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1 Introduction

I ntrusion detection is the process of detecting an
unauthorized use, or attack upon a computer or a

Artificial Immune Systems (AIS) have long been used in the field of computer
security and especially in Intrusion Detection systems. Intrusion detection
based on AISs falls into two main categories. The first generation of AIS is
inspired from adaptive immune reactions but, the second one which is called
danger theory focuses on both adaptive and innate reactions to build a more
biologically-realistic model of Human Immune System. Two algorithms named
TLR and DCA are proposed in danger theory field that both of them are
trying to identify the antigens based on a simple identifier. Both of them suffer
from low accuracy and detection rate due to the fact that they are not taking
the structure of antigens into account. In this paper, we propose an algorithm
called STLR (structural TLR), which is an extended form of TLR algorithm.
STLR tries to model the interaction of adaptive and innate biological immune
systems and at the same time considers the structure of the antigens. The
experimental results show that using the structural aspects of an antigen,
STLR can lead to a great increase in the detection rate and accuracy.

© 2013 ISC. All rights reserved.

on the dynamic behavior of local machines to protect
the computer system against misuse or attack, thus
making it much harder for the intruder to break into
the system [1].

telecommunication network. Intrusion Detection Sys-
tems (IDS) constantly monitor the system behavior
to aid in deterring and mitigating the damage that
can be caused by attackers or other security viola-
tions [1]. According to their location, IDSs can be
categorized into Network-based Intrusion Detection
System (NIDS) and Host-based Intrusion Detection
Systems (HIDS). NIDSs try to detect intrusions by
monitoring the network traffic. In contrast HIDSs re-
side inside of a computer system and try to monitor
and analyze the internals of a system as well as the
network packets on its interfaces. HIDSs mostly focus
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Generally there are two broad approaches to intru-
sion detection according to the used method: misuse
detection and anomaly detection. The misuse detec-
tion approach tries to examine the system for abnor-
mal behavior or misuse and mostly utilizes pattern-
matching techniques [2]. Naturally it should keep a
database of all known misuse signatures and needs to
be upgraded periodically. The anomaly detection ap-
proach usually tries to make a profile of normal user’s
behavior and any deviation from this, is considered
abnormal. A mixture of these two approaches, called
hybrid, is also used. The misuse approach is simpler,
but it is not capable of detecting novel attacks. On
the other hand the anomaly approach can detect new
attacks, but it suffers from high false positive rate.
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Another disadvantage of systems using anomaly detec-
tion is that, the attacker can mimic the normal user’s
behavior and evade the detection by IDS, resulting
in false negative alarm [2]. One of the main goals of
our research is to minimize the false positive and false
negative rate.

There are different methods in computational in-
telligence field which have been frequently used for
anomaly detection up now [3]. In this paper, we em-
ploy artificial immune systems for anomaly detection.
This approach is inspired from Human Immune Sys-
tems (HIS), and is a suitable option for intrusion de-
tection because of its distributed, self-organized and
lightweight nature. HIS has a multi-layered protection
architecture, including physical barriers, physiological
barriers, an innate immune system, and an adaptive
immune system [3]. Each method of AIS is inspired
from some parts of this architecture. From this view-
point, all AIS methods can be divided into two main
categories. The first one is the largest branch of AIS
methods and is inspired from adaptive immune sys-
tem. The adaptive immune system is a complex of
great variety of cells. Among its cells, two lymphocyte
types, T cells (TC) and B cells (BC), cooperate to
distinguish self from non-self antigens. Negative selec-
tion [5], Clonal selection [4] and immune network [6]
are three important branches of this category. The
second category is new generation of AIS, and it is
inspired from both innate and adaptive immune sys-
tems. Danger theory methods fall into this category.

The fundamental idea of the first generation of AIS,
Immune responses are triggered when the body en-
counters non-self antigens; but Matzinger proposed
the Danger Model [7, 8, 63], and claimed that immune
responses are triggered by the unusual death of nor-
mal tissues, not by non-self antigens. Danger Theory
suggests that cells do not release alarm signals when
they die by normally planned processes (known as
apoptosis), whereas cells do release alarm signals when
they are stressed, injured, or die abnormally (known
as necrosis). These signals are raised via innate im-
mune systems. A type of cells known as Dendritic
Cells (DC) act as important medium between innate
and adaptive immune system and passing these alarm
signals to the adaptive immune system [3].

Aickelin and his research group applied Danger The-
ory to intrusion detection systems as a project called
“Danger Project” [9] in 2003. The results of their works
can be summarized as one innate immunity architec-
ture, and two danger theory based algorithms namely
the Dendritic Cell Algorithm (DCA) [10-16, 5962, 64—
68] and TLR algorithm [17-19]. Both DCA and TLR
employ the model of DCs but, their implementation fo-
cuses on different aspects of the DC model. The DCA
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relies on the signal processing aspect by using multiple
input and output signals, while the TLR emphasizes
the interaction between DCs and T cells, and only
uses danger signals [3]. Neither of these algorithms
takes the structure of the antigens as an input to the
system. In this paper we propose an algorithm named
STLR (Structural TLR) which is an extended form
of TLR algorithm [56]. Like TLR, we try to model
the interaction between innate and adaptive immune
system through using DCs and TCs. But unlike TLR,
which matches antigens with DCs only through an
identifier, our algorithm also takes the structure of
the antigen into account and that’s why we named it
“structural TLR”.

The remainder of this paper is organized as follows.
In Section 2 we review related works and algorithms
proposed in this area. The biological inspiration from
HIS, which is the base of TLR and STLR is briefly
introduced in Section 3. In Section 4, we explain TLR
algorithm and then, in Section 5 our proposed algo-
rithm is described. Section 6 is devoted the evaluation
of our proposed method and the results of compar-
ing STLR algorithm and some classic methods in AIS
field (like Negative Selection (NS), DCA and TLR
algorithms) are presented. Finally, the conclusion is
given in Section 7.

2 Related Work

Host based anomaly detection is a very active research
area and different methods have been frequently used
to improve it. Most of these studies employ web infor-
mation or user-level information such as system calls
for model construction and intrusion detection. Here
we concentrate on different methods that are applied
on system calls and describe them in this section.

