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A B S T R A C T

Correctness verification of query results is a significant challenge in database

outsourcing. Most of the proposed approaches impose high overhead, which

makes them impractical in real scenarios. Probabilistic approaches are proposed

in order to reduce the computation overhead pertaining to the verification

process. In this paper, we use the notion of trust as the basis of our probabilistic

approach to efficiently verify the correctness of query results. The trust is

computed based on observing the history of interactions between clients and the

service provider. Our approach exploits Merkle Hash Tree as an authentication

data structure. The amount of trust value towards the service provider leads to

investigating just an appropriate portion of the tree. Implementation results

of our approach show that considering the trust, derived from the history of

interactions, provides a trade-off between performance and security, and reduces

the verification overhead imposed on clients in database outsourcing scenarios.

c© 2019 ISC. All rights reserved.

1 Introduction

N owadays keeping and maintaining data is exceed-
ingly expensive, so many organizations prefer to

outsource their data to a third party service provider.
Furthermore, lack of appropriate hardware and soft-
ware infrastructures, not having professional experts,
and tendency to concentrate on the main organiza-
tion’s missions are among other factors that encour-
age organizations to outsource their data. In data
outsourcing scenarios, or the Database-As-a-Service
(DAS) model (Figure 1), data and its management are
outsourced to a third party service provider, which
may be untrustworthy. That is, data outsourcing,
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in spite of its clear advantages, brings security chal-
lenges including data confidentiality and correctness
of query results as the most critical ones. Organiza-
tions have to delegate control of their data to a service
provider whose honesty cannot be guaranteed in prac-
tice. Therefore, they have to counteract data integrity
violations by the verification of query results. Con-
sequently, there should be a way to inspect to what
extent the returned result satisfies a query condition.
This problem refers to the correctness verification of
query results, which includes completeness, freshness,
and integrity of the results.

As shown in Figure 1, in a generic data outsourc-
ing scenario, there is a Data Owner (DO), a Service
Provider (SP), and Clients(C ). To audit the correct-
ness of a query result, SP provides a proof correspond-
ing to the result. This proof is also known as Verifica-
tion Object (VO). While C receives a result, checks its
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Figure 1. The Generic DAS Model

correctness using the associated VO returned by SP.

Some approaches have been proposed for correct-
ness verification of query results in the literature [1–6].
Most of them use digital signatures and data authenti-
cation structures as their basic primitives. They often
impose high computation and communication over-
heads making them unacceptable for real scenarios. On
the other hand, some approaches, namely probabilistic
approaches, while reducing the imposed overheads, do
not guarantee the correctness of results. The probabil-
ity of correctness is measured through the probability
of success of a dishonest SP. Such approaches offer a
trade-off between security and performance. In this
paper, we propose a probabilistic approach for correct-
ness verification, which uses the history of C -SP inter-
actions to adjust the imposed overhead. The history of
C -SP interactions is the basis of computing the notion
of trust in our approach, which is constructed upon
the Goodrich et al.’s approach [1]. The authors in [1]
suggest signing some specific levels - in addition to the
root - in their authentication data structure. We use
only a portion of these additional signatures based on
the computed trust value to trade-off between secu-
rity and efficiency. For each transaction, the current
trust value towards SP adjusts computation overhead
during correctness verification. The trust value itself
is updated resulting from the verification process. If
the correctness is verified, the trust value increases.
As much as the trust value increases, the verification
process takes less effort.

We leveraged our approach in Content Distribute
Networks, where numerous SPs deliver services to
customers distributed all over the world in order to
load balancing. As an example, the content of this
service can be the geographical location of restaurants.
For this service, customers frequently interact with
service providers. In this scenario, the information
(query results) is not very sensitive and some possible
mistakes in results are admissible. In such a scenario,

probabilistic versification is intuitive and considering
the notion of trust can improve the method. The
trust model for this scenario can be an agreement-
based model, which is suitable for not too critical
applications. Trust establishment is based on Service
Level Agreement (SLA) signed by SP for delivery of
correct answers to the customers. Indeed, the SLA is
prepared based on customers’ requirements [7].

The result of our implementation shows that using
the history of interactions, in addition to attaining
an acceptable correctness probability, makes the ver-
ification process efficient enough, leading to a more
practical solution.

The remainder of this paper is organized as follows.
Related works are reviewed in Section 2. Our approach
is described in Section 3. The results of implementa-
tion are discussed and analyzed in Section 4. Finally,
Section 5 concludes the paper.

