
ISeCure
The ISC Int'l Journal of
Information Security

August 2019, Volume 11, Number 3 (pp. 113–122)

http://www.isecure-journal.org

Selected Paper at the ICCMIT’19 in Vienna, Austria

Evaluating Multipath TCP Resilience against Link FailuresI

Mohammed J.F. Alenazi 1,∗
1College of Computer and Information Sciences, Department of Computer Engineering, King Saud University. Riyadh, Saudi
Arabia

A R T I C L E I N F O.

Keywords:
Path diversity, Resilient networks,
Multi-homing, Multi-path TCP,
Fault tolerance, Reliable data
transfer, Handover, Performance
evaluation.

Abstract

Standard TCP is the de facto reliable transfer protocol for the Internet. It
is designed to establish a reliable connection using only a single network
interface. However, standard TCP with single interfacing performs poorly
due to intermittent node connectivity. This requires the re-establishment
of connections as the IP addresses change. Multi-path TCP (MPTCP) has
emerged to utilize multiple network interfaces in order to deliver higher
throughput. Resilience to link failures can be better supported in MPTCP as
the segments’ communication are maintained via alternative interfaces. In this
paper, the resilience of MPTCP to link failures against several challenges is
evaluated. Several link failure scenarios are applied to examine all aspects
of MPTCP including congestion algorithms, path management, and subflow
scheduling. In each scenario, the behavior of MPTCP is studied by observing
and analyzing the throughput and delay. The evaluation of the results indicates
MPTCP resilience to a low number of failed links. However, as the number
of failed links increases, MPTCP can only recover full throughput if the link
failure occurs on the server side. In addition, in the presence of link failures, the
lowestRTT MPTCP scheduler yields the shortest delivery time while providing
the minimum application jitter.

c© 2019 ISC. All rights reserved.

1 Introduction

T he Internet has grown into a popular and critical
infrastructure where millions of users access it for

services including: e-commerce, education, entertain-
ment, healthcare, and government services, etc. The
convenience of mobility offered by wireless networks
makes user access much more popular compared to

I The ICCMIT’19 program committee effort is highly acknowl-
edged for reviewing this paper.
∗ Corresponding author.
Email address: mjalenazi@ksu.edu.sa
ISSN: 2008-2045 c© 2019 ISC. All rights reserved.

wired access. A disruption on the availability of ser-
vices due to network link failures can have significant
adverse impact on the user’s experience. The lack of
access to critical online services can cause substantial
financial loss or threaten user health and safety.

Thus, it is crucial to design and build resilient net-
works with the ability to provide and maintain an
acceptable level of service in the face of various faults
and challenges to normal operation [1]. One effective
network faliure recovery strategy is to use path di-
versification between communicating nodes. If the
primary network path fails, disjoint paths are used

ISeCure



114 Evaluating Multipath TCP Resilience against Link FailuresI — Mohammed J.F. Alenazi

Figure 1. MPTCP Use Case.

to restore communication. Path diversification is an
effective solution providing multiple alternative paths
between disconnected pairs to gain high communi-
cation reliability [2]. The problem of finding several
shortest paths between a given source and destina-
tion is known as the k shortest path problem (KSP),
where k is the number of required paths. KSP has
been widely used in many applications, including car
navigation systems, robot motion planning, wireless
sensor networks and video streaming [3–5]. Several
algorithms have been introduced to provide path se-
lections based on full-disjoint and partial-disjoint re-
quirements, while maximizing diversity and minimiz-
ing incurred cost [6–9].

TCP uses a single path between communicating
parties. In the event of path failure, the TCP con-
nection times out and closes, requiring the setup of
a new connection to resume service provision. Mo-
tivated to address this issue, the Internet Engineer-
ing Task Force (IETF) approved an Internet draft
for MPTCP in 2011 to support multipath connec-
tivity [10, 11]. MPTCP aims to improve connection
resilience by switching traffic to alternative interfaces
in the presence of path failure [11, 12]. In addition,
MPTCP improves throughput by bandwidth aggre-
gation over multiple interfaces. Several operating sys-
tems, including Linux and FreeBSD have available
implementations for MPTCP [13]. Moreover, host-
ing companies and large IT vendors (e.g. Apple) are
already providing support for MPTCP [14, 15].

Most smart phones are equipped with two inter-
faces that can access the Internet, namely, 802.11
and Long-Term Evolution (LTE). A common use-case
for MPTCP that attracted Apple and other mobile-
device vendors is to utilize such two interfaces to
improve throughput as shown in Figure 1. Further-
more, MPTCP can offer performance improvements
to the seamless smart phones handover among dif-
ferent access points/base stations. A previous study
has shown that the MobileIP takes approximately ten
seconds to handover from one node to another [16].
MPTCP shows great improvement for hand over de-
lays of around three seconds [17].

In this paper, an extensive evaluation of MPTCP
resilience to link failure is presented. The study is
based on the Linux implementation of MPTCP which
is composed of several configurable components af-
fecting its performance. This includes congestion al-
gorithms, number of interfaces, path management,
and subflow scheduling. Several scenarios are consid-
ered in order to examine the effect of each compo-
nent on the network resilience in the presence of link
and interface failures. For each scenario, a number
of performance metrics are observed and analyzed
including throughput, total, delivery delay, and appli-
cation jitter. Experimental results for each scenario
are analyzed and guidelines for optimal MPTCP con-
figuration to achieve a high resilience against links
failures are presented.

