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A B S T R A C T

To control the exponential growth of malware files, security analysts pursue

dynamic approaches that automatically identify and analyze malicious software

samples. Obfuscation and polymorphism employed by malwares make it difficult

for signature-based systems to detect sophisticated malware files. The dynamic

analysis or run-time behavior provides a better technique to identify the threat.

In this paper, a dynamic approach is proposed in order to extract features from

binaries. The run-time behavior of the binary files were found and recorded

using a homemade tool that provides a controlled environment. The approach

based on DyVSoR assumes that the run-time behavior of each binary can be

represented by the values of registers. A method to compute the similarity

between two binaries based on the value sets of the registers is presented. Hence,

the values are traced before and after invoked API calls in each binary and

mapped to some vectors. To detect an unknown file, it is enough to compare

it with dataset binaries by computing the distance between registers, content

of this file and all binaries. This method could detect malicious samples with

96.1% accuracy and 4% false positive rate. The list of execution traces and the

dataset are reachable at: http://home.shirazu.ac.ir/∼ sami/malware

c© 2013 ISC. All rights reserved.

1 Introduction

Malware detection is a system that detects a program
which has malicious intent [1]. Due to the exponential
rise in unique variations of malware [2–9] and the weak-
ness of security tools, a malware author may intend to
attack organizations to steal the crucial financial data
of banking credentials [10]. In 2012, cybercriminals
used 500,000 payment cards to perform fraudulent

I This article is an extended/revised version of an ISCISC’12
paper.
∗ Corresponding author.

Email addresses: ghiasi@cse.shirazu.ac.ir (M. Ghiasi),

asami@ieee.org (A. Sami), zsalehi@cse.shirazu.ac.ir (Z.
Salehi)

ISSN: 2008-2045 c© 2013 ISC. All rights reserved.

transactions worth over US$25 million [11].
In addition, malware writers or cyber offenders used

malwares as armaments to carry on their attacks [8]. A
42% growth in targeted attacks is reported by Syman-
tec in 2012 [12]. Besides, More complicated and dan-
gerous malwares like Stuxnet in 2010, Duqu in 2011
and Flamer and Disttrack in 2012 were used to specif-
ically target some industrial control systems such as
Iranians nuclear equipments and Saudi oil firms [9, 12–
14]. Mcafee also reported one of the largest cybercrime
hauls in history in 2012 that infected 11 million com-
puters and caused the loss of over US$850 million [11].
On the other hand, the impact of cybercrime is worry-
ing with 556 million victims per year, a total of 110 bil-
lion dollars economic loss and an average cost of $197
per victim [15]. To deal with the thousands of new
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malware threats that are discovered every day, secu-
rity companies and analysts use different techniques.

In the last few years, malware writers used code
transformation methods such as encryption and obfus-
cation techniques to create different malware variants
of the same family. So that most current detection
methods are not able to detect them. Therefore, cur-
rent malware detectors should be equipped with sig-
nificant improvements to deal with new variants of
malware.

The basic categorization of different approaches
in malware detection consists of Static Analysis and
Dynamic Analysis. Static analysis can be used to ex-
plore the context and the structure of a program with
malicious intent without running it. Since tracing all
execution paths of software is simple in static analysis,
it has a low false positive rate. The static approach
might not correctly analyze unseen new obfuscated
malware [16–18].

Detection based on creating malicious signatures is
a usual method that uses static analysis. Therefore,
most commercial scanners maintain a database of sig-
natures where a signature is an opcode pattern of the
executable file that specifies the malware. By detect-
ing a sequence of the binary code instructions that
matches one of the known signatures in the database,
the file will be classified as a member of the corre-
sponding malware family. The accuracy of the system
depends on the contents of the signature database,
hence it should be updated permanently. Maintaining
millions of signatures and delivering all updated sig-
natures to users is severely time-consuming and costly.
Besides, a new malware that contains a new signature
might not be detected [19, 20].