2 RelatedWork

Trust concept has been mentioned in many security
areas and database subjects especially in access con-
trol policies [8–10]. There are also some works, which
investigate the role of trust in outsourcing IT services
[11–13]. We use this concept for correctness verifica-
tion of outsourced databases. In accordance with the
aim of this paper, in this section we only concentrate
on the works related to the correctness verification in
the DAS model. We divide the proposals into three
categories including Merkle Hash Tree (MHT) based,
digital signature based, and probabilistic approaches.

2.1 MHT

MHT, introduced for the first time by R. C. Merkle
[14], has been used in several proposals [6, 15, 16] as
an authentication data structure. Generally, an MHT
is constructed on a database relation whose tuples are
sorted with respect to a searchable attribute. Hash
values of the tuples construct leaves of the tree. The
value of a parent node is computed by a hash func-
tion over the concatenation of its immediate children.
The root is calculated by a recursive concatenation
process. Finally, DO signs the root by its private key.
In addition to the database relation, DO outsources
the constructed MHT for each searchable attribute.
When C submits a range query, SP, in addition to the
result set, sends the required nodes in the MHT so
that the MHT root can be reconstructed by C. Having
the MHT root and its signature, C can verify the cor-
rectness of the result. Figure 2 depicts an example of
an MHT. According to the figure, h12 is calculated by
the concatenation of h1 and h2. With r3 as the query
result, SP besides r3 sends h4 and h12 as VO to C.
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Integrating B+-tree with the MHT, Li et al. [17]
proposed MB-tree (Merkle B-Tree). In B+-tree, each
node contains multiple values, kept together on disk.
This property leads to low cost of read/write from/to
disk. The time complexity of this method is O(log(h))
where h is the height of the constructed tree. Embed-
ded MB-Tree is the next method proposed by Li et al.
[17] in which a tree is embedded into each node of the
main tree. The embedded trees are constructed based
on the outsourced data in each node. This approach
reduces the size of VO.

Goodrich et al. [1] proposed an efficient method for
correctness verification, which aims to authenticate
query results based on a specific attribute. In this
method, MHT is recursively divided into O(log∗n)
specific levels whose nodes are signed by DO. While,
building VO for a query result, SP is expected to send
only those nodes by which C can verify the signature of
a node in the specific level, instead of the signature of
the root. In this way, C tries to construct the smallest
enveloping subtree, which covers all the result tuples.

Wang et al. [18] proposed a data integrity verifi-
cation scheme with designated verifiers for dynamic
outsourced databases. They presented a new authen-
tication data structure by combining skip lists with
polynomial functions and accumulators. They con-
structed data verification scheme for range queries in
a dynamic scenario. The communication cost in this
scheme is independent of the size of the authenticated
dataset.

The main advantage of the tree-based methods is
the small number of signatures. However, their initial
construction cost, as well as the cost of data update is
considerable compared to signature based approaches.
Moreover, the size of VO for a query result depends
on the database size instead of the result size.

2.2 Digital Signature

In digital signature based approaches data is signed
by DO ’s private key. C verifies the correctness of
digital signatures by using DO ’s public key. In this

method, DO usually signs all tuples by its private
key and outsources them to SP beside the relation.
When C submits a query, SP sends result tuples
together with their signatures to C. On account of
high storage and computational overhead of digital
signatures, aggregated signature was proposed [4]. In
this way, SP aggregates all signatures and sends an
aggregated signature to C. The main problem in [5] is
that it cannot verify the completeness of query results.
To solve the problem, Narasimha and Tsudik [19]
proposed a method based on signature chaining. Their
suggestion is to consider the immediate predecessor
tuple of a tuple into the tuple’s signature. In [20] a
method was proposed for completeness verification of
diverse kinds of queries including selection, join, and
projection.

In digital signature based approaches, each tuple
can be updated solitary. Therefore, the data update
process is independent of the database size which is a
notable advantage. On the other hand, the main weak-
ness is their considerable initialization cost, especially
for fine grained verification.

2.3 Probabilistic Approaches

In probabilistic approaches such as [2, 3, 21–23], the
correctness of query results cannot be guaranteed
while verification process is performed more efficiently.
Sion [2] proposed a probabilistic approach using a
challenge-response method. In this method, C sends
queries in batch mode along with a challenge to SP.
An honest SP finds the challenge response and sends
it to C. In contrast, a lazy SP works properly just
until finding the challenge response, so correctness
of query result is probabilistically verified. In [21] a
method for the proof of data ownership at server side
was proposed. In this method, there is not any query,
but DO occasionally sends a cryptographic challenge
to SP to investigate the property of data ownership.