The paper is organized as follows: Related work is
reviewed in Section 2 followed Section 3 by a high-
level description of the MPTCP protocol. In Section 4,
discussion of the investigated MPTCP performance
in response to link failures is provided. This includes
providing details on the experimental tools, setup,
network topology, and evaluation scenarios. Discus-
sion of the results obtained is also presented. Finally,
conclusions and outline of future work are presented
in Section 5.

2 Related Works

In this section, we present the utliztion of k-shortest
paths in the feild of communication networks. Then,
we present several studies that utlize MPTCP to
deliver packets via muliple interfaces.

2.1 K Shortest Paths

Traditional algorithms to find the shortest path or
k-shortest paths including the Ford algorithm [18]
and the Dijkstra algorithm [19], along with several
improvements to tackle the issue of negative cycles.
Several algorithms have been devised to determine
the k shortest paths between a pair of nodes, based on
selection objectives [20]. Among these algorithms, the
most popular k-shortest path algorithm is proposed
by Yen [21], which deals with non-negative link cost.

In the context of computer networks, path diversi-
fication has been studied and utilized to solve several
communication problems. Algorithms proposed in pre-
vious research vary on their objective in determining
diverse shortest paths. Some algorithms aim to deter-
mine topologically diverse paths while others specify
geographically diverse paths or disjoint paths [22, 23].
The concept of diverse paths has been investigated to
find diverse paths, k-diverse paths, and k-shortest di-
verse paths. The existing literature covers techniques
based on shortest path algorithm with the incremen-

ISeCure



August 2019, Volume 11, Number 3 (pp. 113–122) 115

tal removal of used edges from graph transforma-
tions [24, 25]. Bhadari presents efficient algorithms to
compute edge-disjoint and vertex-disjoint paths [26].
However, these algorithms are based on finding com-
pletely diverse paths. Bhandari also discusses an algo-
rithm that finds the maximally diverse paths between
a pair of nodes using a modified Dijkstra’s algorithm.

Sitanayah et al. presented two k-shortest path al-
gorithms for topology planning of wireless sensor net-
work. The first algorithm, counting-paths, counts the
number of disjoint paths from each sensor node to
the sinks and finds the k disjoint paths. The second
algorithm, named GRASP-ARP, is a local search al-
gorithm to deploy a minimum number of additional
relays at the possible candidate locations. Simula-
tion results showed that their approaches requires
fewer relay nodes for larger problems than other base-
line k-shortest path algorithms. Moreover, their algo-
rithms showed significant improvement on computa-
tion time [27].

Cheng et al. [23] presented a protocol stack,
ResTP–GeoDivRP, which utilizes geographical multi-
paths to cope with node and links failures. This stack
combines the transport and network layers to provide
reliable services to the application layer. It detects
challenges and bypass the challenged regions to im-
prove throughput. Their approach was evaluated in
backbone networks with several area-based challenges.
The results showed that the proposed stack achieved
higher throughput and robustness than MPTCP in
the face of geographically-correlated challenges.

2.2 Mutipath Transport

Several studies have considered the performance and
resilience of MPTCP. Nguyen et al. [12] presented
an evaluation of MPTCP examining its bandwidth
utilization, end-to-end delay, and packets reordering.
Their testbeds supported three two-path scenarios:
Ethernet-only, Ethernet and 802.11, 802.11 and 3G.
Evaluation of the results indicated that MPTCP per-
formance is highly influenced by interface selection.
An evaluation of MPTCP’s congestion algorithms
(OLIA, BALIA, wVegas, and LIA) is presented by
Nguyen et al. [28]. The study results indicated that
wVegas throughput outperformed the other conges-
tion algorithms in a multipath environment. However,
wVegas did not yield the best throughput in a single
path setting. In addition, the network selection for
the first subflow initialization has a significant impact
on the achieved throughput. The throughput with
802.11 outperformed LTE, with an improvement of
approximately 200%.

Scheduler performance evaluation has also been
considered in the literature. Paasch et al. [29] intro-

duced a framework to experimentally evaluate sched-
ulers in a wide variety of environments in both em-
ulated and real-world experiments. Their evaluation
results showed that there are two attributes associ-
ated with bad schedulers. Firstly, scheduler interface
selection with high-RTT can increase head-of-line
blocking. Another attribute of a bad scheduler is the
limited receive-window, which may not fully accom-
modate all received subflows. Moreover the authors
introduce a scheduler that favors subflows with the
lowestRTT to reduce delay-jitter compared to a sim-
ple round-robin (RR) scheduler.

Alheid et al. [30] investigated the behavior of
MPTCP and its performance in networks with high
out-of-order packets. They considered the perfor-
mance of MPTCP with four TCP packet reordering
mechanisms: D-SACK, Eifel, TCP-DOOR, and F-
RTO. Their results showed that MPTCP throughput
can be improved using the DSACK approach. On
the other hand, F-RTO provides better throughput
with an uncoupled controller and has lower memory
requirements compared to the other mechanisms.