Dynamic analysis executes malicious files in a simu-
lated environment to recode their functionalities. Us-
ing dynamic analysis and monitoring the binarys op-
erations performed, a profile of runtime behaviors will
be collected. The major advantage of dynamic analy-
sis is the ability of representing the actual intent of
the program. This approach can expose the most pre-
cise malicious behaviors without static analysis of the
code. On the other hand, packed malware automati-
cally runs binary codes every time and the obfuscated
code does not affect the final behavioral information.
In addition, since the actual behavior is observed, it
is not needed to estimate memory content, registers
values or the lik [21].

In spite of the obvious advantages of dynamic anal-
ysis in detecting modern malware files, it has some
drawbacks. Since dynamic malware analysis provides
a limited aspect of malware behaviors, it is impossible
to explore all execution paths and observing all vari-
able values is not feasible. Some malware files only act
in some specific conditions, hence dynamic analysis is
unable to recognize their all behavior forms [18, 22].

For example, a bot carries out its malicious intent
when its botmaster sends related commands through
a command and control channel [23].

Obfuscation is the main reason for the better per-
formance of dynamic analysis in comparison to static
analysis. As mentioned above, static analysis alone
cannot be adequate enough to detect malicious be-
haviors. Dynamic analysis is introduced as a comple-
mentary step besides static techniques because ob-
fuscation has minor effects on it. Increasingly, more
researchers follow dynamic analysis techniques to im-
prove the effectiveness and accuracy of malware detec-
tion and classification [24]. For example, in [25] after
logging run time behaviors, researchers used feature
sets that are constructed based on APIs and/or in-
put arguments to model the behaviors. [26] extracted
unit string features from API call sequences, [27] used
statistical properties of address pointers and size pa-
rameters and the temporal feature represents the or-
der of invoked run-time API and [28] extracted the
features from log files based on distinct string frequen-
cies. DyVSoR also pursues the dynamic approach to
identify malware files.

The main contribution of DyVSoR is to extend the
Value Set Analysis (VSA) [29] that was proposed to
detect new variants of a metamorphic malware. VSA
is a static method that traces the distribution of val-
ues throughout an execution process. Based on the
VSA, memory contents for different variants of poly-
morphic or metamorphic malware files almost remain
unchanged. VSA was assumed not to be extendable
to the dynamic technique because of the large num-
ber of existing values, but DyVSoR is extended to a
dynamic setting.

Since the reports of our homemade tool contain all
registers values of before and after API call invoca-
tions in each binary, the distributions and changes of
registers can be traced throughout a binary. In ad-
dition, it is not required to approximate values by
DyVSoR because dynamic analysis provides concrete
run-time values.

A similarity function is used to describe the pair-
wise distance between each pair of malware applica-
tions or benign codes; and detection is simply done
by the nearest neighbor search. Experiments show
that this method is successful in identifying samples
of diverse datasets with a low false positive rate. The
preliminary work of DyVSoR, presented above, was
based on 1211 samples of benign and malware files
and DyVSoR was based on 1550 samples.

The rest of the paper is as follows. The related
works that have used static and dynamic methods for
identifying malware samples are explained in section
2. Next, an overview of DyVSoR system, the process
of collecting tracing reports in the controlled environ-
ment and the process of matching phases for obtaining
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the similarity distance between all binary files are de-
scribed in section 3. In section 4, the used dataset, the
selection of common DLLs for most malware binaries
and the measurement criteria are described. Experi-
mental evaluations of the proposed method are given
in section 5 and finally, the paper will be concluded
and summarized followed by some future possible im-
plications.

2 RelatedWorks

A number of works have explored static and dynamic
approaches to analyze and classify malware samples.
These works are mentioned based on their methodolo-
gies. First, some static works are explored.