All methods in the field of anomalous system call de-
tection fall into two main categories namely i) specifica-
tion based methods and ii) learning based methods [20].
Specification based techniques rely on application-
specific models. These models can be written manu-
ally [21-23] or derived using program analysis tech-
niques [24] or created interactively with the user’s
help [25, 26]. These application-specific models de-
scribe normal behaviors of system and an anomaly is
detected when a non-conforming system call invoca-
tion is found. A major problem of specification-based
systems is the fact that they exhibit only a very lim-
ited capability for generalizing from written or derived
specifications [20].

Learning-based techniques do not use any written or
derived specifications but, they employ some profiles
that are built by analyzing system call invocations
during normal execution [20]. An example of this




July 2013, Volume 5, Number 2 (pp. 209-225)

approach is presented by Forrest [27]. In His method
there are two phases. During the training phase, the
system collects all distinct system call sequences of
a certain specified length and during the detection
phase, all actual system call sequences are compared
to the set of legitimate ones. If no match is found,
an alarm is raised. This approach has been further
refined in some researches.

Early researches in this field only uses sequences
of system calls and constructed behavioral models
using simple algorithms like look ahead pairs algo-
rithm [28-30]. A few later, Wagner and Dean proposed
that it was possible to craft sequences of system calls
that exploited an attack, but appeared normal [24].
This strategy, which is called Mimicry attack, have
become increasingly sophisticated using automated
attack methods including model checking [31], genetic
algorithm [32] and symbolic code execution [33].

In order to fix this problem, in one side, some re-
searches combined sequences of system calls with sys-
tem call arguments to increase the system view and
Kruegel went one step further, looking only at the argu-
ments and disregarding sequence of system calls alto-
gether [34]. On the other side, different learning-based
methods have been employed for detecting anoma-
lous system calls like finite state automata [35-37],
hidden Markov models [27, 38], neural networks [39—
42], Bayesian networks [20, 43], graph-based meth-
ods [44, 45] and some common machine learning clas-
sifiers such as k nearest neighbor [46] and support
vector machines [47].

Generally, learning-based methods can lead to rel-
atively acceptable results in terms of false alarm
and detection rates but, most of them cannot per-
form well enough in distributed and variable environ-
ments.Therefore, some studies focused on artificial
immune systems for anomaly detection. As mentioned
before, this approach is a main branch of computa-
tional intelligence and is inspired from Human Immune
Systems. Due to distributed, adaptive, self-organized
and lightweight nature of HIS, AISs can be a suitable
option for anomaly detection in distributed and vari-
able environments. So, some researches tried to detect
anomalous system calls using negative selection al-
gorithms [48] and some Danger theory methods like
DCA [10-16, 59-62, 64-68] and TLR, [17-19].

DCA algorithm is an earliest method in danger
theory field and is implemented by Greensmith et
al. [10-16, 59-61]. The DCA is an intelligent way
of fusing and correlating information from different
signal sources like PAMP signal, Safe signal, danger
signal and inflammation. This algorithm simulates
power of dendritic cells, which are able to activate
or suppress immune responses by the correlation of

signals representing their environment, combined with
the locality markers in the form of antigens. The DCA
is not in the scope of this paper, refer readers to its
related references for further information.

TLR algorithm which is another method in danger
theory field is proposed by Twycross et al. [17-19].
TLR employs both DCs and TCs, and simulates the
function of adaptive and innate immune systems and
interaction between them simultaneously. Here the
DCs collect antigens and at the same time process
signals. Unlike DCA, this algorithm does not utilize
different groups of input signals and only utilizes from
danger signals.

Finally, STLR which is our detection method falls
into danger theory field, too. This algorithm is an ex-
tended form of TLR and is applied on system calls
and their arguments for anomaly detection. This al-
gorithm show considerable improvement in detection
rate and accuracy respect to the other methods in
artificial intelligence field.

3 Biological Inspiration

In this section we describe the biological principles
of human immune system that are the base of the
danger theory algorithms. As mentioned in previous
sections, two important layers of HIS architecture are
innate and adaptive immune systems that danger the-
ory methods are inspired from both of them. Two crit-
ical agents of these layers are dendritic cells (DC) and
T cells (TC). In human body, DCs have a dual role,
as garbage collectors for tissue debris, and as com-
manders of the adaptive immune system. DCs belong
to the innate immune system, and do not have the
adaptive capability of the lymphocytes of the adaptive
immune system [12]. These cells have three distinct
states: immature, semi-mature and mature. Figure 1
shows these different types of DCs. As shown in this
figure, immature DCs exist in tissue and the others
are in lymph node.

Immature dendritic cells (iDC) capture antigens
and alarm signals using their receptors. Each iDC has
two types of receptors: antigen receptors (AgR), that
is responsible for antigen reception, and toll-like re-
ceptors (TLR) that capture different alarm signals [3].
The alarm signals are derived from numerous sources,
including pathogens, healthy dying cells, damaged
cells and inflammation. From this viewpoint, all sig-
nals can be divided into four categories namely PAMP
signals (PS), danger signals (DS), safe signals (SS) and
inflammation. Each DC has the capability to combine
input signals to produce a set of output signals [14].

PAMP or Pathogenic associated molecular patterns
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Figure 1. Illustration of different types of dendritic cells and T cells.

are proteins expressed exclusively by bacteria, which
can be detected by DCs and their presence usually
indicates an anomalous situation. Danger signals are
produced as a result of unplanned necrotic cell death.
DCs are sensitive to changes in danger signal concen-
tration. The presence of danger signals may or may
not indicate an anomalous situation, however the prob-
ability of an anomaly is higher than under normal
circumstances [12].

Safe signals are produced via the process of normal
cell death, namely apoptosis. Cells must apoptose for
regulatory reasons into the tissue. The presence of the
safe signal almost certainly indicates that no anoma-
lies are present.On the other hand various immune-
stimulating molecules can be released as a result of
injury. It is not possible to say whether an anomaly is
more or less likely if inflammatory signals are present.
However, their presence amplifies the effects of three
other signals [14]. Once iDCs collect antigens and sig-
nals, they act as natural data fusion agents and trans-
late the signal information received in the tissue into
a context for antigen presentation, i.e. the antigen pre-
sented in an overall “normal” or “anomalous” context.
iDCs that are exposed to predominantly PAMP and
danger signals turn into mature dendritic cells (mDC)
and those that are exposed to predominantly safe sig-
nals turn into semi-mature dendritic cells (smDC).

