The ISC Int'l Journal of
Information Security

August 2019, Volume 11, Number 3 (pp. 97-103)

http://www.isecure-journal.org

SELECTED PAPER AT THE ICCMIT’19 IN VIENNA, AUSTRIA

Aspect Oriented UML to ECORE Model Transformation™

Muhammad Ali Memon '*,
Muhammad Ali Nizamani !

Zaira Hassan?, Kamran Dahri!, Asadullah Shaikh?, and

L Institute of Information & Communication Technology, University of Sindh, Pakistan
2School Of Information Technology, Shaheed Benazir Bhutto University, Pakistan
3 Department of Information Systems, Najran University, Saudi Arabia

ARTICLE INFO.

Keywords:

Model-driven engineering, Unified
Modeling Language, Kermeta,
EMF ECORE, Model
transformation.

Abstract

With the emerging concept of model transformation, information can be
extracted from one or more source models to produce the target models.
The conversion of these models can be done automatically with specific
transformation languages. This conversion requires mapping between both
models with the help of dynamic hash tables. Hash tables store reference links
between the elements of the source and target model. Whenever there is a need
to access the target element, we query the hash table. In contrast, this paper
presents an approach by directly creating aspects in the source meta-model with
traces. These traces hold references to target elements during the execution.
Hlustrating the idea of model driven engineering (MDE), This paper proposes a

method that transforms UML class models to EMF ECORE model.

© 2019 ISC. All rights reserved.

1 Introduction

odel driven engineering (MDE) is an approach

that uses the concepts of software development
models for defining the complex systems at different
levels of abstractions. MDE maps one model to an-
other model with the help of transformation traceabil-
ity that defines associations between source and tar-
get models. A model may be traversed several times
depending on the complexity of transformation. In-
formation flow between the source and target model
have to be maintained by an intermediate mechanism.

v« The ICCMIT’19 program committee effort is highly acknowl-
edged for reviewing this paper.

* Corresponding author.

Email addresses: muhammad.ali@usindh.edu.pk,
zairahassan@sbbusba.edu.pk, kamran.dahriQusindh.edu.pk,
asshaikh@nu.edu.sa, ma.nizamani@usindh.edu.pk

ISSN: 2008-2045 (© 2019 ISC. All rights reserved.

This mechanism can be handled by dynamic hash
tables. Hash tables have two columns, first column
stores source objects and second column stores newly
created target objects. The target model creates the
new object whenever the entries apply on hash table.
These entries helps to create associations and prop-
erties for target model to access a direct reference.
Problem with this approach is to retain the hash table
each time the target element is searched, so this is a
time consuming process. In this paper, we present an
aspect-oriented approach to get rid of retaining and
searching the hash table each time. With the help of
the aspect-oriented approach, we have created aspects
of classes related to the source model elements and
weave these aspects into source meta-model. These
aspects introduce direct references which are typed
to the corresponding class of the target meta-model.
Traversing a source object, we can directly access
target objects by accessing their references. The ben-

ISeﬂure@

efit of this approach is directly accessing the aspect-
s/attributes without searching for target objects. We
illustrate this approach by using a transformation
which take UML class diagram as input and creating
the corresponding ECORE model. The transforma-
tion have been implemented into Kermeta language.
This approach also avoid the searching mechanism
of dynamic Hash tables. To manage this traceability,
we have used aspects. Every input and output model
element confirm its Meta class into Meta- model re-
spectively.as for as the input model elements we have
created the aspects into meta-model for Meta classes.
The code shown below mentions the traces that have
been injected into these aspects that shows the refer-
ences to the corresponding meta-classes of the output
model.

aspect class inputMetaClass
{
reference trace: outputMetaClass

}

These aspects created with the input Meta-model
when transformation is executed. Aspects provide the
additional functionality of the traceability mechanism.
When the output model expands through traversing
the input model, the trace will hold the reference to
the output element for each input element. In the
later pass, to transform more information about in-
put element properties and links, the output element
will be accessed directly through this reference.