Some recent researches tend to use static analysis to
distinguish clean files from malicious ones [30–36]. For
example, Tian et al. [34] applied printable string in-
formation from the disassembly tool IDA as a feature
to develop a malware categorization system. Walen-
stein et al. utilized PE header data, body information
and their combination to detect unknown files. Tian
et al., and Walenstein et al. checked for the presence or
absence of each feature and used several well-known
classification algorithms using data mining techniques
to classify the files. Sami et al. also [36] used the PE
header to describe the behavior of executable files.
They extracted the closed frequent patterns as the
features. Ye et al. [35] used the analysis of static API
call sequences as a feature. Sami et al., and Ye et al.
used the association rule mining besides the classifica-
tion algorithms in order to detect the malware. The
method of [36] improved state of the art technology
in accuracy and false positive rate. Tahan et al. [37]
also extracted 4-gram byte codes as features from files
and constructed several classifiers to detect malware
programs.

Leder et al., [29] and Shankarapani et al. [38] pre-
sented a static approach to detect and classify meta-
morphic malware files by measuring the existing simi-
larity between programs. Leder [29] measured the sim-
ilarity between sets of values using Jaccard measure.
Their approach identified the variants by tracing the
use of consistent values throughout the malware. This
attempt has led us to consider the contribution of mal-
ware detection based on registers values using Jaccard
distance. Shankarapani [38] extracted API sequences
that frequently appear in a number of malicious and
applied Cosine measure, extended Jaccard measure,
and the Pearson Correlation measures that are the
popular measures of similarity for sequences.

As already mentioned anti-antivirus techniques,
such as polymorphism and metamorphism, make it dif-
ficult to detect malware using static extraction alone.
Therefore, dynamic analysis is needed as a comple-

ment for static techniques [39].
Dynamic analysis is applied to overcome the limita-

tions of signature-based detection. Some researchers
used API calls and their related properties to model
the behavior of samples through a graph. They built
their graph in different ways and analyzed and com-
pared graphs using different methods.

Christodorescu et al. [40] monitored a specification
of malicious intent that the malware does to affect the
host operating system. The extracted and compared
the system call dependency graphs of malware and
benign applications to detect malicious behaviors. Bai
et al., [41] and Guo et al. [42] applied behavior Control
Flow Graph (CFG) and then used critical API Graph
based on CFG to match the sub-graphs. Park et al.,
[43] and Karbalee et al. [44] proposed a new malware
classification method based on maximal common sub
graph detection. They considered each system call as a
graph node, the system call sequence as the edges and
each dependency of the two system calls as a label for
edges. [44] is the first work that used frequent graph
mining to detect an unseen program. Sub-graph min-
ing produced more accurate algorithms in comparison
to exact graph matching. Kostakis et al. [45] created
graphs from the subroutines as nodes and their call
references as edges. Park and Reeves [46] used kernel
objects as node graphs and Elhadi et al. [16] built it
from the API calls and the operating system resources
used by API call.

The above listed works may contain a huge num-
ber of nodes and edges and this number needs to be
minimized. On the other hand, comparing graphs to
find the existing similarities between them is time
and space consuming because some problems are NP-
complete [16].

What follows is an account of the recent dynamic
works in which researchers used data mining and ma-
chine learning techniques to classify the programs.
Ahmed et al. [27] combined spatial and temporal fea-
tures in run-time API calls to build a model and dis-
tinguish between benign and malware files. Tian et al.
[28] considered each API Call and other extracted fea-
tures as string information to represent the program
behavior. They transformed a report into a vector
that included these string features and then passed
it on to the classification phase. Zhao et al. [26] ex-
tracted unit string features from those trace reports
which included the changed status caused by the ex-
ecutables and the event which was transferred from
the corresponding Win32 API calls and their certain
parameters. Ahmadi et al. [47] used iterative system
call pattern mining to detect malware. They believed
that repetitive actions on data sequences are often
used by malware writers, especially some famous loops
performing decryption or encryption and infection.
Salehi et al. [25] assumed APIs cannot represent the
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similar behavior of samples properly; therefore they
extracted API calls and input arguments together as
predictive features.

