to the one presented in Section 5.1. The ini-
tial graph is chosen as a fully connected network with
2 nodes. We also let

0.1
and b =
02 1 2

C1 :CQZO.l,M: . (39)

The valuation function is also chosen as V' (-) = log(-).
Therefore, the players’ utility function is the same

as (18). If we initially assume A = the social

01

2
result will be x = . By replacing %X in (35) the

2
constraints change to:

(ATN):1 = svoms — 1= 110
(AT)\sz_CQZ%

(ATR), = 5<1+(1).1§<2 0,258;2+5<2 = % (40)
SATP)? = qu().mz 0.25{1+f<2 = %

A1, A2, fin, iz > 0

MA% —b) = 0 and i(Ax —b) =0

Note that, we obtain in this special case a convex set
with infinitely many different matrices A satisfying

the above constraints. However, this may not be the
case for other parameter choices. Therefore, the set
Sy is further analyzed next.

7.2 Existence and Convexity Analysis

Proposition 7.1 (Convexity and Existence
Conditions). The set S4 specified in (38) is a con-
vex set with at least one solution, if AT is invertible
and N > 2.

Proof. To prove this, we just need to multiply the
first two constraints in (35) with AT—1. Therefore,
if we consider v(Mx) as defined in (26), then (35)
changes to:

A=AT"1(y(Mx%) — ¢

fi— AT (MTy(Mx)

M(A%) —b) = 0

A((A%) ~b) = 0 ()
A>0

>0

As a matter of fact, (41) represents two inequalities
AT (p(Mx) —¢) > 0 and AT~ }(MTv(Mx%)) > 0
except for the boundary points in which these in-
equalities change to equalities. Consequently, since
the set S4 contains only some linear equalities and
inequalities in AT—1, it is a convex set.

For the non-negativity check of A and p we
have 2r equality(non-boundary points) or inequal-
ity(boundary points) constraints for both of them and
7 x N variables (elements of matrix A). Therefore, if
N > 2, then the set S4 has at least a member. [

Since different matrices A may satisfy above condi-
tions, another objective function can be added to pick
out one of them. One interesting objective function
could be selecting the least level of constraints:
> (Ay)°
ij (42)
subject to AT is invertible and N > 2

min
AcSa

It is clear that the objective function is a convex
function of A under the set of convex constraints Sy,
and hence the problem admits a unique solution.

8 Case Study

In this section we reconsider the case study presented
in Section 2 to show the applicability of the proposed
methods numerically. For this purpose, we model the
mentioned case as a game and apply three different
proposed design methods to move Nash Equilibrium
of the game to social optimum. Then we compare
the gains achieved by different mechanisms regarding
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their corresponding ease, cost, and feasibility for the
system owner to facilitate his/her decision making
process.

As it is presented in Section 2, a company with four
different sections is considered which uses its own
private service provider. Figure 1 presents interdepen-
dencies of four different sections of the mentioned or-
ganization whose interdependencies are formed based
on formula (1) and regarding their usage of shared
memory presented by their private service provider.
In the presented example, since players are sections
of a specific organization, unit costs of players’ invest-
ments are the same. Furthermore, the budget related
constraints are presented as the following rules:

e The total amount of security investments of
sections 1, 2 and 3 can at most be equal to
$7000.

e The total amount of security investments of
sections 2 and 4 can at most be equal to $3000.

e Section 3 can invest at most $1000 more than
section 2.

e Section 4 can invest at most $2000 more than
section 2.

Considering the game definition presented in section
3, the above security investment constraints can be
represented as Axr <= b. Therefore, unit costs of
players’ investments, budget related constraints, and
weight matrix can be represented as follows. All mon-
etary units are considered in thousand dollars (i. e.
¢i, by and ;).

1 020102 0.2
0.1 1 0102 0.2
= & Cc =
0201 1 01 0.2
010201 1 0.2
(43)
1 -02 05 —-03
02 1 03 —-0.5
A= & b=

-02 01 1 01
03 -02-01 1

NN N

Since players are parts of a large company, we also
consider function V(.) = log(.) for all players. Con-
sidering the definition of utility function in formula
(3), selfish behavior of players leads to the Nash Equi-
librium as follows:

1S¢0ured)

A 2.2777
XNash =
1

1.9555

(44)

Moreover, solving the social optimum problem repre-
sented in formula (5) leads to the following security
investments of players:

0.2095
0.6521
0.3054
0.8326

Xs0 = & fiso = (45)

NN NN

After solving the Nash Equilibrium and social opti-
mum of the game, considering the price of anarchy
PoA = 0.8777, reveals the difference between the to-
tal utility of players in equilibrium point and their
total utility in global optimum. Therefore, to move
the equilibrium point to the social optimum, the pre-
sented game design mechanisms are applied. Making
use of the first game design method, presented in this
chapter, leads to a set of costs for players to reach the
global optimum point. It is worth noting that using
formula (18) to select the lowest cost from the cost
set in the game design, the matrix ¢ can be calculated
as follows:

0.3802
0.1150
0.0248
0.3970

(46)

ol
I

In other words, if the network owner apply the
calculated costs ¢, the best security investment of
the players in their equilibrium point Xy,s, would
be equivalent to the matrix presented in formula (45).
The total costs imposed upon the players which can
be considered as the game designer’s income, is equal
to 1.1552. Furthermore, based on the second method
of game design presented in Section 6, the change
of weight matrix in the given example can also lead
players to reach the global optimum point selecting
their selfish choices. Using (34) for selecting among
possible weights in this game design method, the
matrix W is calculated as:
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1 050505

o5 1 0505
W= (47)
0505 1 05

050505 1

In other words, applying interdependency modifica-
tion mechanism changes the interdependency graph
to one presented in Figure 3. In the presented case,
when the company’s service provider for some sec-
tions like sections 3 and 4, as well as sections 2 and
4 chooses to completely share the memory without
any recovery considerations, and for other pairs of
players, considers recovery of some portion of their
memory, it will result in the social optimum of the
game. For example, in the computed weight matrix,
while completely shared memory is considered for
IRiNR;| _
IRiUR;| —
guarantees to recover %25 of the memory of player
j (RecoveryGuarantee(R;) = 0.25). Therefore, ap-
plying formula (1) leads to the interdependencies of

Figure 3.

both players ( 1), the mechanism designer

Figure 3. The result of interdependency modification mecha-
nism.

If we consider the unit cost of increasing or decreas-
ing the underlying infrastructure resources (memory)
as WCost and the cost of applying recovery mech-
anisms for each unit of infrastructure resources as
RCost, the benefit of the interdependency change in
the network graph from the designer’s point of view
can be calculated using the following formula:

ChangeBenefit = Z (Max(W;;, W)
1,JENi#]

— Max(Wij,Wji)) x WCost+

(| Wij = Wi | = | Wi; — Wi ) x RCost

(48)

In the above formula, the first term represents the
benefits resulting from the increase/decrease of the

shared resources used in each pair of nodes i and j,
and the second term presents the benefits resulting
from the change in the application of recovery con-
siderations. In the present case, the unit cost of the
application of recovery mechanisms for each unit of
infrastructure resources is considered twice as high
as the unit cost of changing shared infrastructure re-
sources as RCost = 2 x W(Cost. Figure 4 shows the
benefits derived from the application of cost modifi-
cation and interdependency modification mechanisms
on the applied case if the unit cost W Cost increases
from 0.01 to 0.1, from the designer’s point of view.
As indicated in Figure 4, if W Cost < 0.013, the cost
modification mechanism will cause greater benefit for
the game designer and for Weost > 0.013 interde-
pendency modification mechanism will cause more
benefits than the cost modification mechanism.

Finally, in order to achieve the global optimum
at the equilibrium point, by employing the objective
function (42), change of matrix A as follows, moti-
vates the selfish players to achieve the global optimum
point at their equilibrium point.

0.4307 0.5190 —0.8775 0.9279
0.2295 0.3075 0.3915 0.0714
0.2253 0.1333 0.5183 0.1231
0.2961 0.1104 0.2008 0.3927

b
I

(49)

The owner of the network will now be able to
choose among possible mechanisms, with respect to
ease, cost and feasibility.

9 Conclusion

In the presented paper three different game design
methods are proposed using parameter adjustments
in interdependent networks and are clarified using a
real-world case of an organization’s network as well as
some illustrative examples. The case shows a network
of nodes with some levels of shared resources which
makes their interdependencies. In this networks play-
ers tend to maximize their utilities regarding their
interdependencies and their limited security budgets.
Therefore, they invest their money to apply some se-
curity mechanisms. However, these mechanisms do
not guarantee the social objective to be optimum.
Therefore, the network owner makes players reach the
optimum point by adding some costs to them, modi-
fying their interdependencies or changing the players’
budgeting constraints. In other words, in addition
to the classical approach of modifying players’ costs
through price signals to reach the social optimum,
the same objective is achieved by direct modification
of interdependencies as well as the budgeting con-
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—— Benefit of Interdependency Modification Mechanism
= = Benefit of Costs Modification Mechanism

WCost

Figure 4. Comparing the Benefits of cost modification Mechanism and interdependency modification mechanism.

straint set. Furthermore, some sufficient conditions

for

existence and uniqueness of NE considering gen-

eral constraints are also presented.