We have organized the rest of the paper as follows.
Section 2 presents the literature review. Section 3 ex-
plains the Traversing information between input and
output model. Section 4 discusses the transformation
with mapping. Section 5 provides the algorithm based
on this approach. Section 6 define some techniques
applied on this work. Section 7 provides an exam-
ple of ECORE application. Section 8 elaborate some
limitations associated with this work, and the paper
finally concludes in Section 9.

2 Related Works

In recent years, there are some computational science
models that have been observed in the field of model
driven engineering. Such as scientific simulation work-
flows, DSML and chemical markup language [1]. The
model driven engineering also developed some rich
ecosystem modeling techniques to reduce the com-
plexity of software systems. The main cause of the
complexity of the system is high-level and low-level
abstractions provided by general-purpose program-
ming languages. This gap is so costly in terms of
time and effort. In model-driven engineering, aspects

1S¢0ured)

Aspect Oriented UML to ECORE Model Transformation® — Muhammad Ali Memon et al.

of systems are described by various models through
different languages [2].

Lots of work has been done on different model-
ing languages that includes the behavioral semantics,
static and abstract syntax [3]. It is difficult to com-
bine different meta-languages for the design princi-
ples. Kermeta works well for the meta-languages as
it permits us to gather various combinations of lan-
guages. It also handles the specific issues associated
with Meta languages that cannot be properly solved
by generic software engines [4]. Kermeta provides a
mechanism through aspect keywords that can be com-
pared with open class mechanism that is useful for
Kermeta as it reuses the classes in meta models also
use the powerful meta-modeling language EMOF to
avoid the problems and annotations. A number of en-
gineering tools provide the strong ecosystem around
the EMOF platform that generates the java code to
handle the meta-modeling problems.

Kermeta provides model-oriented and aspect-
oriented capabilities: OCL-like lexical closures, native
support of open-classes, model typing feature, and
the ability to load and save EMF models. In recent
years, there are some computational science mod-
els and frameworks that have been observed in the
field of software development. One of the related
work from [5] presented an extendable framework
known as CrossECORE that uses OCL. The model-
ing framework CrossECORE supports Typescripts,
C#, JavaScript and ECORE model with OCL. OCL
provides all functions through API that can be used
across various different target platforms. It also maxi-
mizes the use of traceability and supports portability
across target platforms. [6] proposed a framework
that is based on custom-built model transformation
known as T-Core framework. The main purpose to
use this framework is to analyze the reality of MTLS
into the most primitive constructs. Another work
presented by [7], they provide the concepts of a novel
approach known as variability-based graph transfor-
mation. This approach was designed to improve the
reusability and performance in Model-transformation
systems because there are so many problems associ-
ated with large model transformation systems as they
often use similar transformation rules. Variability-
graph based transformation works well for this kind
of problems. A work mention by [8|, presents the
meta-model packages to analyze the validation, trans-
formation and comparison of UML models and also
determine the behavior and structure of software
system with a particular domain specific language.
Further they describe that when transformation ap-
plies from UML to Ecore or MOF then the elements
mapped in to Meta-meta- models. Because there is
no direct association between elements of meta-meta

August 2019, Volume 11, Number 3 (pp. 97-103)

model and the elements of UML.

[9] proposed a mechanism that analyzed and exe-
cute UML state machines through DEVS.It provides
a mechanism to bridge the gap between two official
disputes with different technological bases and gener-
ally defines the model transformation that travers the
elements from UML SCs to elements of DEVS model.

3 Traversing Information between
Source/Input and Target/Output
model

Model transformations are implemented by travers-
ing input model for number of times. As Figure 1b
shows the information traversing between input and
output model. This traversing is often referred as a
pass. First time when input model is traversed, it is
called 1st pass, traversing second time is called 2nd
pass and so on. Number of passes depends on the hi-
erarchy and complexity of input model. In every pass
partial information is acquired from input model and
transformed in to the output model.