Some works used the similarity measures between
samples to detect malware files. Wegenger et al. [48]
compared two cases of malware behavior with each
other by observing all the system function calls, and
leveraged the Hellinger distance to compute the associ-
ated distances. Bayer et al. [49] proposed an approach
for clustering malware samples so that the malware
files with similar behavior could be grouped together.
They extracted the profiles of binary behaviors such
as system calls, the dependencies between system calls
and network analyses. They used the Jaccard Index
to measure the similarities between executable files.
Since the huge number of new malicious files are mu-
tated samples of only a few malware instances, Bayer
et al. [50] proposed a system to avoid analyzing mu-
tated instances of malware binaries that are already
analyzed. They dynamically analyzed each malware
file for a short period of time to realize if it is a mu-
tated instance of an already analyzed binary. Finally,
they calculated a pair-wised similarity between all the
behavioral trace reports. Jang et al. [51] presented a
system that clustered malware based on Jaccard simi-
larity distance. They believed that malware files that
share large features are more similar. They evaluated
their system using two analysis methods; static and
dynamic. First, in static analysis, two files are con-
sidered as similar if they use large fragments of the
same code as features. In dynamic analysis, two files
are considered similar if they represent similar behav-
ior. Hegedus et al. [52] also used Jaccard measure and
K-nearest neighbor classifier to predict whether an
unknown executable is malicious or benign using be-
havioral data.

As mentioned above in the introduction, VSA is
the base of this research, but Leder [29] used a small
dataset and the estimation of memory locations is
very complicated. What makes the present experiment
different from the VSA method is using Dynamic anal-
ysis and the diversity of the used dataset. Besides,
this proposed system eased the estimation of memory
locations in comparison to the complicated memory
estimation in VSA.

3 DyVSoRMalware Detection
System

In this article, we discuss a system that is used to de-
tect malicious files. The proposed system analyzes the
behavior of executables in the run-time mode. Figure 1
depicts the basic analysis steps of the proposed system.
In the first step, all files are executed in a controlled
environment to record their actions. The recorded ac-

tions are stored in XML format and are called trace
reports. In the next step, the registers contents of each
trace report are used to extract an analysis of the be-
havioral patterns. The matching phase calculates the
similarity distance between all the executables based
on the registers contents to distinguish between the
malicious cases of behavior and the clean ones.

The process of monitoring the behavior of executa-
bles is described in section 3.1. Then Section 3.2 ad-
dresses the main contribution of using the value sets
of registers.

3.1 Monitoring the Run-Time Behavior of
Binaries in a Controlled Environment

To implement DyVSoR, the behaviors of binaries are
logged using a tool which is developed by our team to
provide a controlled environment. The reports of the
binary file executions are collected based on the API
system calls. A homemade tool which includes several
parts is produced: VMWare V.8.0.0-471780 is installed
on the host OS, Windows XP. After installing the vir-
tual machine, a hooking tool based on [53] is installed
on it and the binaries are run under that tool.

This homemade tool could capture all the invoked
API calls by a binary along with all its arguments,
registers contents before and after API calls, API re-
turned value, etc. The tool injects a library for inter-
cepting the arbitrary Win32 binary functions on x86
machines. The interception code is applied dynam-
ically at the run-time. The tool attaches arbitrary
DLLs to the target process, then the DLLs initialize
interprocess communication between the hooking tool
and the function calls that are hooked. This directs
the tool to monitor the desired APIs. This tool can
break a targeted application before or after an invoked
function call and capture and return its registers val-
ues and input arguments.

To start the process of dynamic analysis, a clean
snapshot is taken of the state of VMWare. A binary
is run under the mentioned homemade tool for two
minutes. This time is selected because a time of two
minutes is generally found to be enough for most mal-
ware files to execute their immediate payload; if they
have one [54]. The developed controlled environment
is shown in Figure 2. Finally the trace reports of the
binary files are collected; VMWare is reverted to the
clean snapshot after running each file. This step is
performed to prepare a clean environment for execut-
ing the next files and prevent the behavior of other
executed binaries from being affected by the already
executed binaries. An output trace report is shown in
Figure 3.

The Static VSA tries to specify the values for all the
memory contents at each line of code and it has to ap-
proximate all the values that an instructions operand
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Figure 1. The architecture of DyVSoR system

Figure 2. Running sample files in the controlled environment

Figure 3. A portion of an output trace report from the
developed tool

may contain. But DyVSoR system is not complicated
in estimating memory locations in comparison to that
in static VSA. The Dynamic VSA assigns the run-time
and also concrete values to each memory location at
a point in the run-time. It aims at collecting the data
without any human intervention to approximate the
content.