After this process, smDCs and mDCs migrate from
the tissue compartment to a lymph node. In the lymph
node, DCs attempt to bind expressed antigen with
receptors of naive T cells (nTC). nTCs with a high
enough affinity for the presented antigen are influenced
by the output signals of the DC. When an nT'C in the
lymph node binds to those antigens collected by iDCs,
it will be activated only if the antigens are presented
by an mDC. This is because mDCs secrete a type of
cytokines called I1.-12 which activates nTCs, while
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smDCs secrete a type of cytokines called 1L-10 which
suppresses nTCs [3].

Finally, it should be noted that each of the danger
theory algorithms are inspired only from some parts
of HIS mechanisms. For example The DCA algorithm
has strong signal processing based on PAMP, safe
and danger signals but, TLR and STLR algorithms
do not use different groups of input signals and only
utilize from danger signals. DCA algorithm ignores
the function of adaptive immune system and only
simulate power of dendritic cells but, TLR and STLR
simulate the function of adaptive and innate immune
systems and interaction between them simultaneously.
In the following sections, we describe these algorithms
in detail.

4 TLR Algorithm

As mentioned in previous sections, our proposed
method called STLR is an extended version of TLR,
algorithm and falls in the danger theory field. So, in
this section we describe TLR algorithm and explain
how it works. TLR algorithm emphasizes on the inter-
action between adaptive and innate immune systems.
It employs dendritic cells (DC) and T cells (TC) as
two critical agents for anomaly detection. According
to biological inspiration, both DCs and TCs appear
in different states.

Three various types of DCs are immature DC (iDC),
semi-mature DC (smDC) and mature DC (mDC).
iDCs are responsible for gathering antigens and signals
in tissue compartment and they have two receptors
namely AgR, and DSR for capturing antigens and
danger signals respectively. In contrast, mDCs and
smDCs are responsible for presenting antigens to TCs
and secreting different cytokines (IL-10 and IL-12)
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in lymph node. On the other hand, three various
types of TCs are nave TC (nTC), activated TC (aTC)
and suppressed TC (sTC). nTCs receive antigens
and secreted cytokines with their receptors in lymph
node. If an nTC binds to an antigen and receives
cytokine IL-12 with its receptor, it will be activated
and turned into aTC. Otherwise if it receives cytokine
IL-10 with its receptor, it will be suppressed and
turned into sTC. TLR algorithm is completed in has
two phases: training phase and detection phase.In the
following subsections we investigate these two phases,
separately.

4.1 Training Phase

The training phase of TLR algorithm has two main
stages: initializing signal receptors of iDCs in tissue
compartment and initializing antigen receptors of
nTCs in lymph node. Like other danger theory meth-
ods, TLR requires a number of external sources for
generating danger signals. So, for initializing signal
receptors of iDCs, first the sources of danger signal
must be indicated (here we consider CPU and memory
usage as danger signals) and then, all possible values
that are generated with these sources should be col-
lected in a specific list which is named “danger signal
values”. After that, some signal values that are cre-
ated using normal training samples must be removed
from “danger signal values” list according to negative
selection mechanism to finally it contains only some
signal values that are not generated in normal situa-
tions. This new list is named “non-self danger signal
values” and in training phase, all signal receptors of
iDCs are randomly initialized with one of its members.

Antigen receptors of TCs can be initialized similar
to signal receptors of DCs. TLR does not utilize anti-
gen structures and assumes that each antigen only
has an identifier. This identifier is not unique for each,
but it is a member of a fixed and finite list which is
named “antigen identifier values”. Here we consider
Process ID (PID) of each system call as identifier.
So, for initializing the antigen receptors of TCs, first
all the values of antigen identifier of normal training
samples must be indicated and then, they should be
removed from “antigen identifier values” list accord-
ing to negative selection mechanism to finally new set
contains only some antigen values that are not gener-
ated in normal situations. This set is named “non-self
antigen identifier values” and in the training phase,
all antigen receptors of TCs are randomly initialized
with one of its members.

4.2 Detection Phase

The detection phase of TLR algorithm starts from
tissue compartment and ends in lymph node. Once an

antigen (a test sample that its type is unknown) enters
to tissue compartment, it is captured by one or more
iDCs. On the other side, danger signals are generated
from their source in different times and each signal is
captured only with iDC receptors that has the same
value. Each iDC remains in the tissue for a certain
time to capture antigens and signals using its receptors.
After this time, it translates the received information
in the tissue into a context for antigen presentation.
If iDC is exposed to predominantly danger signals, it
turns into an mDC, otherwise if it does not receive a
danger signal, it turns into a smDC.

After this process, deformed iDC (mDC or smDC)
migrates from tissue compartment to a lymph node to
present its antigen to nTC storage. At this step, each
detector of nTC storage receives antigen and signals
presented by mDC or smDC using its receptors and
evaluates this antigen for binding. Then, if the value
of an nTC receptor is exactly equal with the value of a
present antigen, the receptor binds to the antigen, but
it will be activated only if the antigen is presented by
an mDC. An mDC secrets a type of cytokines called IL-
12 which activates nTCs. This activated nTC (aTC)
can kill the antigen. So, in this case, TLR algorithm
assigns abnormal label to the antigen.

In the case that an nTC receptor binds to the anti-
gen which is presented by an smDC, the nTC will be
suppressed, because an smDC secrets a type of cy-
tokines called IL.-10 which it suppresses nTCs. This
suppressed nTC (sTC) cannot kill the antigen. So,
TLR assigns normal label to the antigen.

As the final state, it is evident that if any nT'C recep-
tors do not bind to the antigen, TLR assigns normal
label to that antigen, because the killing process of
antigen must be done using an nTC which is binds to
it. Figure 2 shows the pseudo code of TLR algorithm.

5 STLR: The Proposed Algorithm

In this section we describe our proposed algorithm
and its implementation in detail. As mentioned in
previous sections, the danger theory algorithms lead
to more accurate and scalable results since they are
modeling both adaptive and innate immune system
of the body and their interaction in the system. Our
proposed method falls in danger theory field.