This framework provides network owners some in-
teresting and useful alternatives for achieving the
maximum possible social welfare. The presented ap-
proach can be, for example, more useful for intra-
organizational networks when the modification of in-
terdependencies or constraints might be more efficient
in comparison to imposing some costs upon players.
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10 Appendix

A NE Analysis of Games on Linear
Influence Networks under General
Constraints

As discussed in Section 3, several recent studies have
investigated Nash Equilibrium solution and its prop-
erties in unconstrained games played on networks. In
these studies the utility function of each player also
corresponds to a concave function presented in (3)
without or with very simple constraints and the exis-
tence and uniqueness of NE has been established un-
der various sufficient conditions. On the other hand,
in this paper we have considered the problem under
the general constraints as presented in (3) on linear
influence networks.

In the following we investigate the existence and

1S¢0ured)

uniqueness of the equilibrium point for the presented
strategic game G(N,S,U), where N, S, and U are
set of players, players strategies, and their utility
functions respectively. First, we present the following
well-known existence theorem for completeness.

Theorem 4 (Existence of NE). All constrained
strategic network games on linear influence networks
with utility function presented in (3) admit a NE
solution.

Proof. As mentioned in Section 4 the strategy of each
player ¢ is a scalar x; € R which is bounded by the
constraint Az < b. Therefore, the players’ strategy
sets are both convex and compact. Furthermore, the
utility function U;(z;,z—;) is also a continuous func-
tion of z_; and is continuous and concave (hence
also quasi-concave) based on Assumption 4.1. Since
players’ strategies are infinite and

(1) The strategy set of each player is a convex and
compact set.

(2) The utility function is a continuous function for
the actions of other players.

(3) The utility function is a continuous and quasi-
concave function for its own actions.

as it is proved in [37-39] the game has a pure NE: [

We next present some sufficiency theorems for
uniqueness of the Nash Equilibrium points of the
game.

Proposition A.1 (Uniqueness of NE). In con-
strained strategic network games on linear influence
networks with the utility function presented in (3), if
we assume x € RJ>V0 and for every pair of strategy pro-
files 2%, 2% € S, (xf —al) x (M(z*—2")), > 0,Vie N

holds, then the game has a unique NE point.

Proof. If for every pair of strategy profiles 2%, z* € S,
(¢ —xb) x (M(x“ - xb))i > 0,Vi € N, regarding the

i

characteristics of concave function V'(-) we have:
(a = ab) x (V! ((Ma");) =V} ((Ma");) ) > 0 (A1)
And therefore:

a b La b
|:CCl*I1 x27272

:c]“\] - CC’]]\,j| X
V{((be)l) —Ch1 — V{((qu)l) +Cq

VI((Mz)2) — Co — VY ((Mz%)2) + Ca (A.2)

>0

V]/\,((Ml‘b)]\r) —CN — V]Q((M.Z’a)N) + Cn

If Vu(z) is defined as [Viui(z),..., Vyun(z)]7T,
since it is proved that:

(2% — 2T (Vu(z®) — Vu(z*)) >0 (A.3)
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The utility functions (u1,...,un|) are diagonally
strictly concave on x € S. Therefore, considering the
assumption x > 0, as it is proved by Rosen in [40]
the game has a unique NE solution. O

Theorem 5 (Uniqueness of NE). In constrained
strategic network games on linear influence net-
works with utility function presented in (3), if
for each strategy profile z € S, |V, (Mz);)| >
3305 IMEVE (M):) + MV, (Ma);)], Vi, then
the game has a unique NE solution.

Proof. We first redefine the concave utility maximiza-
tion problem defined in (3) to the following convex
cost minimization problem.
min Ji(z) = cix; — Vl((Mx)i)
Ti (A.4)
subject to Az <b

Hence, we have d(z) as follows:

_ [8J1(=) 2Ja(x) IN(=)] _
d(z) = [ dxq EED) CESN: ] - (A.5)
[er = V{((Ma)1) ez = VE((M)2) - en — Ve ((Mo)x)]
And consequently D(zx) is presented as:
9271 (z) 827y (x) 82 71 ()
022 9z10m3 ' Dz10wN
82J5(x)  982J5(x) 9274 (z)
CEPCES) 022 © Dagday
pw=| S S
2Jn(z) 827N (x) 927y (x)
dxpnOxy OxzpnOxg 77 a”_,?v
1" " 17
Vi ((Mz)1) My2Vy (Mz)1) ... MinVy ((Mz)1)
" 1" 17
M21V, ((Mz)2) Vy ((Mz)2) oo ManVy (Ma)2)
" " 1"
Mn1Vy (Mz)N) M2V (Mz)N) .. Vi (Mz)N)
(A.6)

Therefore, since V; ((Mx);) < 0 and |V, ((Mz);)| >
3 2 | MGV (Ma)i) + MV ((Ma);)|, Vi, the
Hermitian matrix F(z) = D(x) + D(x)7 is strictly
diagonally dominant and as a consequence is positive
definite. Therefore, applying the NE uniqueness theo-

rem presented in [41] the game has a unique NE. [
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