In Figure 1b, we have presented the intermediate
mechanism known as traceability. This traceability
is classically implemented by dynamic hash tables.
Hash tables have two columns <Objectl, Object2>.
Objectl refers to the input model element whereas
Object2 refers to the corresponding output model
element. Hash table updates its entries whenever
the information acquires by input elements, we have
assumed that in the first pass the hash table fill up
with entries for input model elements, then in the
second pass each element of the input model is to be
searched to acquire information and then link with
other elements in the input model. This search can be
time consuming depending on the size of input model.

4 Transformation
4.1 Mapping

For every translation first step is always to map el-
ements of source model and target model. In trans-
lation we have mapped elements and relationships
for both UML and ECORE meta- models. Table 1
shows some direct and some indirect complex map-
pings. These ECORE elements are created directly
whenever UML elements are encountered in UML
model. For the indirect mappings they are complex
mappings to be handled. We have also encounter some
problems associated with complex direct and indirect
mappings.

4.1.1 Data types

Problem: It is difficult to handle data types be-
cause UML basic data types are dissimilar from EMF

Table 1. Complex mapping between elements.

ECORE Model UML Model
EPackage Package

Eclass Class

EOperation Operation
EParameter Parameter
EAttribute Property (Primitive Data types)
EEnum Enumeration
EEnumlLiteral EnumerationLiterel

ECORE basic data types.

Solution: We have created our own set of data types
for ECORE model and made a reference with a java
data types. Reference to Java data types will make
these data types compatible to Kermeta source files
and Java code files.

4.1.2 Association

Problem: No Direct mapping between both UML
and ECORE meta-meta-model.

Solution: Association relationship create association
properties in concerned classes of UML model. In
ECORE model, EReference element in concerned
Eclass with the same name as association property.

4.1.3 Multiplicities

Problem: Multiplicities are handled as lower and up-
per bounds as properties in both UML and ECORE
meta-meta-models and both properties in both meta-
meta-models have different data types. These data
types are fixed and cannot be changed.

Solution: local temporary variables of UML ba-
sic(Primitive) data types and type caste these vari-
ables in ECORE meta-meta-model.

4.1.4 Opposite Navigability

Problem: Opposite Navigability is not a new ele-
ment to be added to the ECORE model, but it is
bidirectional relationship in Association.

Solution: To handle the navigability, we set the EOp-
posite Property of EReference element in the EClass
with the EReference element in the opposite EClass
that share common Association.

5 Algorithm

ECORE elements (e.g., data types, classes, attributes,
operations, and parameters) are created by traversing
each sub package in the UML model. Traversing can
be done in the four passes as described in Algorithm 1.

1S¢0ured)

Aspect Oriented UML to ECORE Model Transformation® — Muhammad Ali Memon et al.

Input Model Output Model

1st Pass 2nd Pass

(a) Figure la

Traces
=
& .
= i \
L~y .
i) . ‘\‘.‘ \“
AN N :

Output Model

" _4
Tnput Model

(b) Figure 1b

Figure 1. Here needs to be filled with a caption

Algorithm 1 Traversing Algorithm

1: In the first pass, main package and its sub pack-
ages are generated within main package.

2: In the second pass, data types, classes, enumera-
tions and its enumeration literals are generated.

3: In the third pass, operations in the classes, param-
eters in the operations, attributes of the classes,
generalization and association relationships are
generated.

4: In the fourth pass, relationships between prop-
erties are generated for both side of navigability.
The opposite [property| defines an association
(bidirectional link) between two entities.

The Model traversed in four passes because we
cannot create all the elements in one pass. Traversing
in four passes prevents all different conflicts.

6 Techniques applied on this work.

In this section we have combined two approaches for
implementing the translation. The first technique is
visitor pattern that allows class hierarchy to add one
or more behaviors. Typically these design patterns
form a tree structure without modifying the classes.
These classes use accept method to take the visitor
as an argument, as shown in Figure 2. These design
patterns enables the developers to discrete the base
functionality from set of classes because they only
use for specific situations and further they encapsu-
lated into the visitor classes [10].