Also, since the homemade tool reports the registers
before and after invoking API calls for each binary
and is unable to capture the stack and memory con-
tents, the propagation and changes of registers values
are traced throughout the process.

3.2 Value Sets of Registers

This section addresses the identification of malware
binaries by using registers contents. The value set
analysis approach is briefly described in section 3.2.1
What follows is a brief introduction to the procedure
of matching phase.

3.2.1 Value Set Analysis (VSA)

VSA is a static method that tracks the propagation
and variation of values throughout an executable bi-
nary without executing it. VSA estimates the memory
content for all the instructions of the executable bina-
ries to detect and classify polymorphic and metamor-
phic samples. The memory content includes registers
contents, global memory, stack and heap allocations.
Based on the VSA idea, memory contents for differ-
ent variants of some polymorphic or metamorphic
malware remain mostly unchanged. Since this mal-
ware alters its appearance indifferent ways, such as
by inserting some junk code, instruction reordering
and variable renaming, the behavior of the underly-
ing malicious code body does not change. Therefore,
the malicious functionality will not change and the
behavior can be reflected by memory contents.

In general, VSA uses value and memory contents
to identify malware files. The example presented in
Figure 4 describes the VSA idea more clearly. In VSA
method, if the similarity score between the two files
FileA and FileB, reaches a specified threshold then
FileA and FileB are two variants of a polymorphic
malware. Based on VSA approach, they achieved a
100% detection rate on 25 benign files and 25 mal-
ware files from six families. Obviously, the sample size
is too small to generalize the idea to large malware
and benign population. VSA was assumed not to be
extendable to a dynamic setting because of the large
number of values.

3.2.2 Matching Phase based on RVSA

In the matching phase based on DyVSoR, the run-
time registers values of binaries are used to obtain
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Figure 4. VSA idea

Figure 5. The new representation of a trace report

the similarity scores between all binary files. To ease
this process, the run-time trace report L, as shown
in Figure 3 is transformed to another format. The
trace report L is converted to the matrix M. Each row
of the matrix M belongs to one of the invoked API
calls in the trace report L. In each row, the API call
is shown with all its features. The new representation
of the trace reports is illustrated in Figure 5.

The goal of the matching phase is to compute the
similarities between all binary files. Suppose that
the dataset contains ten files: File1, File2, . . . and
File10, to obtain similarities (File1, File2), . . . ,
(File1, File10), (File2, File3), . . . , (File2, File10),
. . . , (File9, File10) should be computed separately.
For example, to carry out the dynamic VSA on File1
and File2, the dynamic VSA should be performed
on all the registers of File1 and File2; that is the
similarity scores between (EAX1, EAX2), (EBX1,
EBX2), (ECX1, ECX2), . . . should be computed.
The similarity scores between all the registers of both
File1 and File2, are then arranged in matrix M12.

File1 File2 (EAX1, EAX2) (EBX1, EBX2) . . .

To calculate the similarity score between EAX1 and
EAX2, first the two vectors V1 and V2 are generated
for the values of EAX1 and EAX2 respectively. The
Jaccard distance formula is defined as equation (1).

JEAX =
|V1 ∩ V2|
|V1 ∪ V2|

(1)

Figure 6. Similarity score Matrix M

Jaccard similarity is a statistic measure that is
used for comparing the similarity of sample sets.
The numerator calculates the amount of the shared
features between the two samples V1 and V2, and the
denominator is the size of the union of the sample
sets. The reason behind using this formula is that the
degree of similarity is relative to the percentage of
the shared features, e.g., the malware files that share
most of the same features are more similar than the
ones that do not.

Equation (1) is repeated for (EBX1, EBX2),
(ECX1, ECX2), . . . . The effect of just one register in
detection was examined regardless of other registers
and the similarity between the corresponding regis-
ters of the two files can be calculated. The previous
steps are repeated for all files. The pair-wise Jaccard
distance between all binaries is calculated and the
similarity score matrix M is generated which is ob-
servable in 6.