Previous work has also proposed algorithms and
techniques to improve the performance of MPTCP.
Lee et al. [31] proposed the Receive Window Adaptive
Multipath TCP (RWA-MPTCP) algorithm to pro-
vide a better throughput performance in mobile net-
works. Their results showed that using RWA-MPTCP
increases throughput while decreasing RTT variation.
Sandri et al. [32] introduced the Multiflow approach
that uses MPTCP and Open Flow. Their approach
aims to select subflows with disjoint paths, i.e. no
shared links. For evaluation, they deployed Multiflow
in a testbed where shared bottlenecks occur at the
endpoints of the link. They demonstrated that Multi-
flow improved end-to-end throughput and link-failure
resilience [33]. Demir et al. [34] proposed MPTCP-H,
an extension to MPTCP, to improve server resilience
against Denial-of-Service (DoS) and Distributed DoS
(DDoS) attacks. They compared MPTCP-H to UDP
and standard TCP. The results showed that MPTCP-
H outperformed both UDP and TCP in terms of
latency. Their results also indicate that MPTCP-H,
with its lightweight mechanism, can mitigate the at-
tacks originating from inside the substation network.
Dong et al. [35] introduced a design and implemen-
tation for LAMPS, an MPTCP scheduler. LAMPS
selects subflows based on loss and delay in order to
maintain steady performance at various traffic pat-
terns. Their experimental evaluation showed that
LAMPS minimizes latency while using a low amount
of memory. Moreover, the scheduler handles the high
packet loss rate with optimal bandwidth usage.

ISeCure



116 Evaluating Multipath TCP Resilience against Link FailuresI — Mohammed J.F. Alenazi

Application Layer

MPTCP

Network Layer

Subflow 1
(TCP)

Subflow 2
(TCP)

Subflow N
(TCP)

. . . 

Application Layer

TCP

Network Layer

a) Standard TCP b) Multipath TCP

Figure 2. MPTCP architecture comparison with standard
TCP.

3 MPTCP Overview

Standard TCP communication uses a single pair of
IP addresses to deliver in-order packets between two
communicating parties. Thus, there is a limitation
in using one interface even if multiple interfaces are
available at each end of the TCP connection. MPTCP
utilizes multiple interfaces to establish simultaneous
sub-connection paths between peers. By exploiting all
available interfaces at both ends of the communica-
tion, MPTCP aims to improve network resilience to
interface failure (unavailability) and enhance through-
put [11]. The MPTCP path is defined by two end-
points, the client IP and server IP addresses. The
subflow in MPTCP is a single-path standard TCP, in
which the component takes segments from the packet
scheduler transmitted to the receiver. MPTCP is im-
plemented at the transport layer and supported by
the same socket used in standard TCP for application
layer transparency. Standard TCP headers are used
for each subflow to be transparent to the network
layer as shown in Figure 2. The main implementation
components of MPTCP are described in the following
sections.

3.1 Path Manager

The path manager function is responsible for detect-
ing and using multiple IP-pairs between the two com-
municating hosts. It can utilize multiple IP addresses
at one or both hosts based on the selected path man-
ager. For example, if the path manager is set to full-
mesh, there will be a subflow between each two pairs.
Ndiffports, an alternative path manager, specifies the
number of subflows allowed to be used across the
same pair of IP addresses. The binder path man-
ager is used when utilizing multiple geographically
distributed gateways over the Internet [36]. In this
paper, the path manger is set to full-mesh since it
creates a subflow between each pair of IP-addresses,
which ensures that all interfaces are utilized.

3.2 Subflow Scheduler

The packet scheduler breaks application messages into
byte stream segments to be transmitted via available
subflows at the sender side. On reception, MPTCP
manages the receiver byte stream from subflows to
allow segments to be correctly re-ordered. The packet
scheduler acquires information on available subflows
from the path manager. Queued segments are then
sent into the next selected subflow. Various types
of schedulers have been used for subflow selection.
This includes lowestRTT, round robin, and redundant
schedulers. The lowestRTT, the default scheduler
for MPTCP, sends segments on subflows with the
lowest RTT until their congestion window reaches its
threshold. Next, the segments are sent over the next
lower RTT subflows. With the redundant scheduler,
segments are duplicated and sent over all available
subflows with the objective to achieve lowest latency
by sacrificing link bandwidth [11].

3.3 Congestion Algorithms

MPTCP uses congestion control across subflows to
ensure the fair distribution of bandwidth across mul-
tiple connections in a shared bottleneck link [10]. Al-
though, standard TCP congestion algorithms can be
used to handle each subflow in MPTCP, an unfair
share occurs in multiple path flows in a common bot-
tleneck. Thus, several MPTCP congestion algorithms
have been implemented to ensure high throughput,
fairness, and friendliness. In the current paper, vari-
ous Linux implemented congestion control algorithms
are used, including: the Linked Increased Algorithm
(LIA) [37, 38], the Opportunistic Linked Increases
Algorithm (OLIA) [39], the Balanced Linked Adapta-
tion Algorithm (balia) [40], and the weighted Vegas
algorithm (wVegas) [41].