As discussed in previous section, TLR algorithm
does not utilize antigen structures and assumes that
each antigen only has an identifier like PID or system
call number. So, this algorithm has to do binding
process using exact matching. This process is even
sensitive to very small changes so, it is not suitable in
many applications. In order to solve this problem, here
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TLR Algorithm

1. Training Phase
1.1. Initializing Signal receptors of iDCs.
1.2. Initializing antigen receptors of TCs.
2. Detection Phase
2.1. Processes of tissue compartment
2.1.1. Capturing antigens by antigen receptors of iDCs.
2.1.2. Capturing danger signals by signal receptors of
iDCs.
2.1.3. Processing captured signals by iDCs using
exact matching.
2.1.4. Turning iDCs to mDCs or smDCs according to
signals.
2.1.5. Migrating smDCs and mDCs.
2.2. Processes of lymph node
2.2.1. presenting antigens of smDCs or mDCs to nTCs.
2.2.2. exact matching between antigens and nTCs for
binding.
2.2.3. assigning labels to entered antigens as follows
2.2.3.1. antigen is abnormal if it binds to at least
one TC and it had been presented by
an mDC.

2.2.3.2. otherwise it is normal.

Figure 2. Pseduo Code of TLR Algorithm.

we propose a novel algorithm which is called STLR
which is an extended form of TLR algorithm.

This method models each antigen as a vector of
features. This feature vector forms the structure of
the antigen and that’s why we call our algorithm
“structural TLR” or STLR. The structure of each anti-
gen can be consisted of different features in various
datasets. Figure 3 represents the structure of an anti-
gen in a general state, where F' is the symbol of a
feature and its subscript indicates the number of that
feature. So, N is the total number of all features.

Fi | F2 | Fs | Fa | F5 | ... | Fna | Fn

Figure 3. An overal view of the Structure of each antigen.

STLR and TLR algorithms are basically the same
but, there are some differences between these two. To
indicate these differences, in Figure 4, we describe
the pseudo code of STLR algorithm in the same man-
ner with Figure 2. According to this figure, STLR is
completed in training and detection phases, too.

5.1 Training Phase

The training phase of STLR algorithm has two main
stages: initializing signal receptors of iDCs in tissue
compartment and, Defining non-self region as anomaly
detector in lymph node. In the following sections we
will describe these two processes.
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STRL Algorithm

1. Training Phase

1.1. Initializing Signal receptors of iDCs.

1.2. Defining non-self region as anomaly detector.
2. Detection Phase

2.1. Processes of tissue compartment

2.1.1. Capturing antigens by antigen receptors of iDCs.

2.1.2. Capturing danger signals by signal receptors of
iDCs.

2.1.3. Processing captured signals by iDCs using
threshold.

2.1.4. Turning iDCs to mDCs or smDCs according to
signals.

2.1.5. Migrating smDCs and mDCs.

2.2. Processes of lymph node

2.2.1. presenting antigens of smDCs or mDCs to nTCs.

2.2.2. binding process between antigens and non-self

region.
2.2.3. assigning labels to entered antigens as follows

2.2.3.1. antigen is abnormal if it binds with

non-self region and it had been

presented by an mDC.

2.2.3.2. otherwise it is normal.

Figure 4. Pseduo Code of STLR Algorithm.

5.1.1 Initializing Process

Like TLR algorithm, our proposed algorithm requires
a number of external sources for generating danger
signals. Therefore, to initializ signal receptors of iDCs,
STLR algorithm first indicates the sources of danger
signals and then collects all possible values that are
generated with these sources in “danger signal values”
list. After that, by using negative selection mechanism
we remove some signal values from “danger signal
values” list, these values are are created by normal
training samples then, STLR algorithm creates “non-
self danger signal values” list which contains only
some signal values that are not generated in normal
situations and in training phase, all signal receptors
of iDCs are randomly initialized with one member of
this list.

5.1.2 Defining the Self and Non-self Regions

The first difference between TLR and STLR algo-
rithms is in this step of training phase. Unlike TLR
which initializes antigen receptors of nTCs by ignor-
ing the structure of antigens, STLR defines non-self
region by using the structure of antigens. This region
belongs to adaptive immune system and can be used
as anomaly detector in detection phase.

Before defining non-self region, we need to define
self region using normal training data. It is noteworthy
that each of the normal training data’s structure is
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similar to Figure 3. Self region consists of putting
some spheres with constant radius side by side such
that the centers of them are normal training samples.
This region can be defined by (1).

Self — Region = U SS; ;88 = (Ni,rs) (1)
1<i<Y
Where r; is the constant radius of all self spheres and
n; is i" sample in normal training dataset and the i
center of Self Sphere S.S;. Y is the number of samples
in the normal training dataset.

The second difference between TLR and STLR al-
gorithms appears in this signal processing step. In
TLR algorithm, iDCs utilize exact matching and cap-
ture an entered signal as their danger signal only if it
matches with pre-initialized values of their receptors.

After defining the self-region, we can define non-
self region completely out of the self-region. The use
of this region will be described in detection phase in
more detail.

5.2 Detection Phase

Like TLR, the detection phase of STLR algorithm
starts from tissue compartment and ends in lymph
node. The Detection phase of STLR algorithm has
three main stages: maturation process, binding pro-
cess, and label assignment process. The first stage is
done in tissue compartment and two other stages are
performed in lymph node. Figure 5 shows the sequence
of these stages in the form of a flowchart. In the fol-
lowing section we will describe these three processes
separately.

5.2.1 Maturation Process

This step is the first part of detection process which
starts from tissue compartment. In this tissue, there
are many iDCs for signal and antigen capturing. Once
an antigen enters tissue compartment, it is captured
by one or more iDCs. On the other side, danger signals
are generated from their sources in different times.
After signal and antigen capturing by iDCs, the cap-
tured danger signals must process using these imma-
ture dendritic cells for maturing process. But in STLR
algorithm, iDCs uses a threshold and capture an en-
tered signal as their danger signal only if it is higher
than a predefined threshold. When iDCs capture dan-
ger signals, their danger signal receptors (DSRs) will
be set to one, otherwise it will be set to zero. Equation
(2) shows this process.