The similarity score matrix M is used to identify
and classify the test file into either the malware or
the benign class. Hence, the highest similarity score
is obtained between each test file and other files in
the dataset. The test file is assigned to the file class
with which it has the highest similarity.

The obtained similarity value is considered as the
similarity score to explore the impact of the registers
on malware detection. The code in Figure 7 shows the
process of matching phase if the similarity between the
EAX registers of the two files was taken as the similar-
ity score. This algorithm has the order of | Dataset |
time complexity because to identify the nature of a
test file, the similarity distance between the unknown
file and each file in the dataset should be computed.
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Figure 7. The process of matching phase

Table 1. Experimental dataset

Type of Family Number of files

Backdoor 200

P2P-Worm 200
Trojan 200
Worm 200
Virus 200

Benign 550

Total Sum 1550

4 Data and Experimental Setting

The dataset used in this research includes malware
and benign files. The variety of malware and benign
PEs in the dataset is described in 4.1. The selection
process of six well-known and common DLLs for most
malware binaries is explained in 4.2. The performance
of the proposed system is assessed by some evaluation
measures. These measures are briefly explained in part
4.3.

4.1 Data Collection

The used dataset in the experiments [36] includes 550
benign files and 1000 malware samples that can be
categorized in five groups: Backdoors, P2P-Worms,
Trojans, Worms and Viruses. The distribution of the
used dataset is illustrated in Table 1. The detailed list
of the examined executables can be obtained at the fol-
lowing URL: http://home.shirazu.ac.ir/~sami/
malware. The diversity of the dataset is another dif-
ference between this approach and the VSA approach.
The larger number of samples aims at having reliable
results.

4.2 Essential API Calls for Detecting
Malicious Behavior

Although in this article, all API calls are not moni-
tored, but a subset of 126 API calls from six important
DLLs is logged. The mentioned DLLs are as follows:
advapi32.dll, kernel32.dll, ntdll.dll, user32.dll, wini-
net.dll and ws2 32.dll . These DLLs are chosen by
considering the recommendations of the previously

done researches by our group like Karbalaee et al. [44].
Karbalaee et al. [44] used data mining algorithms

to find a subset of system calls by these DLLs that
are important for malicious activity detection. Four
hundred malware and 397 benign applications ran all
the mentioned six DLLs and all the API calls were
monitored to diagnose which system call is more im-
portant in malware detection. They ran each malware
and benign program for 30 seconds. All system calls
that each malware and benign file invoked were col-
lected. Afterwards, 10-fold cross validations [55] with
random forest classifiers [56]were used to measure the
accuracy rate of the selected system calls. Then some
feature selection techniques have been used to select
the most discriminative system calls.

They concluded that it is essential to consider only
126 system calls that are related to six DLLs to be
used in analyzing malware behavior. These DLLs are
commonly recognized for most malware files, as briefly
described in Table 2. Some APIs of these DLLs are
given in Table 3.

Table 2. A summary of the selected DLLs

DLL Name Description

Kernel32.dll Performing Low-level operating system func-

tions such as memory management, in-
put/output operations, process and thread cre-
ation, and synchronization functions [57].

User32.dll Windows user component management such as
creating and manipulating standard elements of

the windows user interface, desktop, windows,
and menus [57].

Advapi32.dll Accessing additional functionalities of the ker-

nel such as windows registry, system shut-
down/restart (or abort), start/stop/create a
windows service and managing user accounts

[57].

Ntdll.dll Exporting the Windows Native API [57].
Wininet.dll Protocol handler for HTTP, HTTPS and FTP

[57].
WS2-32.dll Contains Windows Sockets API used by most

internet and network applications to handle

network connections [57].