In database outsourcing scenarios it is probable that
some parts of data on SP be deleted (intentionally or
unintentionally), while SP conceals the problem. Xie
et al. [3] proposed a probabilistic method for detecting
unruly behavior of SP. In their approach, the correct-
ness of query results is verified by introducing some
fake tuples among the real ones. If all the expected
fake tuples satisfying query conditions are returned by
the server, C probabilistically verifies the complete-
ness of query results. The probabilistic method by
Xie et al. has been improved in [22] in which the past
behavior of SP determines the number of outsourced
fake tuples. As much as SP works properly, the num-
ber of fake tuples decreases which in turn, increases
the verification efficiency.
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3 The Proposed Approach

Our approach is based on the proposed method by
Goodrich et al. [1]. In their method, a Merkle Hash
Tree is built over tuples sorted with respect to a search-
able attribute. Then, as shown in Figure 3, in addition
to the root, the nodes located in some specific levels
of the tree (log∗n where n is the number of tuples)
are signed in a recursive mode. The main reason of
signing such nodes is to reduce the height of the veri-
fication tree. Thus, C verifies the root of the smallest
tree which covers all the tuples in the query result. In
fact, the root of the smallest enveloping tree is verified.
Clearly, a smaller tree has fewer nodes, so computation
overhead reduces at C side. Although this situation
is desirable, sometimes outspread results lead to a big
authentication subtree close to the main tree. As a
result, C has to reconstruct the whole authentication
tree for verifying the query result. This is an important
objection to Goodrich et al.’s method, which results in
imposing high computation overhead on C. Our pro-
posal tries to solve it by minimizing the verification
subtree considering the previous C-SP interactions.
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3.1 Our History Based Trust Model

In most of the database outsourcing applications, there
are consecutive interactions between SP and C. We
use the history of these interactions, each of which is
followed by a verification process, to reduce computa-
tion overhead at C side. That is, the history of C-SP
interactions is the basis of our proposed trust model.

We remark that there is neither a unique reference
model nor a unique definition of trust. However, the
intuition says that trust can be interpreted as a belief
towards future behaviors based on deduction from
the past behavior. The following definitions of trust
confirm our interpretation of trust:

• Trust is a subjective expectation an agent has
about another’s future behavior based on the
history of their encounters [24].

• Trust is the firm belief in the competence of an
entity to act dependably, securely, and reliably

within a specified context [25].

According to the above definitions, a trust value T
indicating C ’s belief toward proper functionality of
SP is defined based on its past behavior. Higher trust
values lead to lighter verification process in C, and
consequently less computation overhead. According
to T , a subtree of the enveloping tree is chosen for
the verification. We name our approach “Trust Based
Data Authentication Structure (TBDAS)”. TBDAS is
a history-based and light-weight method forC through
which the correctness of query results in the DAS
model is probabilistically verified.

We assume that at the beginning of interactions,
SP is untrustworthy and the trust value is 0, so C has
to verify the whole enveloping subtree similar to the
Goodrich et al.’s method. As much as the number of
faithful interactions grows, C’s belief towards SP ’s be-
havior increases, so a smaller subtree of the enveloping
tree is reconstructed for the verification. It is worth
to mention that C randomly chooses a smaller sub-
tree from the enveloping tree so that SP cannot infer
anything about the chosen subtree to deliberately ma-
nipulate the result without being detected at C side.

In Section 4.3, we analyze our probabilistic approach
to show that although the correctness is not guaran-
teed, the escape probability of a malicious SP is in-
significant. Moreover, verification process at C side is
gradually diminished providing SP ’s honest behavior.