3.4 Interface Failure Handling

In addition to utilizing multiple interfaces, MPTCP
is designed to provide seamless transition from one in-
terface to another in case of interface removal. When
full-mesh is used, a subflow is created between each in-
terface, for example, given two hosts with three inter-
faces installed in each, as shown in Figure 3. The full-
mesh path manager allocates nine subflows. MPTCP
selects some or all of these subflows for transmitting
segments based on the selected subflow scheduler. In
case of a link failure, the operating system notifies
MPTCP via mptcp_v4_rem_raddress [11],

4 Results and Discussions

In this section, the evaluation work carried out to
investigate MPTCP performance in response to link

ISeCure



August 2019, Volume 11, Number 3 (pp. 113–122) 117

Server

IF1

IF2

IF3

Client

IF1

IF2

IF3

IF# Network Interface

Subflow

Figure 3. MPTCP example of three interfaces and full-mesh
path manger.

Table 1. Default Emulation Parameters.

Parameter Values

Emulator Mininet 2.2.2

Operating System Ubuntu 17.10

Transport Protocol MPTCP 0.94

CPU eight-core 3.5 GHz

Memory 16GB

Link Bandwidth 1 Mbps

Link Delay 10 ms

MPTCP Congestion MPTCP-lia

MPTCP Scheduler LowestRTT

MPTCP Path Manager Full-mesh

failures is provided. This includes details on the ex-
perimental tools, setup, network topology, and evalu-
ation scenarios. Discussions of the obtained results is
also provided.

4.1 Experimental Environment

In all experiments performed, a stable MPTCP 0.94
implementation is used on Ubuntu 17.10. The ex-
perimental host has an eight-core 3.5 GHz processor
with 16GB of RAM. The data traffic is generated
using iperf. Networks are emulated using Mininet
2.2.2, which delivers network-connected virtual Linux
hosts with a given topology. The emulation parame-
ters and testing network topology used in all experi-
ments are shown in Table 1 and Figure 4, respectively.
lowestRTT (MPTCP-defualt), is used as the sched-
uler scheme when evaluating congestion algorithms.
MPTCP-lia is used as a congestion algorithm when
evaluating various scheduler schemes.

The testing topology includes two hosts, denoted
as client and server, connected by eight links. Each
link has a bandwidth of 8Mbps with a 10ms delay.
The maximum number of supported interfaces in the
current implementation of MPTCP is eight. Compar-

.

.

.

ServerClient

Link 1

Link 2

Link 3

Link P

Figure 4. Evaluation Topology in Mininet Emulator.

0 5 10 15 20 25
Time(s)

0

1

2

3

4

5

6

7

8

9

T
h
ro
u
g
h
p
u
t(
M
b
p
s)

MPTCP

TCP

Figure 5. MPTCP and TCP Comparison.

ing standard TCP and MPTCP to send data gen-
erated via iperf, it is observed that MPTCP uses
all eight links to transfer data reliably between the
client and server while TCP only uses one interface.
Clearly, it can be seen that MPTCP has almost 700%
throughput improvement over standard MPTCP in
the same network as shown in Figure 5. This shows
how MPTCP utilizes available interfaces to signifi-
cantly improve throughput.

4.2 Congestion Algorithms

Experiments are performed to study the effect of
MPTCP congestion algorithms on link failure re-
silience. Four MPTCP congestion algorithms are eval-
uated: MPTCP-lia, MPTCP-olia, MPTCP-balia, and
MPTCP-wVegas (disscussed in Section 3.3). For each
congestion algorithm, iperf is used to send data from
the server to the client while MPTCP is enabled.
During the data transfer, a link failure is applied
which removes 50% of the available links between
the 20th and 40th seconds of the MPTCP connec-
tion. The throughput generated when applying the
four congestion algorithms is depicted in Figure 6.
MPTCP-lia and MPTCP-balia utilize all interfaces
before they fail with a steady throughput of 7 Mbps.
MPTCP-olia and MPTCP-wVegas have a through-
put fluctuation between 6 Mbps and 7 Mbps up to

ISeCure



118 Evaluating Multipath TCP Resilience against Link FailuresI — Mohammed J.F. Alenazi

0 10 20 30 40 50 60
Time(s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

bp
s)

MPTCP-olia
MPTCP-wvegas
MPTCP-balia
MPTCP-lia

Figure 6. MPTCP Congestion Control Comparison.

the 20th second. Once link failure is applied, it can
be noted that although failure is imposed on only
50% of the available links, the throughput drops to
about 1 Mbps. This represents 85% of the original
throughput. It is expected that full throughput re-
covery occurs once the linked failures are again oper-
ational. However, none of the congestion algorithms
recover full throughput after the links are up and run-
ning again. It is observed that MPTCP-lia yields the
best recovery from link failures. On the other hand,
MPTCP-olia and MPTCP-wVegas provide the worst
link failure resilience.

4.3 Scheduler Schemes

Three MPTCP scheduling schemes are considered:
lowestRTT (MPTCP-default), round-robin, and re-
dundant (discussed in Section 3.2). The performance
measures used to evaluate each scheduler scheme are
throughput, total delivery time of a data unit and
application-jitter (variance of data units arrival time).
For each scheduler, 15MB of data is sent over the 8
interfaces from the client to the server. While sending
the data, link failure is applied between the 10th and
20th seconds of the MPTCP connection.