Table 3. Some API common DLLs to detect malware

DLL Name API Name DLL Name API Name

advapi32.dll RegLoadKeyA kernel32.dll CreateProcessA

advapi32.dll RegLoadKeyW kernel32.dll CreateProcessW
advapi32.dll RegOpenKeyA kernel32.dll DeleteFileA

advapi32.dll RegOpenKeyExA kernel32.dll DeleteFileW

. . . . . . . . . . . .
ntdll.dll NtSaveKey user32.dll LoadImageA

ntdll.dll NtSetValueKey user32.dll CreateWindowExA
ntdll.dll NtUnloadKey user32.dll GetDlgItem

ntdll.dll SetWindowTextW user32.dll GetFocus

. . . . . . . . . . . .
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4.3 Performance Evaluation Criteria

The performance of DyVSoR system is measured with
respect to four metrics: Recall, Precision, F-Measure
and Accuracy. Recall is the ratio of the malware pro-
grams correctly predicted from the total number of
malicious programs, Precision is the ratio of the mal-
ware samples correctly identified from the total num-
ber of programs identified as malware. Precision and
recall are defined as equation (2) and (3) respectively:

Precison =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

True Positive (TP) represents the correctly identi-
fied malware samples. False Positive (FP) represents
the incorrectly classified benign samples. True Nega-
tive (TN) represents the correctly identified benign
samples and False Negative (FN) represents the incor-
rectly identified malware samples. F-Measure is the
harmonic mean of precision and recall. The F-Measure
formula is defined as (4).

F −Measure =
2 ∗ Precison ∗Recall

Precison + Recall
(4)

Accuracy is also used as a performance measure of
how well the model correctly identifies malware sam-
ples. The formula of accuracy which is the proportion
of true results (both true positives and true negatives)
in the dataset is shown in (5).

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

Accuracy alone is only appropriate for data mining
experiments with balanced datasets. That is, the num-
bers of malware and benign samples are almost equal
but here, the used dataset is imbalanced because the
dataset contains just about 30% benign applications.
It is shown that precision, recall and F-Measure are
good measures for imbalanced datasets [58]. In this
paper, F-Measure and false positive are used as mea-
sures to evaluate the malware detection rate of the
proposed system.

It is noteworthy that in the present experiments,
k-fold cross validations were used to classify the mal-
ware and benign files, where k = 10. This is a well-
known standard of classification in a number of do-
mains including malware analysis [28]. Malware and
benign files are selected and are divided into 10 folds
randomly. In each experiment, nine folds are chosen
for the training dataset and the last one is considered
for the test dataset. The model created based on the
training dataset can be evaluated by examining the

Figure 8. Ten-fold cross validation procedure

results of classifying the test data. The process is re-
peated for all the 10 folds. The process of 10-fold cross
validation is represented in 8.

5 Experimental Evaluation

Firstly, to generate the log files, each binary of the
dataset was run in the homemade tool and all the
mentioned values were recorded. Log files were gener-
ated based on the API names, registers values, input
arguments and returned values. As stated above, all
experiments were evaluated using 10-fold cross vali-
dations to avoid over-fitting. In a 10-fold cross vali-
dation, datasets are randomly divided into 10 equal
parts while keeping the same class distribution as the
original file in each part. Each experiment was run
10 times and each time 9 parts of the data were used
as the training data and the remaining part was then
used as the test data.

The distribution and propagation values of registers
for detecting malware samples were then explored. In
each experiment, the effect of just one register in de-
tection was examined regardless of the other registers.
In other words, in each experiment we only had one
register. Table 4 shows the detection rate of all regis-
ters. As observable in 4, the values of EAX register
have a major distinguishing effect on identifying the
malware samples and were able to categorize files with
an F-Measure of 96% and a false positive rate of 4%.
The EAX register is a 32-bit general-purpose integer
register and is the accumulator one. It is used for I/O
port access, arithmetic operations, interrupting calls,
logic, and data transfer, multiplication, division, etc
[59]. Also the return value of a function is located in
EAX in 4 bytes or less [60]. If the length of the re-
turned value exceeds four bytes, the combination of
EDX, stack, and EAX is used to provide the func-
tion returned value. In this experiment, the similarity
scores between the EAX registers were assumed equal
to the similarity scores between the files.