3.2 Database Outsourcing

Figure 4 depicts the scheme of TBDAS in two phases
including Database Outsourcing and Query Execution.
In the first phase,DO sorts relation tuples with respect
to a searchable attribute, builds an MHT, and signs
its root plus the nodes in specific levels of the tree
similar to Goodrich et al.’s method [1]. With h as the
height of the tree, log∗h determines the specific levels.
In the simplest case, only the first level of the tree,
i.e. the root, is signed. To clarify, let h be the height
of the tree. Then, x = log(h) is the first level whose
nodes must be signed by DO. Other specific levels
are recursively specified by x = log(x), until reaching
x = 1 indicating the root as the last specific level. For
example, for a tree with h = 16, levels 4, 2 and 1 are the
specific levels. After signing the nodes of specific levels,
DO outsources database relations as well as their
corresponding signed MHTs to SP . For data update,
DO have to do all of the above procedure. Figure 5
describes the pseudo-code of database outsourcing
phase.
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3.3 Correctness Verification

In the second phase of TBDAS (Figure 4, Query Exe-
cution), C sends a query to SP . For the sake of sim-
plicity, we suppose that the query is a simple range
query on a relation. SP executes the query on the
DO’s last updated data and finds a set of tuples as
query result. In addition to the query result, SP sends
some extra intermediate nodes of the signed MHT to
C. It includes the nodes by which C can reconstruct
the smallest signed subtree. Also, SP sends all signa-
tures of the enveloping subtree to C.

When C receives a query result plus its V O, con-
sidering the current trust value towards SP , verifies
the result . To this purpose, C chooses a set of tuples
to construct the subtree. A higher trust value results
in a lower number of tuples to verify. For instance, if
the query result contains 1000 tuples and the current
trust value is 0.4, C chooses 600 tuples for verification.
C constructs an enveloping subtree by using both the
selected tuples and received hash values. If the root
of the constructed subtree belongs to a specific level,
its signature is available and C can verify it. Other-
wise, C has to continue constructing the subtree until
it reaches a specific level having a signed node. In

the worst-case, the constructed subtree is the same
as the enveloping subtree which covers all the result
tuples. In such a case, if the root of the enveloping
subtree is verified, the query result is certainly cor-
rect. That is, the correctness is guaranteed. If the
constructed subtree becomes smaller than the span-
ning subtree and C verifies its signature, the result is
probabilistically correct. Equation (1) calculates the
CorrectnessProbability (CP ) of the result.

CP =
(TupNum− TupNum′) × Tcurrent + TupNum′

TupNum
(1)

Equation (1) indicates that the verified tuples
(TupNum′) are certainly correct, but non-checked
tuples (TupNum − TupNum′) are probably cor-
rect relying on the current trust value toward SP
(Tcurrent).

After the verification, if the answer is probabilis-
tically correct, the trust value increases. Otherwise,
the trust value decreases to show dishonesty of SP .
In Section 3.4 we show that how the result of correct-
ness verification impacts on the amount of trust. In-
tuitively, a verified result should slightly increase the
trust value and vice versa a detected incorrect result
should sharply decrease it.

It is worth to mention that lower computation over-
head onC leads to a bit more communication overhead
between SP and C. Considering C as a low power
client, more efficient computation atC is worth having
a bit more communication overhead. In Section 4.2, we
show that the extra communication overhead in our
approach is negligible compared to that of Goodrich
et al.’s method.

Let us clarify the difference between TBDAS and
Goodrich et al.’s method regarding SP ’s functionality.
In Goodrich et al.’s method, SP sends only the root
signature of the enveloping subtree beside the tuples
of the query result and necessary hash values. In
TBDAS, in addition to these data items, signatures
of the lower levels of subtree are also sent to C. These
extra signatures enable C to verify a smaller subtree,
which is proportional to the amount of trust toward
SP . The following example illustrates the difference.

Example - Suppose that there is a relation Market
with three attributes ProductID, Price, and Count
(Figure 6). This relation has 16 tuples and there is
a unique hash value for each tuple. The relation has
been sorted upon the ProductPrice.

Figure 7a shows a näıve MHT over the Market rela-
tion and Figure 7b shows an MHT based on TBDAS
and Goodrich et al.’s method. In a näıve MHT, the
root is signed by DO but in the other two methods, in

ISeCure



8 Trust-based Probabilistic Method for Verification in Database Outsourcing — S. Ghasemi et al.

8 
 

 
 

Table 1 Market Table 
ProductID ProductPrice Count Hash Value 

1 100 1 Hash1 
2 115 2 Hash2 
3 130 1 Hash3 
4 141 1 Hash4 
5 156 2 Hash5 
6 172 2 Hash6 
7 189 1 Hash7 
8 200 2 Hash8 
9 210 2 Hash9 

10 212 2 Hash10 
11 219 2 Hash11 
12 223 1 Hash12 
13 226 2 Hash13 
14 231 1 Hash14 
15 265 1 Hash15 
16 270 1 Hash16 

 
(a) 

 
(b) 