4.3.1 Throughput and Total Delivery Time

The throughput results of each scheduler against link
failure are shown in Figure 7. It is observed that all
the scheduling methods eventually deliver the 15MB
data, with a variation on the total delivery time. Un-
doubtedly, the lowestRTT scheduler yields the short-
est delivery time of approximately 23 seconds. This
is due to a correlation between link failure and RTT
values. Once the interfaces fail, the RTT values start
to get larger and become less favored for selection
by the scheduler. Thus, the lowestRTT scheme has
the best network resilience among the three studied
scheduling schemes. The round-robin method delivers
the entire data within 30 seconds. It does not react

0 20 40 60 80
Time(s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
(M

bp
s)

MPTCP-default
MPTCP-roundrobin
MPTCP-redundant

Figure 7. Scheduler Algorithms Throughput Comparison.

0 20 40 60 80
Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Se
qu

en
ce

 N
um

be
rs

1e7

MPTCP-default
MPTCP-roundrobin
MPTCP-redundant

Figure 8. Scheduler Algorithms Sequence Numbers Compari-
son.

quickly to the failure and recovery of interfaces, as
it keeps sending data to failed interfaces even if they
incur high RTT values. The redundant method yields
the worst total delivery time of approximately 92 sec-
onds. This is because it wastes the available capacity
with redundant data.

4.3.2 In-Order Delivery

The arrival time of segment sequence numbers during
link failure when the three schedulers are applied is
shown in Figure 8. The in-order delivery of segments
affecting application layer jitter can be inferred by
sequence numbers. All three schedulers have smooth
in-order delivery with no significant application jitter
before link failure. However, after the links start to
fail at the 10th second, the segments begins to arrive
in out-of-order fashion for the lowestRTT and round
robin schedulers. The redundant scheduler sequence
numbers do not fluctuate during the link failures, in-
dicating that segments are delivered in-order even
when the network experiences failed links. For appli-
cations that do not require a fixed bandwidth, such
as VoIP and live streaming, the redundant scheduler
provides the lowest application jitter, leading to the

ISeCure



August 2019, Volume 11, Number 3 (pp. 113–122) 119

0 10 20 30 40
Time(s)

0

1

2

3

4

5

6

7

8

9

Th
ro

ug
hp

ut
(M

bp
s)

1-Link failure
2-Link failures
3-Link failures
4-Link failures
5-Link failures
6-Link failures
7-Link failures

Figure 9. Client-only port failure.

0 10 20 30 40
Time(s)

0

1

2

3

4

5

6

7

8

9

Th
ro

ug
hp

ut
(M

bp
s)

1-Link failure
2-Link failures
3-Link failures
4-Link failures
5-Link failures
6-Link failures
7-Link failures

Figure 10. Server-only port failure.

0 10 20 30 40
Time(s)

0

1

2

3

4

5

6

7

8

9

Th
ro

ug
hp

ut
(M

bp
s)

1-Link failure
2-Link failures
3-Link failures
4-Link failures
5-Link failures
6-Link failures
7-Link failures

Figure 11. Client and server port failure.

best user-experience.

4.4 Multiple Link Failures and Recovery

The experimental setup is designed to fail a speci-
fied number of interfaces, denoted as n, failing one
interface every two seconds. The failed interfaces are
selected deterministically based on their order. For
example, if n = 2, then interfaces 1 and 2 are re-
moved. Once all n interfaces are down, one interface
is brought back every two seconds until all the n pre-

viously failed interfaces are fully operational. The
interval between each link break and restoration is
set to two seconds in order to provide enough time
to MPTCP to be notified by the operating system
about the interface removal. Multiple experimental
runs are performed with n = [1, 2, 3, 4, 5, 6, 7] based
on three arrangements: client-only port failure, server-
only port failure, and client-and-server port failures.
As each host has eight interfaces in the evaluation
topology used, it is worth noting that they are never
all put into fail state together to avoid closing the
MPTCP connection due to timeout.

4.4.1 Client-only Port Failure

In this setup, the interfaces fail at the client end while
the server interfaces are operational. Thus, only the
MPTCP client notices the port removals while the
server keeps advertising its disconnected IP addresses.
The first interface failure begins at the 10th second of
the experiment. The result of applying the seven fail-
ure scenarios, 1-Link to 7-Link failures, is shown in
Figure 9. Before applying link failure, until the 10th
second of the experiment, the throughput is approxi-
mately 7.2 Mbps. For the 1-Link failure scenario, it
can be seen that the throughput decreases to almost
5 Mbps as the link fails. When the link is recovered
after two seconds, the throughput increases back to
the original value. This shows that with a failure du-
ration of two seconds, the MPTCP does not time out
and it utilizes the recovered link with full advantage.
However, with the 2-Link and 3-Link failure scenar-
ios, it is observed that the throughput does not fully
recover staying bellow 6.5 Mbps after the links are
back to operational status. Analyzing the other link
failure scenarios, it can be clearly seen that as the
number of failing links increases, MPTCP poorly uti-
lizes the recovered links as depicted in Figure 9. By
observing the pcap traces of these experiments, it
was found that sub-flows associated with the removed
and recovered interfaces are reused for the 1-link fail-
ure experiment. However, not all subflows are reused
in a higher number of links failures. This indicates
that the operating system correctly notifies MPTCP
of interface removal. Thus, MPTCP does not utilize
the recovered interfaces correctly with more than two
interfaces.