The second technique is aspect oriented that decom-
pose the programs into aspects and classes. It is a soft-
ware decomposition unit that implements transversal
property into split classes of applications. So many
problems can be solved with combined composition in
aspects and classes like code scattering and code tan-
gling problems [11]. This approach can also increase
the modularity by enabling improved separation of
concerns. Where each concern represents some differ-

ISeﬂure@

aspect class Classe—

method thirdPass() :Void is do ~———J|

Rl1l OwnedElemen

—
(secondrass () Aspect Classes
—

end
aspeet class Operation*

method thirdPass()_:Void is do
Create Eoperation inm ECore——

_— T T————Visitor Methods

Figure 2. Visitor Pattern

ent feature of the system and these concerns can be
implemented independently with each other. In the
translation aspects of each class for the UML generic
Meta-model required for Class Diagram are created
to introduce some new visitor methods for traversing.
These aspects are restricted only to this translation
and they will be used only in combination with UML
generic classes whenever this translation is applied to
any UML model or meta-model.

7 Application

In this section we have presented the translation on
UML model of a simple case study of University
Management System as shown in Figure 3. This
Model consists of five classes: Student, University,
Person, Instructor, and Course.

Where class University have been put fur-
ther in sub package sub. Class Student and
Instructor have the generalization relationship
with class Person, and associations with the
University class. Associations between class
Student, Instructor, University have bidirec-
tional links. Class Course has a composition rela-
tionship with the class Instructor and directed
association with University class.

Here we have mentioned the examples of first, sec-
ond, third, and fourth passes. Figure 4 shows first pass
where the main package and sub packages have been

August 2019, Volume 11, Number 3 (pp. 97-103)

| Person
l—Fi'slNBnB - String
-SecondName | String

!_7
_.-.—T——...—

‘ -Code : String
+set(param : Liniversity) -Semsstar | String beach

+s=tEmaill Email - String)

[Student = I] Instructor
-Email - String = |-name : String
-Home : String | University | |-homeCampus ; String

[+getistructon(name . String) |

Cerrolled -registered |-Status © Infeger [- Ie=
|— i ..

teught 0
1.3 sgetStatus)
+setStatus()

Courss |1.4

. Course
‘-Qedits Irteger
-Titke ; String ke

|saetCredtsn |
|+getTitie()

Figure 3. Scenario of university management system
created. Figure 5 mentions the second pass where
data types, classes, enumerations and its enumeration

literals are created. Figure 6 shows the third pass of
UML model to ECORE model.

B Data
sub

Figure 4. Passl

o

ata

Integer [java.lang. Integer]
String [java.lang.String]
Bookean [java.|amng. Boolean]
Instructor

Student

Course

Person

sub

E University

i (D 0D 0D 0D 0% O 0§

1

Figure 5. Pass2

Figure 7 shows the fourth pass of UML model to
ECORE model. When we apply our fourth pass the
EOpposite is set for respective opposite properties
in University, Student and Instructor classes in
ECORE. Opposite Property is not a new element to
be added in ECORE, so ECORE model remains the
same as shown in Figure 6. While Opposite property
is set in the property window of ECORE model, for
example opposite property in Student class is shown
in Figure 5 for the bidirectional link between class
Student and class University.

11|
i
[
o

ta
Integer [java.lang. Integer]
Skring [java.lang. Skring)
Boolean [java.lang. Boolean]
Instructor == Person
& getinskrockar{String)
<3 name : String
= name | String
= homeCampus & String
= keach ; University
5 take : Course
= [student -= Person
= @ set{University)
=3 param ; University
= & setFmail{String)
“3 Email : String
= Email : String
= Home : String
5 reqgistered | University
= H Couwse
@ getCredits()
B getTrlel)
= Crediks : Integer
=1 Title : String
= [Person
= Firstiame : String
= SecondMame @ Skring
= # sub
El uUniversity
& getStatus()
@ setStabus))
=1 Code : String
= Serester @ Skring
= Skatus | Integer
= enrolled : Skudant
=+ taught | Instrsckor
8 Course | Course

-0 O¢ 0% O8

Figure 6. Pass3

8 Issues

In this section we discuss two issues, limitations and
complexities faced during implementing this transla-
tion.