Figure 6. Market relation

addition to the root, the nodes in specific levels l where
l = {2, 4} are also signed. Assume that after data
outsourcing, a user poses a sample query as below:

SELECT * FROM Market WHERE 140 ≤ Price ≤ 220

According to Figure 6, the answer includes tuples 4
to 11. The highlighted nodes in Figure 7a and 7b are
the V O corresponding to the result. In a näıve MHT,
the user constructs the whole tree to get the hash of
the root and verifies the answer by the root signature.
Considering Goodrich et al.’s method, there is not
a low level signed subtree which covers all tuples of
the query result. Therefore the user reconstructs the
whole tree as well as in the näıve MHT. In TBDAS the
current trust value towards SP , Tcurrent, determines
the number of tuples for verification. For example, with
Tcurrent = 0.5 the client builds a subtree for half of the
result tuples. In this case, if tuples 5 to 8 are selected by
C, they form a subtree whose root (H5678 in Figure 7b)
must be verified with its signature (the dotted blue
space in Figure 7b). As we see in this example, TBDAS
usually leads to construction of a smaller subtree,
which decreases the client computation overhead.

3.4 Updating Trust

Trust value (T ) is a value in [0..1] indicating client’s
trust toward SP . Initially, it is set to zero assuming
SP is fully untrustworthy. The initial value depends
on C’s belief to SP . For example, if SP is a reputed
organization, or a trusted third party introduces SP ,
the initial trust value can be higher than zero. However,
we assume that there is no prior trust to SP and
initialize it to zero. On the other hand, the trust value

8 
 

 
 

Table 1 Market Table 
ProductID ProductPrice Count Hash 

Value 
1 100 1 Hash1 
2 115 2 Hash2 
3 130 1 Hash3 
4 141 1 Hash4 
5 156 2 Hash5 
6 172 2 Hash6 
7 189 1 Hash7 
8 200 2 Hash8 
9 210 2 Hash9 

10 212 2 Hash10 
11 219 2 Hash11 
12 223 1 Hash12 
13 226 2 Hash13 
14 231 1 Hash14 
15 265 1 Hash15 
16 270 1 Hash16 

 
(a) 

 
(b) 

(a)

8 
 

 
 

Table 1 Market Table 
ProductID ProductPrice Count Hash 

Value 
1 100 1 Hash1 
2 115 2 Hash2 
3 130 1 Hash3 
4 141 1 Hash4 
5 156 2 Hash5 
6 172 2 Hash6 
7 189 1 Hash7 
8 200 2 Hash8 
9 210 2 Hash9 

10 212 2 Hash10 
11 219 2 Hash11 
12 223 1 Hash12 
13 226 2 Hash13 
14 231 1 Hash14 
15 265 1 Hash15 
16 270 1 Hash16 

 
(a) 

 
(b) (b)

Figure 7. Constructed Nodes for Market relation (Figure 6)

(a) A näıve MHT, (b) An MHT based on Goodrich et al.’s
Method

is limited to an upper bound, Trust Threshold (TT ),
to force a light verification process even for an honest
SP . TT is initialized by C and each user may have
her own TT . As much as TT is closer to 1, reduction
of the computation overhead is more tangible. In this
paper, we set TT to 0.95.

In TBDAS, the trust value is calculated and updated
after correctness verification for each query. On the
other hand, the number of verified tuples in a query
result depends on the trust value. Receiving a query
result from SP , if T = 0, C has to construct the
smallest subtree which covers all tuples in the result
and verify its root signature. If it is verified, the query
result is definitely correct. For non-zero trust values,
it is enough for C to verify the correctness of a part
of tuples whose number is determined according to
Equation (2). In Equation (2), Tcurrent is the current
trust value, TupNum denotes the number of tuples
in the result, and TupNum′ denotes the number of
selected tuples for verification.

TupNum′ = TupNum× (1− Tcurrent) (2)

Equation (2) indicates that as much as distrust to SP
is higher, the number of tuples selected for verification
is closer to the total number of returned tuples. To
verify the chosen set of tuples, C constructs merely the
subtree, which covers all the chosen tuples. Clearly,
this tree is smaller than the tree, which contains all
the result tuples, so lower computation overhead is
imposed on C.
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In order to decrease the risk of sudden changes in
the behavior of SP , C gradually increases the trust
value according to Equation (3). On the other hand, if
correctness is not verified for a query result, the trust
value sharply decreases as formulated in Equation
(4). Hereon, C penalizes SP according to a suggested
mechanism in the service level agreement signed be-
tween them. In summary, the trust value increases
additively having correct query results and decreases
sharply receiving an incorrect answer.