4.4.2 Server-only Port Failure

An alternative arrangement is studied with the in-
terface failure occurring only at the server end while
the client interfaces are operational. Hence, only the
server MPTCP notices the removal of interfaces while
the client continues to advertise its disconnected IP
addresses. The same seven failure scenarios are ap-

ISeCure



120 Evaluating Multipath TCP Resilience against Link FailuresI — Mohammed J.F. Alenazi

plied, 1-Link to 7-Link failures, beginning at the 10th
second of the experiment. The throughput was ob-
served to be approximately 7 Mbps before the link fail-
ures. At the 10th second, the 1-Link failure through-
put drops to 6 Mbps, since only one 1 Mbps link
fails, and once the link is restored the throughput
returns to the original rate. For the worst scenario,
where seven links fail, the throughput is almost 7
Mbps before the link failures. At the 10th second,
the throughput drops to approximately 1 Mbps since
seven links are removed. After the links are restored,
the throughput is also restored to the original rate.
Unlike the client-only port failures, it is observed as
shown in Figure 10, that the throughput is fully re-
covered for all the link failures. Evidently, this be-
havior indicates MPTCP implementation issues, as
no difference is expected in MPTCP performance in
response to client and server link failures.

4.4.3 Client and Server Port Failures

Failure is applied to both the client and server, with
both sides stopping to advertise their disconnected
IP addresses. The result of applying the seven link re-
moval scenarios is shown in Figure 11. For 1-Link fail-
ure, the throughput drops as the interface is removed
and is fully recovered when the link is back to opera-
tional status. However, as the number of failed links
increases, the observed MPTCP recovery is worse off.
In fact, only in the 1-Link port failure scenario a full
throughput recovery is achieved. In none of the other
scenarios a full recovery occurs once links are back to
operational mode.

The results indicate that MPTCP is resilient to
link-failure with a low number of failed links. Evi-
dently, in the three arrangements discussed above, it
can be seen that MPTCP fully recovers from link fail-
ures with only one interface. However, as the number
of failed links increases, a performance variation is no-
ticed based on which side of the communication the
failure occurs. MPTCP can only recover full through-
put if the link failures occur only at the server side.
Throughput is not recovered when the failed inter-
faces are client-based. Given the fact that MPTCP
can fully recover against 7-link failures at the server
side, and fail to fully recover if the failures occur at
the client side, it can clearly be seen that there are
issues with the implementations. It is believe that
this asymmetric MPTCP behavior and performance
at both communication ends might be due to an is-
sue with the MPTCP Linux implementation. It is
recommended to resolve such issues in later versions
of MPTCP.

5 Conclusions and Future Work

Traditional Internet is heavily based on Standard
TCP which is used by almost all online applications
as a reliable transfer protocol. A design limitation in
the standard TCP is the inability to support more
than one connection, even if multiple communication
interfaces are available. This makes TCP-supported
communication and applications relying on it more
prone to failure, undermining the user experience. By
utilizing multiple interfaces, MPTCP has emerged to
provide seamless handover during link failures and to
support higher throughput.

In this paper, a comprehensive evaluation of Linux
MPTCP implementation resilience against link fail-
ures is provided. Various evaluation scenarios are
considered in order to examine MPTCP’s conges-
tion algorithms, path management, subflow schedul-
ing against link failures. Measurements of MPTCP
throughput and end-to-end delays are collected and
analyzed during link failures and after their recovery.
The results indicate that MPTCP is resilient to link-
failurs with a low number of failed links. However, as
the number of failed links increases, MPTCP can only
recover full throughput if the link failure occurs at
the server side. The analysis of the results indicates
that the lowestRTT scheduler yields the best network
resilience against network failures. In addition, the
redundant scheduler provides in-order segments dur-
ing the link failures making it the optimal choice for
real-time and VoIP applications.

For future work, evaluation on real-world testbeds
such as PlanetLab are planed [42]. The behavior of
MPTCP in a geographically distributed environment
and high-speed networks will be evaluated.

5.1 Acknowledgments

The authors extend their appreciation to the Dean-
ship of Scientific Research at King Saud University
for funding this work through the Research Project
No. R5-16-03-03.

References

[1] James P. G. Sterbenz, David Hutchison, Ege-
men K. Çetinkaya, Abdul Jabbar, Justin P.
Rohrer, Marcus Schöller, and Paul Smith. Re-
silience and survivability in communication net-
works: Strategies, principles, and survey of dis-
ciplines. Computer Networks, 54(8):1245–1265,
2010.

[2] Justin P. Rohrer, Abdul Jabbar, and James P.G.
Sterbenz. Path Diversification for Future In-
ternet End-to-End Resilience and Survivability.
Springer Telecommunication Systems, 56(1):49–

ISeCure



August 2019, Volume 11, Number 3 (pp. 113–122) 121

67, May 2014.
[3] Yao Wang, Shivendra Panwar, Shunan Lin, and

Shiwen Mao. Wireless video transport using path
diversity: Multiple description vs layered coding.
In Proceedings of the International Conference
on Image Processing, volume 1, pages I–21–I–24,
2002.