8.1 Limitations

Here we mention some limitations of this translation:

(1) This translation does not support automated
synchronization. When we make any change in

ISeﬂur@

101

Aspect Oriented UML to ECORE Model Transformation® — Muhammad Ali Memon et al.

= Properties 1 & console
Property Value

Changeable e brue
Conkainer i False
Conkainment Tk False
Default Yalue Literal 1=
Desived Lk false
Ekeys
ECpposite S registerad : University
EType B student - Persan
Lowser Bound 11
Narie 12 enralled

Figure 7. Pass3

UML model then these changes are not reflected
automatically to ECORE model, but we have
to apply the complete translation to acquire
changed ECORE model.

(2) There is no reverse translation from ECORE
model to UML model.

(3) ECORE meta-models has its own set of data
types for example (Elnt, EString) but we did
not restrict our translation to ECORE data
types. We created our own data types for which
we maintain reference to java data types Integer,
String and Boolean to make ECORE model
compatible with java and Kermeta source files.

(4) Our translation does not cover all the aspects
of the UML, but it is restricted only to one
part of the UML .This restriction is due to the
ECORE model that have compatibility only
with the elements of Class Diagram. There are
still some of the more concepts to be covered
Class Association, Aggregation etc.

9 Conclusion

In this paper we have presented an aspect oriented
approach for mediating information flow from input
to output model transformation. We have created
aspects in the source meta-model that hold direct ref-
erences to the objects for target model objects. These
references will be used to create relationships in target
model objects in subsequent passes. Mediate Infor-
mation classically maintained through dynamic hash
tables. Meanwhile UCORE is a tool for translating
UML models and meta-models designed in the form
of class diagram to ECORE models and meta-models.
Translation is implemented in Kermeta language and
application of this translation is shown with an exam-
ple. This translation will help us to easily transform
our models designed in UML, from UML to EMF
ECORE, which will again facilitate many features of
EMF tools family, for example simulation of models
,applying OCL constraints, writing aspects or trans-
forming to any other platform specific model . This
tool is under testing for its stability verification and

1S¢0ured)

soon it will be available in the Kermeta MDK for com-
munity around Kermeta users. Future work includes
removing limitations as mentioned above.

References

[1] Andreas Bender, Angela Poschlad, Stefan Bozic,
and Ivan Kondov. A service-oriented framework
for integration of domain-specific data models in
scientific workflows. Procedia Computer Science,
18:1087 — 1096, 2013. 2013 International Confer-
ence on Computational Science.

[2] Jean-Michel Bruel, Benoit Combemale, Ileana
Ober, and HATl1AIne Raynal. Mde in practice
for computational science. Procedia Computer
Science, 51:660 — 669, 2015. International Con-
ference On Computational Science, ICCS 2015.

[3] Benoit Combemale, Xavier Crégut, Pierre-Loic
Garoche, and Xavier Thirioux. Essay on seman-
tics definition in mde - an instrumented approach
for model verification. Journal of Software, 4:943—
958, 11 2009.

[4 Jean-Marc JATzAlquel, Benoit Combemale,
Olivier Barais, Martin Monperrus, and
FranAgois Fouquet. Mashup of meta-languages
and its implementation in the kermeta language
workbench. Software & Systems Modeling, 14,
06 2013.

[6] S. Schwichtenberg, I. Jovanovikj, C. Gerth,
and G. Engels. Poster: Crossecore: An ex-
tendible framework to use ecore and ocl
across platforms. In 2018 IEEE/ACM
40th International Conference on Software
Engineering: Companion (ICSE-Companion),
pages 292-293, May 2018.