Tnew = min(Tcurrent + α× TupNum′

TupNum
, TT ) (3)

Tnew = Tcurrent−min(Tcurrent, β×
TupNum′

TupNum
) (4)

In both Equation (3) and Equation (4), Tcurrent is the
current trust value to SP , TT is the trust threshold,
TupNum is the number of tuples in the query result,
and TupNum′ refers to the number of selected tu-
ples for verification where TupNum′ ≤ TupNum. In
Equation (3), α is a coefficient to adjust the changing
rate of trust. Similarly, in Equation (4), β is a coeffi-
cient larger than zero to specify the rate of decreasing
trust.

Figure 8a depicts an example of trust increment. In
this example, we assume that a fixed query is executing
during many transactions with TupNum = 1000. The
trust value, initialized to zero, increases each time for a
correct result. We evaluated this example by multiple
values for α. The figure shows that for α = 0.15,
after about 25 transactions, the trust value reaches
to its upper bound. For α = 0.01, it takes almost
300 transactions to reach the trust threshold. The
figure also confirms that trust increment occurs with a
gentle slope. However, the slope depends on the value
of α chosen by C. Our experimentation indicate that
0 < α < 0.2 is an appropriate range for α. Obviously,
its exact value depends on the application setting and
the frequency of interactions between C and SP .

Figure 8b shows the other side of changing trust to-
wards SP , i.e., trust decrement. The figure shows that
at first, the trust value is 0.95, as the trust threshold.
We evaluate the example by multiple values for β. As
depicted in the figure, for β = 0.5, after seven transac-
tions of incorrect result, detected by C, the trust value
reaches to zero. For β = 10, just after one erroneous
transaction, trust value reaches to zero. This example
shows that the risk of trust to SP is low. This is be-
cause with only one unverified result, the value of trust
sharply reduces, which in turn enforces a more rigor-
ous verification of subsequent results. Considering the
application in use, the client chooses a proper β as
well as a proper α. Figure 9 represents pseudo-code of
Query Execution phase including query submission,

updating the trust value, and result verification at C
side. We would like to remark that our trust model
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Figure 8. Examples of Trust Variation for (a) Trust Increment,
(b) Trust Decrement

and its calculations is not the only way to consider
SP ’s past behavior. One can suggest other formulas,
which compute and reflect the trust towards SP in the
verification process. However, our analysis and evalu-
ations (Section 4) show the efficacy of our proposed
model.

4 Evaluation and Analysis

In this section we discuss on the efficiency improve-
ment as well as on the security of our approach. We
empirically show that our approach relying on the
notion of trust reduces the client side verification over-
head compared to that of Goodrich et al.’s method. In
the second subsection, the effect of the approach on
the communication overhead has been evaluated. We
also theoretically assess the security of our approach
in terms of the escape probability of a malicious server.
Escape probability is the probability with which a dis-
honest server manipulates a query result and escapes
from the client detection.
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Algorithm 2.  Query Execution phase in TBDAS 

  

Inputs: 

T: Initial Trust value to SP = 0 

TT: Trust Threshold = 0.95 

Alfa: A coefficient in (0, 0.2)    /* a coefficient for trust increment */ 

Beta: A coefficient > 0    /* a coefficient for trust decrement */ 
N: Number of queries 

 

Variables: 

i: Counter for queries 

Qi: the ith query 

RSi: Result Set of Qi 

TupNum: Number of tuples in RSi 

TupNum': Number of tuples to be verified according to T 

STi: Smallest enveloping signed subtree for Qi 

R: Verification Result (true or false) 

SSi: Signature Set for construction of enveloping subtree 

 

Procedure: 

i = 1; 

while (i≤N) 

{ 

Snd_Query(Qi,SP)     /* client sends query Qi to SP */ 
(RSi,SSi) = Exec_Query(Qi)   /* SP executes Qi  and sends the result RSi and signatures  

  SSi  as VO to C */ 
TupNum’ = TupNum × (1-T)  

STi = Blt_MHT(RSi,TupNum')  /* C builds the  smallest enveloping subtree covering  
        TupNum’ tuples  */ 
R = Vrf_Sign(STi)       /* C verifies root signature */ 
if (R is True) 