[4] Wilton Henao-Mazo and Angel Bravo-Santos.
Finding diverse shortest paths for the routing
task in wireless sensor networks. Proc. ICSNC,
pages 53–58, 2012.

[5] A.C. Begen, Y. Altunbasak, and O. Ergun. Multi-
path selection for multiple description encoded
video streaming. In Proceedings of the IEEE
International Conference on Communications
(ICC ’03), volume 3, pages 1583–1589, May 2003.

[6] Eiji Oki, Nobuaki Matsuura, Kohei Shiomoto,
and Naoaki Yamanaka. A disjoint path selec-
tion scheme with shared risk link groups in GM-
PLS networks. IEEE Communications Letters,
6(9):406–408, September 2002.

[7] Yufei Cheng, M. Todd Gardner, Junyan Li, Re-
becca May, Deep Medhi, and James P.G. Ster-
benz. Optimised Heuristics for a Geodiverse
Routing Protocol. In Proceedings of the IEEE
10th International Workshop on the Design of Re-
liable Communication Networks (DRCN), pages
1–9, Ghent, Belgium, April 2014.

[8] Shweta Jain and Samir R Das. Exploiting path
diversity in the link layer in wireless ad hoc
networks. Ad Hoc Networks, 6(5):805–825, 2008.

[9] Renata Teixeira, Keith Marzullo, Stefan Savage,
and Geoffrey M. Voelker. In search of path
diversity in ISP networks. In Proceedings of
the 3rd ACM SIGCOMM conference on Internet
measurement (IMC ’03), pages 313–318, New
York, NY, USA, 2003. ACM.

[10] Alan Ford, Costin Raiciu, Mark Handley, Se-
bastien Barre, and Janardhan Iyengar. Architec-
tural guidelines for multipath tcp development.
RFC 6824, 2011.

[11] A. Ford, C. Raiciu, M. Handley, and O. Bonaven-
ture. TCP extensions for multipath operation
with multiple addresses. RFC 6824 (Experimen-
tal), January 2013.

[12] Sinh Chung Nguyen, Xiaofei Zhang, Thi
Mai Trang Nguyen, and Guy Pujolle. Evalua-
tion of throughput optimization and load sharing
of multipath tcp in heterogeneous networks. In
Wireless and optical communications networks
(WOCN), 2011 eighth international conference
on, pages 1–5. IEEE, 2011.

[13] Nigel Williams. Implementing a multipath
transmission control protocol (mptcp) stack for
freebsd with pluggable congestion and schedul-
ing control. 2016.

[14] Olivier Bonaventure and S Seo. Multipath tcp
deployments. IETF Journal, 12(2):24–27, 2016.

[15] Olivier Mehani, Ralph Holz, Simone Ferlin, and
Roksana Boreli. An early look at multipath tcp
deployment in the wild. In Proceedings of the
6th International Workshop on Hot Topics in
Planet-Scale Measurement, HotPlanet ’15, pages
7–12, New York, NY, USA, 2015. ACM.

[16] S. K. Sivagurunathan, J. Jones, M. Atiquzza-
man, Shaojian Fu, and Yong-Jin Lee. Experimen-
tal comparison of handoff performance of sigma
and mobile ip. In HPSR. 2005 Workshop on
High Performance Switching and Routing, 2005.,
pages 366–370, May 2005.

[17] D. Nunes, D. Raposo, D. Silva, P. Carmona, and
J. S. Silva. Achieving human-aware seamless
handoff. In 2015 International Conference on
Distributed Computing in Sensor Systems, pages
254–259, June 2015.

[18] L. Ford. Network flow theory. 1956.
[19] E. W. Dijkstra. A note on two problems in con-

nection with graphs. Numerische Mathematik,
1:269–271, 1959.

[20] MH MacGregor and WD Grover. Optimized k-
shortest-paths algorithm for facility restoration.
Software: Practice and Experience, 24(9), 1994.

[21] Jin Y Yen. Finding the k shortest loopless paths
in a network. management Science, 17(11):712–
716, 1971.

[22] Wayne D. Grover. Mesh-based Survivable Trans-
port Networks: Options and Strategies for Opti-
cal, MPLS, SONET and ATM Networking. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA,
2003.

[23] Y. Cheng, T. A. N. Nguyen, M. M. Rahman,
S. Gangadhar, and J. P. G. Sterbenz. Geodiverse
routing protocol with multipath forwarding com-
pared to mptcp. In 2016 8th International Work-
shop on Resilient Networks Design and Modeling
(RNDM), pages 142–149, Sept 2016.

[24] J. W. Suurballe. Disjoint paths in a network.
Networks, 4(2), 1974.

[25] J. W. Suurballe and R. E. Tarjan. A quick
method for finding shortest pairs of disjoint
paths. Networks, 14(2), 1984.

[26] Ramesh Bhandari. Survivable Networks: Algo-
rithms for Diverse Routing. Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

[27] Lanny Sitanayah, Kenneth N Brown, and Cor-
mac J Sreenan. A fault-tolerant relay placement
algorithm for ensuring k vertex-disjoint short-
est paths in wireless sensor networks. Ad Hoc
Networks, 23:145–162, 2014.