(.. . .
1 if captured signal by iDC > T
DSR — i p g Y =

0 if otherwise

Source of danger signal

iDC3

IDCn

1 if captured signal > Threshold

0 Otherwise

DSR=1

iDC turned to smDC iDC tuned to mDC

e |36 3| e

Deformed iDC (mDC or smDC) migrates
from tissue to lymph node

Deformed iDC
(smDC or mDC)

Deformed iDC (mDC or smDC) presents
its structural antigen to nonself region

Structural Antigen

A 4
Non-Self Region

» ‘-' - g,
»Sglj'Régron,_”

b

A

[p

1it min dist (n, Ag) S5

1<i<Y

0 Otherwise

The structural
antigen is detected
asanormal antigen

bind=1

The structural
antigen is presented by which
type of DCs?

The structural The structural
antigen is detected as antigen is detected
an abnormal antigen asanormal antigen

Figure 5. Flowchart of STLR algorithm.
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Where T is a threshold which can be defined in
training phase according to normal training data. The
mentioned signal processing in STLR algorithm can
decrease the amount of sensitivity of TLR with respect
to exact value of danger signals.

Generally, each iDC remains in the tissue for a
certain time to capture antigens and signals using
its receptors. After this time; if iDC is exposed to
predominantly danger signals and the value of its DSR
is equal to 1, it matures completely and turns into a
mature dendritic cell (mDC), otherwise if it did not
received a danger signal and the value of its DSR is
equal to 0, it matures incompletely and turns into a
semi-mature dendritic cell (smDC).

5.2.2 Binding Process

After maturation process, deformed iDC (mDC or
smDC) migrates from tissue compartment to a lymph
node to present its antigen to non-self region for bind-
ing process. Non-self region, which is defined in train-
ing phase, plays the role of anomaly detector in STLR
algorithm.

Binding process in lymph node is the last difference
between TLR and STLR algorithms. As mentioned
previously, this process is based on exact matching be-
tween antigens and nTC receptors in TLR algorithm,
but STLR checks the ability of binding between anti-
gens and non-self region using (3).

DSE = { 1if mini<icy dis(ng, Ag) > rs 3)

0 if otherwise

Where Ag is a structural antigen which is presented
using mDCs or smDCs, 5 is the constant radius of
all self spheres, Y is the total size of normal training
dataset, and n; is i** sample in normal training dataset
and the ' center of Self Sphere SS;. dist(.) is a
function that calculates Euclidean distance between
its arguments. In this equation, bind parameter is
equal to 1 only if the entered antigen binds with non-
self region and becomes out of self region. Otherwise
this parameter is equal to 0 if the entered antigen
does not bind with non-self region and becomes in self
region.

5.2.3 Label Assignment Process

After binding process, STLR algorithm will be capable
to assign “normal” or “abnormal label to each entered
antigen. This process is performed based on the value
of parameter which is obtained using (3).

According to biological inspiration of HIS, if the
antigen binds with non-self region and the bind param-
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eter is equal to 1, STLR algorithm assigns “abnormal”
label to that antigen if it is presented by an mDC,
otherwise if the antigen is presented by an smDC, this
algorithm assigns “normal” label to it.

If the antigen does not bind with non-self region and
the bind parameter is equal to 0, STLR algorithm as-
signs normal label to that antigen since, this situation
shows that the entered antigen will not be detected
by non-self region as anomaly detector.

6 Evaluation

In this section we evaluate the performance of some
classic methods in AIS field (like NS, DCA and TLR
algorithms) and our proposed algorithm to show that
STLR algorithm performs better and produces higher
detection rate and lower false alarm rate compared
to previous algorithms. For this purpose, first we de-
scribe a dataset which is constructed for this paper
and another dataset that is used for testing. Then
we describe the evaluation metrics used for compar-
ing the mentioned algorithms and finally, we present
experimental results.

6.1 Dataset

In order to evaluate and compare the performance of
TLR and STLR algorithms, we need a dataset with
two types of record: i) structural antigen records and
ii) danger signal records.

Twycross has evaluated TLR algorithm using two
datasets called rpc.statd and wuftpd in his Ph.D.
thesis [17]. The rpc.statd dataset is used to provide
an initial analysis of system calls and signal levels
for a server under normal and attack conditions and
the wuftpd dataset expands the range of normal and
attack usage and signal sources for a second FTP
server.

Both these datasets satisfy the second condition
of our needed dataset but none of them support the
first condition. These datasets contain normal and
abnormal antigens but, they do not take the anti-
gens’ structure into account since, the TLR algorithm
does not need this information. So, they are not suit-
able for evaluating STLR algorithm. Therefore, we
constructed a new dataset called “Structural Syscall”
which satisfies both conditions. Section 6.1.1 describes
the construction process of this dataset. For more
accurate evaluation, we used another dataset called
NSL-KDD. Unlike rpc.statd and wuftpd datasets, this
new dataset satisfies only the first condition and does
not contain danger signal records. To overcome this
problem, we used a technique presented in [13] to gen-
erate danger signals for each antigen. Section 6.1.2
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describes this process in details.

6.1.1 Structural Syscall dataset

In this section we describe the construction process
of Structural Syscall dataset. In order to obtain a
suitable dataset, we had two hosts running Ubuntu
10.04 with kernel 2.6.32 with one of them having
audit daemon installed on it. Audit daemon is a user
space component for Linux Auditing System [49] and
is responsible for logging system calls initiated by
different programs on the host system. With the aid
of audit daemon, we were able to define which system
calls to audit [50]. Additionally on the target host
we have some users who are doing their regular jobs
indicating the normal behavior of the system.

We also, have an intruder who’s going to access the
target machine remotely through an open port pro-
vided by the K-beast Rootkit (which is the latest pub-
lic rootkit available for kernel 2.6.32) [51]. Since our
algorithm uses the contextual information like CPU
usage and memory usage of the system as danger sig-
nals, we also had to issue a top command periodically
to obtain the run time information.

To provide the required dataset, we parsed the
log file created by audit daemon and extracted each
system call as an antigen whose structure is defined
by its parameters and some additional arguments.
These additional fields are pid, gid, uid, al and a2
The structure of this antigen is presented in Figure 6.

Fy Fy F3 Fy Fy Fs

SysCall-No  Mode Flag Uid Gid Pid

Figure 6. Antigen structure in “Structural Syscall” dataset.

Here PID is the id of the process initiating the
system call, UID and GID are the user id and group
id of the user and al and a2 are especial arguments
which are totally system call dependent such as mode
and flag which for simplicity are converted into binary
format. We also tried to group the system calls or
antigens according to their contextual signals which
are the run time information such as CPU and memory
usage of the system at that time.