 { 

T = min(T + Alfa × TupNum’/TupNum, TT)         /* trust increment */ 
CP = ((TupNum - TupNum’) × T -TupNum’)/TupNum  /* Correctness Probability 

    of RSi  */ 
}  

else 

 {  

T = T - min(T, Beta × TupNum’/TupNnum)         /* trust decrement */ 
Return False                /* rejects RSi  */ 
} 

i++ 

  } 

Figure 9. Pseudo-code of Query Execution phase in TBDAS

4.1 Performance Evaluation

The goal of this section is to evaluate our claim in
reducing computation overhead in TBDAS. To this
purpose, we implemented TBDAS based on Goodrich
et al.’s method in order to show the effect of adopting
trust on their method. In the experiments, we show
that how gradual increase of the trust value decreases
the overhead of verification processes. In our imple-
mentation, we used Java language on a PC with a
Pentium IV Core i5 processor and 4GB of RAM to
act as SP and MySQL DBMS as the database server.
We executed our system on a shopping relation with
five attributes including ID (unique), Name, Price,
Timestamp, and Header. Timestamp is set by DO
to show the expiration date of tuples. Header is the
tuple digest computed through a hash function over
the tuple. C sends a query with the following template
to SP :

SELECT * FROM TableName WHERE A ≤ Price ≤ B

In the implementation, we set α = 0.15 and T = 0
as the initial trust value. We suppose that in this ex-
periment, SP acts honestly and the trust continuously
increases. The results of implementation are shown
in Figure 10a and 10b for 1000 and 1000000 tuples,
respectively. The results have been calculated as the
mean of 10 repetitions for a query execution. Each line
in the figures belongs to a query with the specified
result size. The starting point of each line, indicated
by a star sign, shows the functionality of Goodrich et
al.’s method in the same state. Assuming the honesty
of SP , the trust value increases to eventually reach

the threshold. In contrary, a detected sabotage leads
to a sharp decrease of trust value as explained in Sec-
tion 3.4. Vertical axis shows the number of constructed
nodes to reach the root of covering subtree for each
query execution. According to Figure 9, the most sig-
nificant factor in query result verification time at C
side is the time complexity for constructing the small-
est enveloping subtree, which directly depends on the
number of constructed nodes.
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Figure 10. TBDAS Analysis in a table with (a) 1000 tuples,

(b) 1000000 tuple

Figure 10a and 10b show the effect of trust value
on decreasing the number of constructed nodes for
verification per different result sizes. Comparing the
execution of similar queries over relations with differ-
ent sizes, the figures show that as much as the table is
larger, considering trust is more effective. They also
depict that as much as T increases, the number of
constructed nodes by C decreases especially when T
is closer to TT . Moreover, it can be inferred from the
figures that the effect of considering trust is more tan-
gible for larger databases. The efficiency effect appears
even with lower trust values when the database size be-
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comes larger. On the other hand, for a small database
(in our experiment, a table having 1000 tuples) al-
though the effect of considering trust appears with
higher trust values, it causes a sharp decrease in the
number of constructed nodes. In overall, Figure 10a
and 10b acknowledge that adopting trust significantly
decreases verification overhead in application settings
having high volume databases and queries with large
result sets.

4.2 Communication Overhead

In TBDAS, SP sends some extra signatures as a part
of V O to enable C to verify the root of a smaller
subtree. The extra signatures while reducing client side
verification process, lead to a bit more communication
overhead. In this section we experimentally measure
the amount of communication overhead including the
size of V O sent from SP to C in both TBDAS and
Goodrich et al.’s method. We use the same setting
mentioned in the previous section for computation
overhead evaluation. We pose queries with various
result size. The result of this experiment for each result
size is the average of several executions with different
ranges in the attribute domain but a fixed result size.

Figure 11 shows the amount of communication over-
head in KB per different result sizes on a table having
one million tuples. As Figure 11 depicts, as much as
the size of result increases, the amount of communica-
tion overhead decreases. This is because the number of
necessary signatures and extra nodes for verification
goes less when the result size increases. Moreover, the
communication overhead for TBDAS and Goodrich et
al.’s approaches are so close together and their differ-
ence is negligible with respect to the total overhead.
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(𝑚
𝑡

)

(𝑇𝑢𝑝𝑁𝑢𝑚
𝑡

)
             𝑚 ≥ 𝑡

       0                      𝑚 < 𝑡

                              (5) 

 

Eq. (5) says that if SP manipulates more than m tuples the client definitely detects SP’s misbehaviour. 