[28] Kien Nguyen, Mirza Golam Kibria, Kentaro
Ishizu, and Fumihide Kojima. A study on perfor-
mance evaluation of multipath tcp implementa-

ISeCure



122 Evaluating Multipath TCP Resilience against Link FailuresI — Mohammed J.F. Alenazi

tions. In Proceedings of the Eighth International
Symposium on Information and Communication
Technology, SoICT 2017, pages 242–248, New
York, NY, USA, 2017. ACM.

[29] Christoph Paasch, Simone Ferlin, Ozgu Alay, and
Olivier Bonaventure. Experimental evaluation of
multipath tcp schedulers. In Proceedings of the
2014 ACM SIGCOMM Workshop on Capacity
Sharing Workshop, CSWS ’14, pages 27–32, New
York, NY, USA, 2014. ACM.

[30] Amani Alheid, Dritan Kaleshi, and Angela
Doufexi. Performance evaluation of mptcp in
indoor heterogeneous networks. In Proceedings
of the 2014 First International Conference on
Systems Informatics, Modelling and Simulation,
SIMS ’14, pages 213–218, Washington, DC, USA,
2014. IEEE Computer Society.

[31] Jin Seong Lee and Jaiyong Lee. Multipath tcp
performance improvement in mobile network. In
Ubiquitous and Future Networks (ICUFN), 2015
Seventh International Conference on, pages 710–
714. IEEE, 2015.

[32] M. Sandri, A. Silva, L. A. Rocha, and F. L. Verdi.
On the benefits of using multipath tcp and open-
flow in shared bottlenecks. In 2015 IEEE 29th
International Conference on Advanced Informa-
tion Networking and Applications, pages 9–16,
March 2015.

[33] Nick McKeown, Tom Anderson, Hari Balakrish-
nan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: Enabling innovation in campus net-
works. ACM SIGCOMM Computer Communi-
cation Review, 38(2):69–74, 2008.

[34] Kubilay Demir and Neeraj Suri. Towards ddos
attack resilient wide area monitoring systems. In
Proceedings of the 12th International Conference
on Availability, Reliability and Security, ARES
’17, pages 99:1–99:7, New York, NY, USA, 2017.
ACM.

[35] E. Dong, M. Xu, X. Fu, and Y. Cao. Lamps: A
loss aware scheduler for multipath tcp over highly
lossy networks. In 2017 IEEE 42nd Conference
on Local Computer Networks (LCN), pages 1–9,
Oct 2017.

[36] Luca Boccassi, Marwan M. Fayed, and Mahesh K.
Marina. Binder: A system to aggregate multiple
internet gateways in community networks. In
Proceedings of the 2013 ACM MobiCom Work-
shop on Lowest Cost Denominator Networking
for Universal Access, LCDNet ’13, pages 3–8,
New York, NY, USA, 2013. ACM.

[37] Costin Raiciu, Mark Handley, and Damon Wis-
chik. Coupled congestion control for multipath
transport protocols. Technical report, 2011.

[38] Damon Wischik, Costin Raiciu, Adam Green-

halgh, and Mark Handley. Design, implemen-
tation and evaluation of congestion control for
multipath tcp. In NSDI, volume 11, pages 8–8,
2011.

[39] Ramin Khalili, Nicolas Gast, Miroslav Popovic,
et al. Opportunistic linked-increases congestion
control algorithm for mptcp. 2013.

[40] Q. Peng, A. Walid, J. Hwang, and S. H. Low.
Multipath tcp: Analysis, design, and implemen-
tation. IEEE/ACM Transactions on Networking,
24(1):596–609, Feb 2016.

[41] Yu Cao, Mingwei Xu, and Xiaoming Fu. Delay-
based congestion control for multipath tcp. In
Network Protocols (ICNP), 2012 20th IEEE In-
ternational Conference on, pages 1–10. IEEE,
2012.

[42] Brent Chun, David Culler, Timothy Roscoe,
Andy Bavier, Larry Peterson, Mike Wawrzoniak,
and Mic Bowman. Planetlab: an overlay testbed
for broad-coverage services. ACM SIGCOMM
Computer Communication Review, 33(3):3–12,
2003.

Mohammed J.F. Alenazi is an
Assistant Professor of Computer
Engineering at King Saud Univer-
sity. He received his Ph.D. in Com-
puter Science from the University of
Kansas in 2015. He received his B.S.
and M.S. degrees in Computer Engi-

neering from the University of Kansas in 2010 and
2012 respectively. His research interests are in re-
silient networks, software defined networks, Internet
of Things, multipath transport protocols, and wire-
less sensor networks. He is a member of the IEEE,
Communications Society and member of ACM SIG-
COMM.

ISeCure


	1 Introduction
	2 Related Works
	2.1 K Shortest Paths
	2.2 Mutipath Transport

	3 MPTCP Overview
	3.1 Path Manager
	3.2 Subflow Scheduler
	3.3 Congestion Algorithms
	3.4 Interface Failure Handling

	4 Results and Discussions
	4.1 Experimental Environment
	4.2 Congestion Algorithms
	4.3 Scheduler Schemes
	4.4 Multiple Link Failures and Recovery

	5 Conclusions and Future Work
	5.1 Acknowledgments