Our final dataset was gathered in two phases. One is
the training phase data which consist of 94000 records.
All these records are collected during normal usage
of the system before any attack has happened upon
the system. The other is the test phase data. This
dataset contains 3093 records with 2345 record labeled
as normal and 748 records labeled as abnormal. These
records are calculated regardless of the records related
to system run time information.

6.1.2 NSL-KDD dataset

NSL-KDD dataset [52] is an improved version of
“KDD cup 1999” or KDD99 dataset [53, 54] which is
an standard and famous dataset of UCI repository.
The KDD99 dataset was derived in 1999 from the
DARPA98 network traffic dataset by assembling indi-
vidual TCP packets into TCP connections. It was the
benchmark dataset used in the International Knowl-
edge Discovery and Data Mining Tools Competition.
Each TCP connection has 41 features with a label
which specifies the status of a connection as either
being normal, or attack.

NSL-KDD dataset solves some of the inherent prob-
lems of the KDD99 dataset by removing the redun-
dant records and applying some other processing on
it according to [52]. So, in this paper we utilized this
dataset for evaluating our proposed algorithm. Here
we used only 19 of 41 features based on feature se-
lection method proposed in [55]. Thus, antigen struc-
ture in this dataset can be shown as a feature vector
with 19 features which is illustrated in Figure 7. More
details about these 19 features can be found in refer-
ences [52-54].

As mentioned before, this dataset satisfies only the
first condition of our needed dataset and do not con-
tain danger signal records. For solving this problem,
we used a technique presented in [13] to generate dan-
ger signals for each antigen. In this method, four data
items of each antigen record, that have the largest
standard deviation, create the danger signals. For each
of these attributes the mean was calculated over all
normal records. Subsequently, the absolute difference
from the mean was calculated for each entered antigen,
within four selected attributes, separately. The aver-
age of the four attribute mean differences comprises
the derived danger signal concentration. NSL-KDD
dataset is prepared for evaluation, after applying this
process on its records.

6.2 Evaluation Criteria

If we consider normal label as “Negative” and abnor-
mal label as “Positive”, then we can define four basic
concepts; True Negative (TN) which is the number of
samples that their predicted labels and actual labels
are the same as Negative, True Positive (TP) which
is the number of samples that their predicted labels
and actual labels are the same as positive, False Neg-
ative (FN) which is the number of samples that their
predicted labels are Negative while their actual labels
are Positive and False Positive (FP) which is the num-
ber of samples that their predicted labels are Positive
while their actual labels are Negative.

For the evaluation, we use seven criteria that could
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Figure 7. Antigen structure in “Structural Syscall” dataset.

be defined based on these concepts. The first criterion
is False Negative Rate (FNR) which indicates the rate
of False Alarms (FA) for an HIDS. The ideal value of
this criterion is 0 and it can be calculated using (4).

FPR=FA=FP/(TN + FP) (4)

The other criterion is True Positive Rate (TPR) which
indicates the Detection Rate (DR) of our system and
also known as sensitivity and recall. The ideal value
of this criterion is 1 and it is shown in (5).

TPR = DR = sensitivity = TP/(TP + FN) (5)
The simultaneous evaluation of two above criteria

can be a suitable option to illustrate the power of
our system. ROC [14] is a space that its horizontal

and vertical axes shows FPR and TPR, respectively.

So, the power of each classifier can be indicated as
a unique point in this space. A ROC graph is made
from join of point (0,0) to the unique point of classifier
and unique point to point (1,1). The area under this
graph (SROC) which is calculated from (6) is our 3rd
criterion. According to this equation, the unique point
of a perfect classifier is (0,1) and SROC is 1 for it.

2x(1—-FPR)xTPR

Sroc =

2
(FPR x TPR)
I
+(pFPR);(:L,TPR) ©)

Two other criteria are TNR which is the complement
of FPR and PPV or precision that indicates which rate

of predicted abnormal records is actually “abnormal”.

The ideal values of these two criteria are 1 and they
are shown in (7) and (8) respectively.

TNR = specify=1— FPR (7)
PPV = precision =TP/(TP + FP) (8)

F-score which computes a harmonic mean for TPR and
PPV and Accuracy that indicate which rate of normal
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or abnormal records is predicted (labeled) correctly are
two final criteria. The ideal value for these two criteria
is 1 and they are shown in (9) and (10) respectively.

F1 = F_score = (2 x PPV x TPR)/(PPV + TPR)

(9)
Acc = (TP +TN)/(TP+TN + FP+ FN) (10)

6.3 Experimental Results

In order to evaluate the detection power of our pro-
posed method, we applied TLR, STLR and two other
algorithms named NS and DCA on two datasets which
are explained in Section 6.1, separately and then, we
compared their performances according to the crite-
ria described in Section 6.2. For this experiment, we
implemented Negative Selection (NS) algorithm with
variable detector size according to [57, 58]. DCA algo-
rithm was implemented according to technique which
is discussed in [13] and finally, TLR and STLR al-
gorithms were implemented according to Section 4
and Section 5, respectively. But before discussing
about the results of this experiment, we present some
details about DCA and NS algorithms.

DCA algorithm is another algorithm in danger the-
ory field. DCA ignores the function of adaptive im-
mune system and only simulate power of dendritic
cells which are able to activate or suppress immune
responses by the correlation of signals representing
their environment, combined with the locality markers
in the form of antigens. Unlike previous algorithms,
DCA has no training phase.

The DCA starts with creating a population of im-
mature DCs. Each iDC collects many antigens and
four different signals (safe, PAMP, danger and inflam-
mation signals). Moreover each antigen can be col-
lected by more than one iDC. Each iDC processes
its input signals periodically and transforms them by
an equation [13] to three output concentrations: co-
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stimulatory molecules (csm), smDC cytokines (semi)
and mDC cytokines (mat). Csm tracks the matura-
tion of a DC. When this quantity is larger than a
pre-defined threshold, the corresponding DC is said
to be mature. The other two outputs, semi and mat,
will determine if this DC develops to be an smDC or
mDC. Each smDC assigns “normal” label to its anti-
gens and each mDC assigns “abnormal” label to them.
Whereas, each antigen can be collected by more than
one iDC, so it can have more than one label. In such
case, the final label of each antigen can be calculated
by voting.