Otherwise, there is a small but non-zero probability for SP to escape. Simplifying Eq. (5), we have Eq. (6), which is 

another form to represent EP.  
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× … ×
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×

𝑚 − 1
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×

𝑚

𝑇𝑢𝑝𝑁𝑢𝑚
      (6) 

 

Eq. (6) says that when t << TupNum,  𝐸𝑃 ≈ (
𝑚

𝑇𝑢𝑝𝑁𝑢𝑚
)

𝑡
= (𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝑡. That is, with very small t, the escape 

probability is independent from the result size, and is equal to 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡
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Figure 11. TBDAS communication overhead in a table with

one million tuples

4.3 Security Analysis

Although TBDAS offers lower verification overhead,
it probabilistically verifies the correctness of query
results. That is, the correctness of results are not
guaranteed. This is because TBDAS relies upon the
past behavior of SP and prefer not to verify all the
nodes but a subset of them whose size is proportional
to the amount of trust to SP . Therefore, it is probable
in theory that a highly trusted SP abuses the method
and manipulates some tuples, which are not chosen
at client side to be in the verification subtree, so the
result is mistakenly verified. Now, we calculate the
probability of an unauthorized result manipulation by
SP and being undetected at client side. We call such
probability as EscapeProbability (EP ).

In TBDAS, we suppose that SP cannot learn about
the chosen verification subtree at client side. Therefore,
it manipulates some tuples and hopes to escape the
client detection. EP is calculated by (5) where t is the
number of manipulated tuples by SP , TupNum is the
result size (in tuples), and m is the number of tuples,
which are not among the chosen tuples at client side.
It depends on the current trust towards SP , Tcurrent,
and is calculated by m = Tcurrent × TupNum.

EP =


(m

t )
(TupNum

t )
m ≥ t

0 m < t
(5)

Equation (5) says that if SP manipulates more than
m tuples the client definitely detects SP ’s misbehavior.
Otherwise, there is a small but non-zero probability
for SP to escape. Simplifying (5), we have (6), which
is another form to represent EP .

EP =
m− t+ 1

TupNum− t+ 1
× . . .×

m− 2

TupNum− 2
× m− 1

TupNum− 1
×

m

TupNum

(6)

Equation (6) says that when t� TupNum, EP ≈(
m

TupNum

)t
= (Tcurrent)

t
. That is, with very small t,

the escape probability is independent from the result
size, and is equal to (Tcurrent)

t
, which also comes from

our intuition as more trust to SP prepares potential to
escape, though it diminishes exponentially for frequent
escapes if t > 1.

From (5) we can simply compute EP when SP ma-
nipulates a ratio of result tuples. Figure 12a is the
diagram depicting EP for different ratios of manip-
ulations. Each curve in the figure shows EP for a
trust value. The figure shows that EP exponentially
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decreases and being close to zero with increasing the
manipulation rate. It also clearly shows that even with
a very little change in the result, e.g. 2%, EP is a neg-
ligible value close to zero. We observe in Figure 12a
that when Tcurrent > 0.8, it is likely for SP to escape
from client detection when it manipulates a very small
percentage of the result. However, Figure 12b shows
that SP cannot consecutively takes advantage of the
client trust. It is assumed in this figure that SP ma-
nipulates 1% of result tuples for client queries. The
figure indicates that the probability of more than two
consecutive escapes is almost zero even for a highly
trusted SP . Both of the experiments in Figure 12a
and 12b are conducted on 1000 tuples as result size.
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Figure 12. Escape Probability for (a) ratio of manipulated
tuples, (b) consecutive manipulation

5 Conclusion

In this paper, we proposed TBDAS as a trust-based
method, which efficiently verifies the correctness of
query results returned by the service provider in the
database as a service model. The notion of trust in
our MHT-based method, helps to reduce the size of
verification subtree. The amount of trust is obtained

from the history of client-server interactions. Trad-
ing off between security and performance, TBDAS
enables the client to tune its trust towards the server.
Although the correctness of results is not guaranteed,
we showed that the server cannot manipulate a query
result and escape client detection unless with an in-
significant probability. Reducing computation over-
head imposed on the client makes our approach ap-
propriate for outsourcing scenarios having numerous
client-server interactions with computationally weak
clients. Reduction of the verification process makes
TBDAS appropriate for crowd-sourcing setting along-
side outsourcing applications.

As future work, we plan to extend our work to more
complex queries such as join queries over more than
one table.
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