Intel 80x86 ABI [61] specifies that EAX is a scratch
register and Win32 functions follow Intel ABI. Most
Win32 API functions return a return-value in EAX
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and most calculations occur in the accumulator. As
a result, the architecture of x86 contains many opti-
mized instructions to move the data in and out of this
register, which is why this experiment works so well.

In the next experiment, the impact of EBX regis-
ter on detecting malware samples is examined. EBX,
which is called the base register, acts as a general-
purpose pointer. It is used as a base pointer for mem-
ory access.

The performance of ECX and that of EDX are ex-
plored in the next two experiments. The data register
EDX is used for I/O port access, arithmetic opera-
tions and some interrupting calls. EDX is very similar
to the accumulator. The counter register ECX is used
as a loop counter. It is also used for shifts.

Table 4 also shows the results of EDX and ECX
on dataset samples. These experimental evaluations
demonstrate that EDX is successful in identifying the
samples of the diverse dataset by 94.8% and ECX
identifies them with an F-measure of 93.8%.

EDI, the destination index, holds the implied write
address of all string operations. Each loop that gen-
erates data must store the results in memory, and
it requires a moving pointer and EDI is this pointer.
EDI is successful in identifying 93.2% of the samples
with a false positive rate of 8.5%. The source index,
ESI, has the same properties as the destination in-
dex. The only difference is that the source index is for
reading rather than writing. ESI identifies 94.4% of
the samples. The base pointer (EBP) holds the loca-
tion of the current stack frame in functions that store
parameters or variables on the stack [59]. The Intel
80x86 ABI specifies that functions must preserve the
values of certain EBX, ESI, EDI, and EBP registers
across a function call. If the function needs to modify
the value of any of those registers, it must save those
registers values and restore them before returning to
the caller [59].

The experimental results based on a dataset of 1000
malware and 550 benign files provide an average accu-
racy of over 94.5% in distinguishing malware applica-
tions from benign ones. In the best case, it detected
96% malware samples with a false positive rate of 4%.

Since the related experiments have used different
datasets and sandboxes, the outputs might have vari-
ous formats, hence its impossible to make a compari-
son among them and the present work [37].

In order to examine the efficiency of the registers
sets, the same dataset as the ones described in section
4.1 are used to make a comparison with the outputs of
the other anti-virus tools. Our results out performed
some updated common anti-virus applications. Table
5 compares the efficiency of different antivirus scan-
ners on the dataset.

Table 4. Matching results by registers

Register

Name

TP FP Precision Recall F-M ACC

EAX 0.961 0.04 0.961 0.96 0.96 0.961
EBX 0.945 0.055 0.945 0.945 0.945 0.945

ECX 0.946 0.07 0.946 0.931 0.938 0.938
EDX 0.958 0.062 0.958 0.939 0.948 0.948
ESI 0.957 0.07 0.957 0.932 0.944 0.944

EDI 0.947 0.085 0.947 0.918 0.932 0.931
EBP 0.953 0.06 0.953 0.941 0.947 0.947

Mean 0.952 0.063 0.952 0.938 0.945 0.945

Table 5. Result of system in comparison to some of
the updated antiviruses

ESET
Node32

KasperSky Avira DyVSoR

Detection
Rate

89.3% 92.6% 98.4% 96%

6 FutureWork and Conclusion

In this paper the behavioral information is extracted
from both malware and benign files to distinguish
malware files from benign ones. A dynamic analy-
sis of registers values in the event of API calls was
performed. This paper is the first work that deploys
register values in dynamic malware detection. The as-
sumption of the paper is based on the fact that the
run-time behavior of the underlying malicious code
body could be expressed in registers contents. The
impact of some registers on identifying and classifying
malware samples was demonstrated.

The proposed method was evaluated on a large
dataset of malware and benign files. The empirical
results demonstrated the efficacy of the proposed
method in correctly distinguishing 96.1% of the mal-
ware from the benign with a false positive rate of 4%.

In future studies, this method will be extended to
an incremental approach for behavior-based analy-
sis. This method will be used to categorize malware
families and types.
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