Negative Selection (NS) algorithm is an algorithm
in the first generation of artificial immune system
field which unlike previous algorithms is not in danger
theory branch. Unlike DCA algorithm, NS algorithm
ignores the function of innate immune system and only
simulates the behavior of lymphocytes of adaptive
immune system (T and B cells).

NS algorithm has two phases. In training phase,
first it indicates self region which consists of putting
some spheres with constant radius side by side such
that the centers of them are normal training samples.
After that it defines detector storage which contains a
number of spheres that the centers of them are deter-
mined randomly and their radiuses are variable. The
detail information for calculating variable radiuses can
be found in [57, 58]. In detection phase, each antigen
is presented to detector storage. Then each detector
evaluates this antigen for binding. NS algorithm as-
signs “abnormal” label to each antigen which it does
not bind to any detectors,otherwise they assign “nor-
mal” label to it.

Table 1 to Table 4 are confusion matrixes which
show the results of applying NS, DCA, TLR and STLR
algorithms on Structural Syscall dataset. Here Nact
and Pact indicate the number of records with actual
labels of Negative (normal) and positive (anomalous),
respectively. Equally, Npred and Ppred indicate the
number of records with predicted labels of normal and
anomalous.

Table 1. Confusion matrix of NS algorithm in Structural
Syscall dataset.

NS Npred Ppred Totalgct
Nact 2344 1 2345
Pact 321 427 748
Totalpred 2665 428 3093

According to these tables and as discussed in Sec-
tion 6.1.1, the total number of records with actual
abnormal label is 748 but, since both of these algo-
rithms suffer from a little inaccuracy; the number of

Table 2. Confusion matrix of DCA algorithm in Structural
Syscall dataset.

DCA Npred Pyred Totalget
Nact 1686 659 2345
Pact 2 746 748
Totalyyeq 1688 1405 3093

Table 3. Confusion matrix of TLR algorithm in Structural
Syscall dataset.

TLR Npred  Pprea  Totalger
Naet 2125 220 2345
Pact 274 474 748
Totalpreq 2399 694 3093

Table 4. Confusion matrix of STLR algorithm in Structural
Syscall dataset.

DCA Npred Byred Totalgct
Nact 2164 181 2345

Pact 0 748 748
Totalp,»ed 2164 929 3093
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Figure 8. The comparison between DCA, TLR and STLR
algorithms in Structural Syscall dataset.

normal and abnormal records predicted by them is
not exactly the same as actual number of normal and
abnormal records. We are also aware of the fact that
the error rate of these four algorithms is different from
each other. Table 5 presents a quantitative compari-
son of applying these four algorithms on Structural
Syscall dataset and Figure 8 visually compares the
power of danger theory algorithms (DCA, TLR and
STLR) in terms of criteria described in Section 6.2.

The first four columns of Table 5 show the results of
four mentioned algorithms in terms of different criteria
and next column presents the average results of the
first columns. Sixth column shows the amounts of
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Table 5. Comparative results between NS, DCA, TLR and STLR algorithms in Structural Syscall dataset

Algorithms NS DCA TLR STLR  Average STLR improvement STLR improvement
Criteria, g vs. Average (%) vs. TLR (%)

FPR(FA) 0.0004 0.2810 0.0938 0.0772 0.1131 + 3.59 + 1.66
TPR(DR) 0.5709 0.9973 0.6337 1.0000 0.8005 + 19.95 + 36.63
TNR(Specificity) 0.9996 0.7190 0.9062 0.9228 0.8869 + 3.59 + 1.66
PPV(Precision) 0.9977 0.5310 0.6830 0.8052 0.7542 + 5.10 + 12.22
F-measure(F1) 0.7262 0.6930 0.6574 0.8921 0.7422 + 14.99 + 23.47
Accuracy(Acc) 0.8959 0.7863 0.8403 0.9415 0.8660 + 7.55 + 10.12
SRoc 0.7852 0.8582 0.7699 0.9614 0.8437 + 11.77 + 19.15
E |
g -
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Figure 9. The ROC graph of NS, DCA, TLR and STLR
algorithms in Structural Syscall dataset.

STLR improvement versus Average values in terms of
different criteria. Eventually, since STLR is a modified
version of TLR algorithm, the last column of this table
presents the quantitative comparison between these
two algorithms to show the improvement.

Finally, Figure 9 compares the ROC graph of four
algorithms in Structural Syscall dataset. As discussed
previously, a large amount of the area under the graph
is the indication of better classification. According
to Figure 9 and Table 5, this area is 0.7852, 0.8582,
0.7699 and 0.9614 for NS, DCA, TLR and STLR algo-
rithms, respectively. This also confirms that our pro-
posed method performs much better than the others.

Table 6 presents a quantitative comparison of apply-
ing four mentioned algorithms on NSL-KDD dataset
and Figure 10 visually compares the power of dan-
ger theory algorithms in terms of criteria described
in Section 6.2. Moreover Figure 11 compares the ROC
graph of four algorithms in NSL-KDD dataset. Ac-
cording to Figure 11 and Table 6, this area is 0.8287,
0.8766, 0.8932 and 0.9171 for NS, DCA, TLR and
STLR algorithms, respectively.

Totally, the results of TLR and STLR algorithms on
two mentioned datasets show that although the num-
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Figure 10. The comparison between DCA, TLR and STLR
algorithms in NSL_KDD dataset.
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Figure 11. The ROC graph in NS, DCA, TLR and STLR
algorithms in NSL_KDD dataset.
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Table 6. Comparative results between STLR and TLR algorithms in NSL_KDD dataset.

Algorithms NS DCA TLR STLR  Average STLR improvement STLR improvement
Criteria g vs. Average (%) vs. TLR (%)
FPR(FA) 0.1809 0.1156 0.1675 0.1658 0.1575 - 0.83 + 0.17
TPR(DR) 0.8384 0.8687 0.9407 1.0000 0.9119 + 8.81 + 5.93
TNR(Specificity) 0.8191 0.8844 0.8325 0.8342 0.8426 -0.84 + 0.17
PPV(Precision) 0.8218 0.8821 0.7520 0.8571 0.8283 + 2.88 + 10.51
F-measure(F1) 0.8300 0.8753 0.8358 0.9231 0.8661 + 5.70 + 8.73
Accuracy(Acc) 0.8287 0.8766 0.8704 0.9169 0.8732 + 4.37 + 4.65
SRoc 0.8287 0.8766 0.8932 0.9171 0.8789 + 3.82 + 2.39

ber of FA in STLR is less than that of TLR algorithm,
the main difference between them is their detection
rate (DR). In fact, these results are completely com-
patible with characteristics of these two algorithms.