[6] Eugene Syriani, Hans Vangheluwe, and Brian
LaShomb. T-core: a framework for custom-
built model transformation engines. Software &
Systems Modeling, 14(3):1215-1243, Jul 2015.

[7] Daniel Striiber, Julia Rubin, Marsha Chechik,
and Gabriele Taentzer. A variability-based ap-
proach to reusable and efficient model transfor-
mations. In Alexander Egyed and Ina Schaefer,
editors, Fundamental Approaches to Software
Engineering, pages 283-298, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[8] S. JAdger, R. Maschotta, T. Jungebloud,
A. Wichmann, and A. Zimmermann. An emf-like
uml generator for c++. In 2016 4th International
Conference on Model-Driven Engineering and
Software Development (MODELSWARD),
pages 309-316, Feb 2016.

[9] Ariel Gonzalez, Carlos Luna, Roque Cuello,
Marcela PAlrez, and Marcela Daniele. Towards
an automatic model transformation mechanism
from uml state machines to devs models. CLEI
electronic journal, 18:3:1-3:27, 08 2015.

August 2019, Volume 11, Number 3 (pp. 97-103)

[10] Matthias Springer, Hidehiko Masuhara, and
Robert Hirschfeld. Classes as layers: Rewriting
design patterns with cop: Alternative implemen-
tations of decorator, observer, and visitor. pages
21-26, 07 2016.

[11] Ouafa Hachani and Daniel Bardou. Using
aspect-oriented programming for design patterns
implementation. In Reuse in Object-Oriented
Information Systems Design., 07 2008.

Muhammad Ali Memon is cur-
rently serving University of Sindh
in IICT(Institute of Information
& Communication Technology),
Jamshoro, Pakistan as an Associate
Professor. He finished his PhD from
National institute of Polytechnic
Toulouse (INPT), University of Toulouse, France with
specialization in Information Systems. His research in-
terests are Software interoperability, Transportation
scheduling systems, Ontologies, Information systems,
Enterprise Engineering, ,Supply chain solutions.

Zaira Hassan is currently working
as a lecturer in the Department of
Information Technology, Shaheed Be-
nazir Bhutto University, Shaheed Be-
nazirabad, Pakistan. She has done
BS in IT from University of Sindh.
: N Her Master’s work based on social
network and her research interests also focuses on
natural User experience (NUX/NUI), artificial intel-
ligence and data security.

Kamran Dabhri is currently work-
ing as an Assistant Professor in
the Institute of Information & Com-
munication Technology, University
of Sindh, Jamshoro, Pakistan. Cur-
rently, he is pursuing his PhD in In-
formation Systems, with focus on use
of the Blockchain technology for healthcare systems.
His area of research interest include data clustering,
data minning and blockchain technologies.

Asadullah Shaikh is PhD in soft-
ware engineering from University of
Southern Denmark. Dr. Shaikh is
currently working as an Associate
Professor and head of research in the
college of Computer Science and In-

‘M formation Systems Najran Univer-
sity, Najran, Saudi Arabia. His current research in-
terests are: UML Model Verification, UML Class Di-
agrams Verification with OCL Constraints for Com-
plex Models, formal Verification, feedback Technique
for Unsatisfiable UML/OCL Class Diagrams and Net-
works.

Muhammad Ali Nizamani is
PhD in Artificial Intelligence from
INSA Toulouse, France. He is cur-
rently working as an Assistant Pro-
fessor in the Institute of Information
& Communication Technology, Uni-
versity of Sindh, Jamshoro, Pakistan.
His area of research interests are: Artificial Intelli-
gence, Human Computer Interaction, Human Robot
Interaction, Intelligent Systems, Semantic Software
Engineering, Knowledge Integration.

ISeﬂur@

103

	1 Introduction
	2 Related Works
	3 Traversing Information between Source/Input and Target/Output model
	4 Transformation
	4.1 Mapping

	5 Algorithm
	6 Techniques applied on this work.
	7 Application
	8 Issues
	8.1 Limitations

	9 Conclusion