As mentioned before, TLR algorithm does not uti-
lize antigen structures and assumes that each antigen
only has an identifier. This algorithm uses from “non-
self antigen identifier values” list for anomaly detec-
tion and tries to create this list with only some iden-
tifier values that belong to abnormal antigens. But
this dependency to only one parameter is the biggest
issue in TLR algorithm; because there is not any iden-
tifier which has the ability to separate normal and
abnormal antigens completely.

The identifier value is not unique for each antigen
and there is no guarantee that the identifier values of
abnormal antigens are completely different from iden-
tifier values of normal antigens. So, it is probable that
TLR algorithm cannot detect an abnormal antigen
because its identifier value is equal to the identifier
value of a normal antigen in training phase and so
this value has been removed from “non-self antigen
identifier values” list. Because of this reason, TLR
algorithm has relatively low detection rate. It is also
possible that TLR algorithm detects a normal antigen
as anomaly because its identifier value is not equal
to any identifier values of normal antigens in train-
ing phase and so this value exists in “non-self antigen
identifier values” list. Because of this reason, TLR
algorithm does not have low false alarm rate.

STLR algorithm solves thisissue by defining a struc-
ture for each antigen (Figure 3). So, unlike TLR algo-
rithm; each antigen in STLR is dependent to several
parameters. This increases the dimension of problem
space and so decreases the sensitivity to exact values
of only one parameter. This algorithm uses from “non-
self region” for anomaly detection which is defined
completely out of the Self region. Here, Self region
consists of putting some spheres with constant radius,
rs, side by side that the centers of them are normal

training samples.

So, according to (3), STLR algorithm assigns “ab-
normal” label to an antigen if the Euclidian distances
between its location and the centers of self spheres
(which are normal training data) are larger than r
or,i.e, if its location is out of the self-region. So, the
value of 74 has a critical role in this algorithm, because
it can indicate the size of self and non-self regions in-
directly. The larger values of rs can create larger self
region and smaller non-self region and so they can
decrease the values of false alarm and detection rate.
Vice versa, the smaller values of r5 can create smaller
self region and larger non-self region and so they can
increase the values of false alarm and detection rate.

In this paper, our goal is focused on increasing the
value of detection rate and detecting all abnormal
antigens. In order to make sure that this algorithm
can detect all abnormal antigens perfectly, we assume
that all self spheres have a constant and very small
radius (rs = 0.001) . For this reason, the detection
rate of STLR algorithm is in an ideal level, and it is
considerably higher than TLR’s detection rate. But,
the false alarm rate of this algorithm is a little high
because of the small value of r,. Here, it is notable
that in this situation, the values of false alarm in TLR
and STLR algorithms are almost equal, but the value
of detection rate is considerably different.

As discussed before, the detection rate and false
alarm rate of STLR algorithm can be flexible by chang-
ing the value of r,. This flexibility is a good parameter
in STLR algorithm that we intend to use it in our fu-
ture works. In fact, the results of STLR algorithm can
be improved by applying an optimization process on
this parameter using learning automata, or by defin-
ing a variable radius for each self sphere in training
phase. We have evaluated the effect of this parameter
in increasing and decrising the values of false alarm
and detection rate, in our other articles [69, 70].

After above discussion and comparison between
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TLR and STLR algorithms in terms of detection rate,
false alarm and accuracy, here we want to compare
these two algorithms in terms of computational com-
plexity for intrusion detection. According to Section 4
and Section 5, iDCs in both of these algorithms remain
in the tissue for a certain time to capture antigens and
signals using their receptors. For simplicity, we name
this certain time, Ty;ssue. After that, iDCs turn to
mDC or smDC and migrate to lymph node to present
their captured antigens to nTC storage (in TLR al-
gorithm) or non-self region (in STLR, algorithm) for
binding process. Elapsed time for binding process has
an important effect on computational complexity of
these two algorithms that we name it, Tp;,q, for sim-
plicity. So, Total, the total time for assigning “normal”
or “abnormal” label to a test data (an entered antigen)
in both TLR and STLR, algorithms can be calculated
by (11).

Tiotat = Thina + Ttissue (11)
Where Ty;nq is calculated differently in TLR and STLR
algorithms. Binding process is based on exact match-
ing between antigens and nTC receptors in TLR algo-
rithm. If n'TC storage consists of NnTC detectors (or
nTCs) and each detector has Nyecepior receptors, then
Thinag for TLR algorithm can be calculated using (12).

Tbind = NnTC X Nreceptor X Tcomp (]-2)

Where Teomp is elapsed time for comparing the
value of an nTC receptor with the value of presented
antigen. On the other side, binding process in STLR
algorithm is done by checking the ability of binding
between antigens and non-self region using (3). Ac-
cording to (3), Tpina for STLR algorithm can be cal-
culated using (13).

Tb'md =Y x (Tdist + Tcomp) (13)

Where Y is the total size of normal training dataset,
Tyist is elapsed time for calculating the Euclidian dis-
tance between a normal training data and presented
antigen and finally, 7,0, is elapsed time for compar-
ing the Euclidian distance between a normal training
data and presented antigen with 7, (the constant ra-
dius of all self spheres) for binding.

According to (12) and (13),if Y = Nype X Nyeceptor
then STLR algorithm has more computational com-
plexity than TLR algorithm because of Ty;s; compo-
nent. In fact this time overhead is acceptable for our
proposed method to have more accurate results.

7 Conclusion

Danger Theory inspired algorithms are a new genera-
tion of AIS algorithms which are trying to model the
interaction of adaptive and innate biological immune
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system. In this paper we proposed an algorithm called
STLR which is an extended form of TLR algorithm.

We applied NS, DCA, TLR and STLR algorithms
on two separate datasets (Structural Syscall and
NSL_KDD) to evaluate their power of detection rate
and finally we showed that using the structure of
antigens as the input to the system, STLR algorithm
can gain less false alarm rate, better accuracy and
greater detection rate compared to other algorithms
specially TLR algorithm which uses exact matching
and ignores the structure of antigens.
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